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Abstract

Background: MADS-box transcription factors (TFs) are important in floral organ specification as well as several
other aspects of plant growth and development. Studies on stress resistance-related functions of MADS-box genes
are very limited and no such functional studies in Brassica rapa have been reported. To gain insight into this gene
family and to elucidate their roles in organ development and stress resistance, we performed genome-wide
identification, characterization and expression analysis of MADS-box genes in B. rapa.

Results: Whole-genome survey of B. rapa revealed 167 MADS-box genes, which were categorized into type |
(Mg, MB and My) and type Il (MIKC® and MIKC*) based on phylogeny, protein motif structure and exon-intron
organization. Expression analysis of 89 MIKC® and 11 MIKC* genes was then carried out. In addition to those
with floral and vegetative tissue expression, we identified MADS-box genes with constitutive expression patterns
at different stages of flower development. More importantly, from a low temperature-treated whole-genome
microarray data set, 19 BrMADS genes were found to show variable transcript abundance in two contrasting
inbred lines of B. rapa. Among these, 13 BrMADS genes were further validated and their differential expression
was monitored in response to cold stress in the same two lines via qPCR expression analysis. Additionally, the
set of 19 BrIMADS genes was analyzed under drought and salt stress, and 8 and 6 genes were found to be induced
by drought and salt, respectively.

Conclusion: The extensive annotation and transcriptome profiling reported in this study will be useful for
understanding the involvement of MADS-box genes in stress resistance in addition to their growth and
developmental functions, which ultimately provides the basis for functional characterization and exploitation
of the candidate genes for genetic engineering of B. rapa.
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Background

MADS-box genes play important roles in many aspects
of plant development [1]. They are the major compo-
nents in the well-known ‘ABC’ model that describes
their roles in floral organ development [2]. MADS-box
genes were identified initially as floral homeotic genes
and are some of the most extensively studied transcrip-
tion factors (TFs) involved in developmental control
[3-5]. MADS-box proteins are characterized by the pres-
ence in the N-terminal region of a conserved MADS-
box DNA-binding domain of approximately 58-60
amino acids that binds to so-called CArG boxes (CC[A/
T]6GG) [6].

Plant MADS-box genes have been subdivided into two
main groups viz. M-type, also designated as type I, and
MIKC, also known as type II [7]. The M-type MADS-
box genes are grouped into Ma, M and My based on
phylogenetic relationships within their MADS-box regions
[4]. The MIKC genes are characterized by the presence of
keratin-like (K) domain and are classified as either MIKC®
or MIKC*-type [8]. The MIKC® genes are further parti-
tioned into 14 clades based on phylogeny [9].

MIKC-type proteins generally contain four common
domains. In addition to the MADS (M) domain, MIKC
proteins contain intervening (I), K and C-terminal (C)
domains [10,11]. The I domain is relatively less con-
served, and contributes to the DNA binding specificity
and dimerization of these proteins [12]. The K domain is
characterized by a coiled-coil structure that mainly func-
tions in the dimerization of MADS-box proteins. The K
domain, which is present in MIKC MADS-box proteins
but absent from M-type proteins, is more highly con-
served than the I domain [4,13], and the MIKC* group
has longer I domains and less conserved K domains than
the MIKC® group [8]. The C domain, which is the least
conserved, plays important roles in transcriptional acti-
vation and the formation of multimeric MADS-box pro-
tein complexes [14].

The most remarkable feature of the MADS-box gene
family is the divergent functions of its members in dif-
ferent aspects of plant growth and development, such as
flowering time control, meristem identity, floral organ
identity, formation of the dehiscence zone, fruit ripening,
embryo development and the development of vegetative
organs such as roots and leaves [7,15-17]. Previous re-
ports revealed the role of MIKC® in reproductive organ
development of higher plants, and this has been the
well-characterized group of MADS-box proteins in plants.
To date, MIKC® genes have been found to play funda-
mental roles in flowering time (SOCI (SUPPRESSOR OF
OVERESPRESSION OF CONSTANSI), FLC1 (FLOWERING
LOCUS C), AGL24 (AGAMOUS-LIKE GENE 24), MAF1/
FLM (MADS AFFECTING FLOWERING) and SVP
(SHORT VEGETATIVE PHASE); [18]); floral meristem
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identity (API (APETALA 1), FUL (FRUITFUL) and CAL
(CAULIFLOWER); [19]); the formation of floral organs
(AP1, SEP1-3 (SEPALLATA 1-3), AP3 (APETALA 3),
PI (PISTILLATA) and AG (AGAMOUS); [20]); fruit rip-
ening (SHPI, SHP2 (SHATTERPROOF 1-2) and FUL;
[21,22]) and seed pigmentation and embryo development
(TT16 (TRANSPARENT TESTAI6); [23]).

The biological functions of MIKC® genes in flower or-
ganogenesis can be grouped into five classes, A, B, C, D
and E, which are required in different combinations to
specify the identity of sepals (A + E), petals (A + B +E),
stamens (B + C+E), carpels (C+E) and ovules (D + E)
[20,24,25]. Expression of MIKC® genes has also been de-
tected outside reproductive organs, e.g., of genes belong-
ing to the AGLI2 and AGLI7 subfamilies [1,26]. This
expression suggested a role for those genes in vegetative
development, which was later demonstrated for some of
them in root development. Nevertheless, AGLI2 and
AGL17 have been proposed to play roles as flowering
promoters [27]. By contrast, M-type (type I) MADS-box
genes in Arabidopsis appear to function exclusively dur-
ing female gametophyte and seed development [28].

The genus Brassica includes a number of important
crops that provide oil, vegetables, condiments, dietary
fiber, and vitamin C [29]. Among Brassica species, Bras-
sica rapa comprises several subspecies, including Chinese
cabbage (B. rapa ssp. pekinensis), non-heading Chinese
cabbage (B. rapa ssp. chinensis) and turnip (B. rapa ssp.
rapifera). Chinese cabbage is one of the most important
vegetables in Asia. In addition, B. rapa is used as the
model species representing the Brassica A’ genome and,
therefore, was selected for genome sequencing [30,31].
This species has already proven a useful model for study-
ing polyploidy, in part because it has a relatively small
genome [approximately 529 megabase pairs (Mbp)] com-
pared to other Brassica species. Comparative genomic
analysis confirmed that B. rapa underwent genome tripli-
cation since its divergence from Arabidopsis [32]. MADS-
box family genes have been thoroughly studied in its close
relative Arabidopsis, but have not been characterized in
the relatively large and complex genome of B. rapa. Over
the course of evolution, the number of genes in this
family steadily increased as the reproductive system be-
came more complex; concomitant with this expansion of
the lineage, MADS-box genes have been found to perform
more diversified functions [33]. In addition to growth and
development-related functions, some stress-responsive
MADS-box genes have also been reported in wheat and
rice [34,35]. As an important vegetable crop world-
wide, Brassica species are subject to a variety of abiotic
stresses. Identification of stress-resistance-related MADS-
box genes in Brassica could be highly useful.

The recent sequencing of the Brassica rapa ssp. peki-
nensis genome [36] offers the possibility of genome-wide
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analysis of MADS-box genes. In this study, we analyzed
the genomic localization, protein motif structure, phylo-
genetic relationships, and gene structure of all candidate
MADS-box genes in B. rapa. We carried out extensive ex-
pression profiling for specific MIKC® subfamilies in vege-
tative and reproductive organs, as well as during flower
developmental stages. Additionally, we investigated a con-
siderable number of MADS-box genes, selected from
whole-genome, low temperature-treated microarray data
in the cold-tolerant and -susceptible inbred lines of
B. rapa, Chiifu and Kenshin, respectively.

Results

Identification and sequence analysis of MADS-box genes
in B. rapa

A set of 167 candidate MADS-box genes from the B.
rapa genome was recovered using key word ‘MADS-box’
to search Swissprot annotations at the Brassica database
(BRAD) (http://brassicadb.org/brad/) [37]. This number
of candidates B. rapa (167) is higher than the number of
MADS-box genes in Arabidopsis, rice, soybean, maize
and sorghum (Additional file 1: Table S1) [4,35,38,39]. A
domain search using EMBL (http://smart.embl.de/smart/
set_mode.cgi?GENOMIC=1) with the corresponding B.
rapa candidate protein sequences confirmed 162 of them
to contain a ‘MADS’ domain, whereas the other 5 did not.
The five candidates (BrMADSS85, 87, 89, 119 and 127) that
lacked a ‘MADS’ domain shared considerable sequence
similarity with MADS-box proteins of other crop species
that also lack ‘MADS’ domains and are considered to be
MADS-box proteins (4 published and 1 unpublished
MADS-box genes; Additional file 1: Table S2). We classi-
fied all 167 putative B. rapa MADS-box proteins into five
classes (i. e, MIKC® and MIKC* of type II and Ma, Mp
and My of type I) in accord with the previously reported
classification of the MADS-box family members in flower-
ing plants [4]. We designated the 167 annotated MADS-
box genes of B. rapa as BrMADS followed by Arabic
numbers 1-167, consecutively following the five classes
(MIKCS, MIKC*, Ma, M and My). Subsequent sequence
analysis of the 167 genes showed open reading frame
(ORFs) ranging from 180 to 2379 bp and predicted pro-
tein lengths from 59 to 792 amino acid (data not shown).
Sequence analysis also revealed that B. rapa MIKC (type II)
MADS-box genes usually contained multiple introns, with
a maximum of 15 introns; the exceptions were BrMADS84,
BrMADS86 and BrMADS8S8, which did not have any in-
trons. Almost all of the M-type (type I) genes lacked introns
or had only a single intron; however, M-type MADS-box
genes BrMADSI109 and BrMADSI19 had 3 and 2 introns
respectively (Table 1 and Additional file 2: Figure S2). These
features are consistent with those of MADS-box genes in
other flowering plants such as Arabidopsis, rice, grape-
vine, and soybean [4,13,35,38].
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Phylogenetic analysis of MADS-box genes in B. rapa
Independent phylogenetic trees for M-type and MIKC-
type MADS-box TFs were constructed using the B. rapa
MADS-box proteins along with those from Arabidopsis
and rice. There were 67 M-type members (i.e., Ma, M
and My) from B. rapa, with the other 100 proteins be-
longing to MIKC-type (MIKC® and MIKC'; Figure 1).
Notably, the MIKC® family included 89 members of this
latter group, more than in Arabidopsis, rice, and soybean
(Additional file 1: Table S1). Among the 89 MIKC® genes,
BrMADS84, 86, 87, 88 and 89 could not be assigned in
the tree using the bootstrap method with 1000 replicates,
possibly due to high sequence divergence in the conserved
regions and sequence length. To test their relationships
and relevance with other MADS-box genes, we generated
an alternative phylogenetic tree without using bootstrap
replications and found these five genes in the different
clades of MIKC® (Additional file 2: Figure S1b).

In accordance with the known classes of Arabidopsis
MADS-box genes, we found 13 MIKC® clades in B. rapa.
Although most of the B. rapa MADS-box genes were con-
sistent with Arabidopsis in terms of sequence similarity
and grouping, we found some genes viz. BrMADS41, 47,
167, that were placed as close sisters of rice MADS-box
genes in the tree. Interestingly, OsMADS59, instead of
being included in the AGLI15-like clade, paired with
BrMADS47 in the TM3 clade. There was some disparity
in the distribution of rice M genes between the two
phylogenetic trees prepared with the different methods
(Figure la and Additional file 2: Figure Sla). Among the
13 MIKC® clades, the TM3 clade contained the most B.
rapa sequences (18). The FLC clade included three
previously identified FLC genes of B. rapa viz. BrFLCI,
BrFLC2, BrFLC3 [40] which showed 99.51, 100 and 100%
similarity to BrMADS13, 12 and 14 respectively at the
amino acid level. MIKC*/M3 included 11 members, which
is almost double that in Arabidopsis (6), rice (5) and soy-
bean (5).

In case of type I MADS-box proteins, the Ma and My
groups had more members in B. rapa (29 and 22 re-
spectively), than in Arabidopsis, rice and soybean. By
contrast, the 16 Mp genes found in B. rapa was less than
that in Arabidopsis, but more than in rice and soybean
(Additional file 1: Table S1) [4,35,38].

Analysis of conserved motifs in MADS-box proteins of

B. rapa

Ten conserved motifs among related proteins were identi-
fied from the 167 candidate MADS-box genes of B. rapa
using the MEME (Multiple Em for Motif Elicitation) motif
search tool (Figure 2 and Additional file 2: Figure S3).
Motifs 1 and 6 specifying the MADS domain were found
in 153 members of the MADS-box family whereas
BrMADS79, 85, 87, 89, 105, 109, 113, 118,119, 127, 129,
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Table 1 In silico analysis of 167 MADS-box genes identified in B. rapa with their closest Arabidopsis homologs and
sequence characteristics (aa, amino acids; Kda, Kilo dalton)

Sl no. Gene Gene Chr. no. Closest arabidopsis Protein No. of Group
name locus homolog Length (aa) Mol.wt. (Kda) introns
1 BrMADS1 Bra040348 A08 AGL18 293 32.69 5 MIKC®
2 BrMADS2 Bra014628 AO4 AGLI18 250 28.02 7 MIKC®
3 BrMADS3 Bra007324 A09 AGLI18 255 28.59 7 MIKC®
4 BrMADS4 Bra019018 AO6 AGL18 200 22.90 6 MIKC®
5 BrMADS5 Bra008802 A10 AGLT5 264 30.13 7 MIKC®
6 BrMADS6 Bra006214 AO03 AGLT5 264 30.00 7 MIKC®
7 BrMADS7 Bra031888 A02 AGL69 178 19.84 5 MIKC®
8 BrMADS8 Bra024350 AO6 AGL27/FLM 196 2243 6 MIKC®
9 BrMADS9 Bra031886 A02 AGL69 250 28.14 6 MIKC®
10 BrMADS10 Bra024351 AO6 AGL27/FLM 200 22.75 6 MIKC®
1 BrMADST1 Bra031884 A02 AGL27/FLM 199 22.80 6 MIKC®
12 BrMADS12 Bra028599 AO2 AGL25/FLC 196 21.93 6 MIKC®
13 BrMADS13 Bra009055 A10 AGL25/FLC 206 2294 6 MIKC®
14 BrMADS14 Bra006051 A03 AGL25/FLC 197 21.64 6 MIKC®
15 BrMADS15 Bra022771 AO03 AGL25/FLC 143 16.04 4 MIKC®
16 BrMADS16 Bra039921 A09 AGL17 227 26.38 6 MIKC®
17 BrMADS17 Bra030222 AO4 AGL17 227 26.18 6 MIKC®
18 BrMADS18 Bra011797 AO1 AGL21 228 33.78 6 MIKC®
19 BrMADS19 Bra010623 AO8 AGL21 214 24.65 5 MIKC®
20 BrMADS20 Bra017638 AO03 AGLT6 240 27.51 6 MIKC®
21 BrMADS21 Bra011509 AO1 AGLT6 290 40.19 6 MIKC®
22 BrMADS22 Bra038511 A09 AGL22/SVP 241 27.31 8 MIKC®
23 BrMADS23 Bra030228 AO4 AGL22/SVP 236 26.78 7 MIKC®
24 BrMADS24 Bra019221 AO03 AGL24 216 24.55 6 MIKC®
25 BrMADS25 Bra013812 AO1 AGL24 792 88.94 15 MIKC®
26 BrMADS26 Bra029365 AO2 AGL32/TT16 242 2844 5 MIKC®
27 BrMADS27 Bra026507 AO1 AGL32/TT16 300 36.72 7 MIKC®
28 BrMADS28 Bra013028 AO3 AGL32/TT16 240 28.11 6 MIKC®
29 BrMADS29 Bra020093 A02 PISTILLATA 203 2338 5 MIKC®
30 BrMADS30 Bra006549 A03 PISTILLATA 208 24.05 4 MIKC
31 BrMADS31 Bra002285 A10 PISTILLATA 146 16.62 3 MIKC®
32 BrMADS32 Bra014822 A04 APETALA3 224 26.39 6 MIKC®
33 BrMADS33 Bra007067 A09 APETALA3 232 27.28 6 MIKC®
34 BrMADS34 Bra007972 A02 AGL12 211 23.99 6 MIKC®
35 BrMADS35 Bra003919 AO7 AGL12 212 24.00 6 MIKC®
36 BrMADS36 Bra039324 AO4 AGL20/SOC1 213 24.35 6 MIKC®
37 BrMADS37 Bra000393 AO3 AGL20/SOCT 213 24.35 6 MIKC
38 BrMADS38 Bra004928 AO05 AGL20/SOC1 213 2440 6 MIKC®
39 BrMADS39 Bra029424 A09 AGLT4 173 19.78 4 MIKC®
40 BrMADS40 Bra020826 A08 AGLT19 146 16.16 2 MIKC
41 BrMADS41 Bra013662 AO1 AGLT9 718 81.80 10 MIKC®
42 BrMADS42 Bra019343 AO03 AGL19 219 25.07 6 MIKC®
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Table 1 In silico analysis of 167 MADS-box genes identified in B. rapa with their closest Arabidopsis homologs and
sequence characteristics (aa, amino acids; Kda, Kilo dalton) (Continued)

43 BrMADS43 Bra035907 A09 AGL42 272 3173 9 MIKC®
44 BrMADS44 Bra029281 A02 AGL42 209 24.74 6 MIKC
45 BrMADS45 Bra029314 AO2 AGL72 187 2199 3 MIKC®
46 BrMADS46 Bra013891 A01 AGL72 189 2194 3 MIKC®
47 BrMADS47 Bra010465 A08 AGL72 187 2131 2 MIKC
48 BrMADS48 Bra012957 AO03 AGL72 211 24.14 5 MIKC
49 BrMADS49 Bra029155 A03 AGL72 209 2390 6 MIKC
50 BrMADS50 Bra028282 A01 AGL72 202 2337 6 MIKC®
51 BrMADS51 Bra029154 A03 AGL71 219 2546 6 MIKC®
52 BrMADS52 Bra028283 A01 AGL71 199 23.05 5 MIKC
53 BrMADS53 Bra037895 A09 AGLTT 230 26.27 6 MIKC
54 BrMADS54 Bra000696 A03 AGLTT 231 26.38 6 MIKC®
55 BrMADS55 Bra013364 A01 AGAMOUS 252 28.78 6 MIKC®
56 BrMADS56 Bra012564 A03 AGAMOUS 251 28.77 6 MIKC
57 BrMADS57 Bra014552 A04 AGL1/SHP1 248 2839 6 MIKC®
58 BrMADS58 Bra003356 AO07 AGL1/SHP1 273 31.26 6 MIKC®
59 BrMADS59 Bra007419 A09 AGL1/SHP1 245 27.76 6 MIKC
60 BrMADS60 Bra004716 A05 AGL5/SHP2 244 28.01 5 MIKC®
61 BrMADS61 Bra038326 A02 AGL7/AP1 256 3012 7 MIKC®
62 BrMADS62 Bra004361 A07 AGL7/AP1 189 2251 5 MIKC
63 BrMADS63 Bra004007 AO7 AGL7/AP1 271 3167 8 MIKC®
64 BrMADS64 Bra035952 A09 AGL8/FUL 241 2750 7 MIKC®
65 BrMADS65 Bra029347 A02 AGL8/FUL 240 27.34 7 MIKC
66 BrMADS66 Bra012997 A03 AGLS/FUL 241 2745 7 MIKC
67 BrMADS67 Bra036201 A09 AGL79 248 2797 7 MIKC
68 BrMADS68 Bra025411 A06 AGL79 176 20.25 5 MIKC®
69 BrMADS69 Bra020742 A02 AGL79 577 64.08 9 MIKC®
70 BrMADS70 Bra011021 A08 AGL10/CAL 254 29.88 6 MIKC
71 BrMADS71 Bra014454 A04 AGL13 230 26.21 6 MIKC
72 BrMADS72 Bra004927 A05 AGL6 242 27.60 7 MIKC
73 BrMADS73 Bra000392 A03 AGL6 257 2947 7 MIKC®
74 BrMADS74 Bra021470 A01 AGL4/SEP2 252 28.77 6 MIKC®
75 BrMADS75 Bra039170 A05 AGL4SEP2 250 2857 6 MIKC®
76 BrMADS76 Bra010955 A08 AGLY/SEP3 244 28.21 7 MIKC
77 BrMADS77 Bra032814 A09 AGLY/SEP3 253 2932 7 MIKC
78 BrMADS78 Bra026543 A02 AGL3/SEP4 269 3063 7 MIKC®
79 BrMADS79 Bra017376 A09 AGL3/SEP4 243 2776 7 MIKC®
80 BrMADS80 Bra025126 A06 AGL3/SEP4 257 2941 7 MIKC
81 BrMADS81 Bra030032 A07 AGLY/SEP3 252 29.25 7 MIKC®
82 BrMADS82 Bra008674 A10 AGL2/SEP1 252 2878 6 MIKC®
83 BrMADS83 Bra006322 A03 AGL2/SEP1 250 28.55 6 MIKC
84 BrMADS84 Bra003278 A07 AGL18 61 6.91 0 MIKC®
85 BrMADS85 Bra003279 A07 AGL18 197 22.06 6 MIKC®
86 BrMADS86 Bra005545 AO05 AGL18 59 6.90 0 MIKC®
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Table 1 In silico analysis of 167 MADS-box genes identified in B. rapa with their closest Arabidopsis homologs and
sequence characteristics (aa, amino acids; Kda, Kilo dalton) (Continued)

87 BrMADS87 Bra029494 A09 AGLT5 118 13.66 3 MIKC®
88 BrMADS88 Bra016128 A07 AGL12 62 7.04 0 MIKC
89 BrMADS89 Bra019163 A03 AGL72 172 19.64 4 MIKC®
90 BrMADS90 Bra011763 A01 AGL67 175 2052 5 MIKC"
91 BrMADS91 Bra015645 A07 AGL67 209 24.60 7 MIKC"
92 BrMADS92 Bra012308 A07 AGL104 335 3815 9 MIKC®
93 BrMADS93 Bra016386 A08 AGL104 3N 3523 7 MIKC"
94 BrMADS94 Bra015643 A07 AGL66 329 3759 8 MIKC"
95 BrMADS95 Bra025685 A06 AGL65 379 43.18 9 MIKC®
96 BrMADS96 Bra016544 A08 AGL65 306 3512 5 MIKC"
97 BrMADS97 Bra031049 A09 AGL65 382 4392 9 MIKC"
98 BrMADS98 Bra024792 A06 AGL30 377 4265 10 MIKC"
99 BrMADS99 Bra017404 A09 AGL30 379 4278 8 MIKC"
100 BrMADS100 Bra004393 A07 AGL94 349 40.09 7 MIKC"
101 BrMADS101 Bra040149 A01 AGL57 174 19.90 0 Ma
102 BrMADS102 Bra037759 A09 AGL58 190 21.24 0 Ma
103 BrMADS103 Bra031945 AO2 AGL57 193 2217 0 Ma
104 BrMADS104 Bra032347 A09 AGL64 186 20.77 0 Ma
105 BrMADS105 Bra038225 A01 AGL28 261 3031 1 Ma
106 BrMADS106 Bra022434 A05 AGL62 283 3241 1 Ma
107 BrMADS107 Bra020242 AO2 AGL62 248 28.09 1 Ma
108 BrMADS108 Bra002480 A10 AGL62 279 32.06 1 Ma
109 BrMADS109 Bra035685 A04 AGL40 293 3284 3 Ma
110 BrMADST10 Bra011938 AO7 AGL23 238 27.09 1 Ma
M BrMADST 11 Bra032057 A04 AGL6T 180 2050 0 Ma
112 BrMADST112 Bra007829 A09 AGL6T 207 2313 0 Ma
113 BrMADST13 Bra026764 A09 AGL62 168 19.24 0 Ma
114 BrMADST114 Bra001209 A03 AGLIT 179 2033 0 Ma
115 BrMADST15 Bra021910 A04 AGL29 182 20.76 0 Ma
116 BrMADS116 Bra003884 A07 AGL60 212 2416 0 Ma
117 BrMADS117 Bra026674 A09 AGL100 206 2359 0 Ma
118 BrMADS118 Bra033492 A01 AGL84 293 3277 0 Ma
119 BrMADST119 Bra032767 A04 AGL84 309 3432 2 Ma
120 BrMADS120 Bra010027 A06 AGL73 345 38.29 0 Ma
121 BrMADS121 Bra037434 AO6 AGL73 261 29.19 0 Ma
122 BrMADS122 Bra018727 AO6 AGL74 245 2751 0 Ma
123 BrMADS123 Bra014217 A08 AGL84 277 3041 0 Ma
124 BrMADS124 Bra027116 A09 AGL55 243 27.09 0 Ma
125 BrMADS125 Bra040965 Scaffold000343 AGL55 198 2196 - Ma
126 BrMADS126 Bra009436 A10 AGL97 306 3385 0 Ma
127 BrMADS127 Bra038728 A01 AGL74 173 19.84 0 Ma
128 BrMADS128 Bra020600 A02 AGL39 263 2432 0 Ma
129 BrMADS129 Bra020247 A02 AGL23 269 30.64 1 Ma

130 BrMADS130 Bra028965 A03 AGL47 274 3146 0 MB
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Table 1 In silico analysis of 167 MADS-box genes identified in B. rapa with their closest Arabidopsis homologs and
sequence characteristics (aa, amino acids; Kda, Kilo dalton) (Continued)

131 BrMADS131 Bra002611 A10 AGL82
132 BrMADS132 Bra037571 A01 AGL103
133 BrMADS133 Bra022341 A05 AGL103
134 BrMADS134 Bra031864 A02 AGL52
135 BrMADS135 Bra025619 A04 AGL76
136 BrMADS136 Bra025607 A04 AGL76
137 BrMADS137 Bra025609 A04 AGL76
138 BrMADS138 Bra018767 A06 AGL93
139 BrMADS139 Bra015129 A07 AGL93
140 BrMADS140 Bra020923 A08 AGL89
141 BrMADS 141 Bra018741 A06 AGL89
142 BrMADS142 Bra028020 A09 AGL89
143 BrMADS143 Bra007138 A09 AGL89
144 BrMADS 144 Bra028019 A09 AGL89
145 BrMADS 145 Bra004071 A07 AGL101
146 BrMADS 146 Bra040248 A01 AGL46
147 BrMADS147 Bra005166 A05 AGL46
148 BrMADS148 Bra035448 AO1 AGL46
149 BrMADS149 Bra035449 A01 AGL46
150 BrMADS150 Bra039404 A05 AGL45
151 BrMADS151 Bra020555 A02 AGL35
152 BrMADS152 Bra009913 A06 AGL35
153 BrMADS153 Bra018490 A05 AGL80
154 BrMADS154 Bra029469 A09 AGL8O
155 BrMADS155 Bra041022 Scaffold000385 AGL80
156 BrMADS156 Bra020552 A02 AGL37
157 BrMADS157 Bra020550 A02 AGL36
158 BrMADS158 Bra020525 A02 AGL92
159 BrMADS159 Bra020524 A02 AGL92
160 BrMADS160 Bra009911 A06 AGL92
161 BrMADST161 Bra012335 A07 AGL87
162 BrMADS162 Bra024521 A09 AGL87
163 BrMADS 163 Bra028730 A02 AGL96
164 BrMADS 164 Bra009199 A10 AGL96
165 BrMADS165 Bra009176 A10 AGL96
166 BrMADS166 Bra009174 A10 AGL9%6
167 BrMADS167 Bra034809 A05 AGL95

297 3461 0 MB
342 39.17 0 MB
368 4212 0 MB
331 37.76 0 MB
367 4232 0 MB
349 40.12 0 MB
336 3832 0 MB
306 3470 0 MB
319 3590 0 MB
209 2426 0 MB
264 30.10 0 MB
263 2976 1 MB
281 32.09 0 MB
285 3259 0 MB
284 3233 0 MB
413 4676 1 My
125 14.56 0 My
264 30.77 1 My
264 30.80 1 My
302 3496 0 My
216 2432 0 My
203 2278 0 My
290 3343 0 My
304 3448 0 My
334 3692 - My
341 3845 0 My
380 4285 0 My
395 4476 0 My
360 4086 0 My
364 4144 0 My
162 1899 0 My
162 1887 0 My
252 28.88 0 My
202 23.13 0 My
192 2199 0 My
191 2201 0 My
353 4027 0 My

159, 165 and 167 did not show either motif 1 or 6 charac-
teristic of the MADS domain. These proteins did contain
other representative motifs of MADS-box family such as
motifs 3, 4, 5, 7, 8, 9 and 10. The MIKC MADS-box pro-
teins exhibited only the motif 1 type MADS domain.
Among M-type MADS-box proteins (Ma, MB and My),
most Ma and My proteins had motif 1-type MADS

domains, although BrMADS101 and 102 contained motif
6. Conversely, most of the Mp proteins (14) had the motif
6-type MADS domain.

Conserved motifs 2, 5 and 7 specified the K domain,
which is characteristic of MIKC MADS-box proteins,
were found in varying combinations in most MIKC® pro-
teins, except BrtMADS1, 84, 86 and 88. MIKC™ proteins
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Figure 1 Phylogenetic tree constructed by the neighbor-joining method using MADS-box genes from B. rapa, Arabidopsis and Rice.
(a) Phylogenetic analysis of 138 type | MADS-box proteins from B. rapa (67), Arabidopsis (43) and Rice (28). (b) Phylogenetic analysis of type Il
B. rapa, Rice and Arabidopsis MADS-box proteins. 181 type Il MADS-box proteins from B. rapa (100), Arabidopsis (43) and rice (38) showing 13
MIKC® clades and MIKC* group as marked in the figure.
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Figure 3 Chromosomal location of B. rapa MADS-box genes along ten (10) chromosomes. Respective chromosome numbers are written as
AO1 to A10 on the top of each chromosome. Different colors of gene name represent different groups (black: MIKC®, orange: MIKC¥, blue: Ma,
green: MB and red: My). The positive (+) and negative (-) signs following each gene represent forward and reverse orientation of the respective
gene. Genes lying on duplicated segments of genome are joined by black dotted lines. Tandemly duplicated genes are shown by blue vertical
blue lines. Gene position and each chromosome size can be estimated using the scale (in Megabase; Mb) on the left of the figure.

were found to contain the K-domain motifs (2, 5, and 7)
less frequently than did MIKC® proteins (Figure 2). Com-
paratively less conserved motifs 3 and 4 representative of
the I domain were found in both M-type and MIKC
MADS-box proteins. M and My type proteins contained
I domains at lower frequencies as compared to members
of the other groups. A considerable number of non-MIKC
proteins, especially from the Ma group, showed partial K
domain motifs. Finally, motifs 8, 9 and 10 representing the
C-terminal domains were also weakly conserved among
B. rapa MADS-box genes. Motif 9 was restricted to 14
MIKC® and 1 MIKC* proteins. All My proteins except
BrMADS161 and 162 consistently showed both the C-
terminal-representing motifs 8 and 10. Motif 8 and 10
were limited to only M-type MADS-box proteins. The
Ma group showed motif 8, but motif 10 was exclusively
present in the My proteins. The M group showed an in-
teresting pattern, wherein 7 genes contained only a single
motif, specifically one representative of the ‘MADS’ do-
main. Only 4 Mp genes out of 16 had more than two full
or partial motifs (Additional file 2: Figure S3).

Syntenic relationships between MADS-box genes of

B. rapa and Arabidopsis

Polyploidy [arising from whole-genome duplication (WGD)]
has played a vital role in the evolution and genetic diver-
sity of angiosperm genomes [41]. WGD events are gen-
erally followed by changes in gene expression and
widespread gene loss [42]. The Brassica genus is closely
related to the model species A. thaliana and both are
members of the Brassicaceae family. Comparative genetic
and physical mapping as well as genome sequencing stud-
ies have authenticated the syntenic relationships between

the Arabidopsis genome and the triplicate genome of
B. rapa, with subgenomes having evolved by genome frac-
tionation [43,44]. Comparative analysis was conducted to
identify homologous MADS-box transcription factors
between B. rapa and Arabidopsis. Based on our phylogen-
etic results and BLASTX reconfirmation, we determined
which Arabidopsis MADS-box genes were orthologous
to the 167 MADS-box B. rapa homologs. Among the
homologous gene sets, we found that most Arabidop-
sis MADS-box genes were represented by one to
three copies of B. rapa MADS-box genes (Additional
file 1: Table S3).

Chromosomal location of MADS-box genes and their
genomic duplication in B. rapa

We mapped the physical locations of the MADS-box genes
on the 10 chromosomes of B. rapa (except two genes
mapped to scaffolds Scaffold000343 and Scaffold000385;
Figure 3). The highest numbers of MADS-box genes were
found on chromosomes 9 (26 genes; 15.8%) and 2 (24
genes; 14.5%), while chromosomes 8 and 10 contained the
fewest (10 each). Among the five types of MADS-box
genes, MIKC* and My genes were clustered along chro-
mosomes 1, 6, 7, 8, 9 and chromosomes 1, 2, 5, 6,7, 9, 10,
respectively. A high of 18 MIKC® genes was found on
chromosome 3, but other than that there was no bias was
observed in the distribution of MIKC®, Ma or Mf genes
(Figure 3). Duplication analysis revealed that 67 out of 167
MADS-box genes (40.12%) were present in two or more
copies. This gene duplication occurred as a result of tan-
dem and segment duplications. A total of 63 MADS-box
genes were found to have counterparts on duplicated seg-
ments. We observed, higher frequencies of segmental
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duplications generated many homologs of MADS-box
genes along all chromosomes of B. rapa (black dotted
lines in Figure 3). Conversely, lower frequencies of tandem
duplications were evident among M-type B. rapa MADS-
box genes. Only 4 tandemly duplicated genes (from Mp
and My) were found on chromosomes 1 and 4. Evolution-
ary analysis of B. rapa also validated our findings, wherein
only 14% of the B. rapa genes were tandem duplicates,
compared with 27% of Arabidopsis genes in a 100-kbp
window interval [45]. No large gene clusters or hot spots

for B. rapa MADS-box genes were identified, possibly due
to the very few tandem duplications.

Transcript analysis of B. rapa MADS-box genes during
organ development

MADS-box genes have been found to be involved primar-
ily in floral organ specification; although some recent
studies revealed their involvement in other processes as
well. Specifically, MIKC® proteins among all the MADS-
box groups have been found to have diverse functions
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related to plant growth and development [1,25,35,46]. We
therefore examined the expression of all 89 B. rapa
MIKC® genes in root, stem, leaf and flower buds. We also
investigated these genes in the sepal, petal, stamen and
pistil of B. rapa flower which had expressions only in the
flower buds. And, we discussed the expression of all
MIKC® genes here in accord with thirteen clades identified
in our study. Additionally, we included all MIKC* genes in
the four floral tissue expression study as they have been
reported to be involved in the development of reproduct-
ive organs [47]. Finally, we conducted an expression study
in six flower bud developmental stages (young to mature
bud stage) for selected MIKC® genes (those expressed only
in flower buds) and all MIKC* genes to justify their roles
during the flower bud development (Figure 4).

AGL15-like genes

It has been reported that AGLI5 in Arabidopsis strongly
delays abscission and senescence in reproductive tis-
sues [9]. The B. rapa genome has nine AGL15-like genes
(BrMADS2, 3, 4, 5, 6, 84, 85, 86, 87) and their expression
in different tissues was consistent with that of their clos-
est Arabidopsis homologs. All of the genes had pre-
dominant expression in flower buds while a few of them
were expressed at low levels in different vegetative tissues
(Figure 4a).

FLC-like genes

FLC acts as an inhibitor of flowering and is a conver-
gence point for environmental and endogenous path-
ways that regulate flowering time in Arabidopsis [9].
We found ten FLC homologs [BRMADSI1, 7, 8, 9, 10,
11, and 15 in addition to the previously identified
BrFLCI1 (BrMADSI12), BrFLC2 (BrMADS13), and BrFLC3
(BrMADSI14)] in B. rapa with very similar expression
patterns in most organs. BrMADSI is a distant mem-
ber of this subfamily and showed strong expression in
the four tissues tested. Our root expression results for
BrFLCI and BrFLC2 contrast with those previously re-
ported [40]. This might be due to varietal differences of
B. rapa between the two studies. BFrMADS?9 is the only
member of this subfamily that was not expressed in any
of the organ tissues (Figure 4b).

AGL17-like genes

The AGL17-like genes show unusually diverse expres-
sion patterns, with members being expressed in roots
(majority of genes), in pollen (DEFHI25 in Antirrhi-
num), in both (ZmMADS2 in maize), or in leaf guard
cells and trichomes (AGLI6) [9]. We identified six
AGL17-like genes (BrMADSI6, 17, 18, 19, 20, 2I) and
found expression primarily in roots of B. rapa like their
Arabidopsis counterparts. Additionally, they were expressed
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in flower buds like in other eudicots [9]. We also observed
low expression in stem and leaf tissues (Figure 4c).

STMADS11-like genes

Genes of this clade perform contrasting roles in flower
development. SVP (SHORT VEGETATIVE PHASE) func-
tions as a floral repressor, whereas AGL24 belongs to the
same subfamily but promotes flowering in Arabidopsis
[48,49]. We identified four genes (BrMADS22, 23, 24,
25) in this subfamily and detected their widespread ex-
pression in the four organs of B. rapa (Figure 4d). This
is in contrast to the expression of SVP in Arabidopsis,
which is restricted to leaves and shoots [9].

GGM13-like genes

The GGM13-like genes are expected to represent a sister
group of the B genes and hence are termed By, (Bs)
genes [9]. ABS/TT16 is the only Arabidopsis GGM13-like
gene and has been shown to function in the specification
of endothelial cells as well as in the control of flavonoid
biosynthesis in the seed coat [23]. We identified three
GGM13-like genes (BrMADS26, 27, 28), with expression
exclusively in the flower buds like their Arabidopsis coun-
terparts. All three were expressed in the female reproduct-
ive organ of B. rapa flowers, whereas BrMADS27 was also
expressed in the male reproductive organ. Interestingly,
transcript accumulation of all GGM13-like genes grad-
ually decreased from early to mature bud stage of flower
development (Figure 4e).

GLO and DEF-like genes

These genes are B class floral homeotic genes in eudi-
cots and are involved in specifying petals and stamens
during flower development [50]. We found three GLO-
like genes (BrMADS29, 30, 31) and two DEF-like genes
(BrMADS32, 33) that were expressed exclusively in the
flower buds. Transcripts for these genes were abundant in
the petals and stamens of B. rapa flowers. We also found
low expression in sepals and pistils (Figure 4f & 4g).

AGL12-like genes

Three AGL12-like genes (BrMADS34, 35, 88) with pref-
erential expression in roots were detected in B. rapa.
BrMADS34 and 88 were also expressed in the flower
buds, similar to their Arabidopsis counterpart AGLI2
with the exception that AGLI2 has also been detected in
shoots (Figure 4h).

TM3-like genes

These genes are expressed preferentially in vegetative
parts of other plant species [51,52]. SOCI is an important
member of this family expressed abundantly in the apical
meristem and acting as a flowering time regulator [53].
We identified eighteen TM3-like genes (BrMADS36, 37,
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38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
and 89) with variable expression patterns in vegetative and
reproductive parts of B. rapa. BrMADS36, 37 and 38 are
close homologs of SOCI and were primarily expressed
in stem, leaf and flower buds. Moreover, we found
BrMADS39, 40 and 42 to be expressed primarily in roots,
but unlike their Arabidopsis counterparts (AGLI4 and
AGL19), we detected their expression in other parts of the
plant as well (Figure 4i).

AG-like genes

Genes of this clade are mainly involved in specifying sta-
men and carpel identity, and in providing floral deter-
minacy [9]. We identified eight AGAMOUS-like (AG)
genes (BrMADS53, 54, 55, 56, 57, 58, 59, 60) that were
expressed exclusively in flower buds of B. rapa. Our re-
sults are consistent with those for the Arabidopsis AG
subfamily, members of which specify stamen and carpel
identity [54]. Some of these B. rapa genes were pistil spe-
cific (BrMADS53 and 54) and some were expressed in
both male and female reproductive organs (BrAMADS5S5,
56, 57, 58, 59 and 60) (Figure 4j).

SQUA-like genes

SQUA-like genes are typically expressed in inflorescence
or floral meristems, and most of them function as meri-
stem identity genes [9]. In addition, they are involved in
specifying sepals and petals and thus are class ‘A’ floral
organ identity genes [55]. We identified ten SQUA-like
genes (BrMADS61, 62, 63, 64, 65, 66, 67, 68, 69, 70) that
had variable transcript patterns, but were expressed
mainly in flower buds like their Arabidopsis counter-
parts. Some BrMADS SQUA-like genes showed strong
expression in the stem and leaf as well. Our results in
this case are also consistent with the Gu et al. findings,
where they detected the SQUA-like gene ‘FRUITFULL
in stems and leaves of Arabidopsis [21]. BrMADS67 was
the only member of this subfamily expressed in all tested
organ tissues of B. rapa (Figure 4k).

AGL6-like genes

The functions of AGL6-like genes are not clear. We iso-
lated three AGL6-like genes (BrMADS71, 72, 73) from
B. rapa with expression in the flower buds, like their
Arabidopsis counterparts AGL6 and AGL13. BrMADS72
and 73, unlike their close homolog AGL6, also showed
expression in vegetative tissues (Figure 41).

AGL2-like genes

These genes play a central role in the floral meristem
and floral organ development [56]. They constitute an
additional class of floral homeotic genes, termed as class
E genes [9]. Ten AGL2-like (BrMADS74, 75, 76, 77, 78,
79, 80, 81, 82, 83) genes from B. rapa showed expression
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primarily in reproductive tissues. BPMADS75, 77, 78, 79,
80 and 81 were also expressed in the stem and leaf, and
BrMADS82 alone had additional very low expression in
roots (Figure 4m).

BrMIKC* genes

There were eleven MIKC* genes (BrMADS90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100) that were placed apart from
the other MIKC genes in the phylogeny. Most of these
genes were found to be expressed exclusively in the sta-
mens, except in the case of BrMADS98 and 99, that
were detected in the four floral organ tissues. Moreover,
these genes showed differential expression in six flower
bud developmental stages (young to mature bud stage).
BrMADS96, 98, 99 and 100 were preferentially expressed
in the young bud stage while their expression gradually
decreased until to the mature bud stage. The rest of the
genes exhibited widespread expression mainly in the
early stages of bud development. However, two MIKC*
genes (BrMADS90 and 91) appeared to be nonfunc-
tional, as they were not expressed in any stage of bud
development or in any floral organ tissues (Figure 4n).

Microarray expression against cold and freezing stress
Four weeks old seedlings of two inbred lines of B. rapa,
Chiifu and Kenshin, were treated with cold and freezing
stresses (4°C, 0°C, —2°C and —4°C) during 2 hours and the
expression of the 167 MADS-box genes were subse-
quently analyzed using microarrays. Chiifu originated in
temperate regions, whereas Kenshin originated in sub-
tropical and tropical regions and therefore, these two lines
are expected to respond differently against cold and freez-
ing stresses. Only 19 MADS-box genes from different
groups showed differential cold- or freezing-responsive
expression between the two lines (Figure 5), while the
remaining 148 genes showed very low or no expression
(Additional file 2: Figure S4). Among the 19 differentially
expressed genes, 14 MIKC® genes showed varying levels
of expression, with BrMADS7, 10, 24 and 39 display-
ing similar expression patterns in response to cold and
freezing. BrMADSI11, 12, 14, 20, 23, 36, 38 and 40 were
expressed at different levels than the aforementioned
four MIKC® genes in both lines of B. rapa. BrMADS43
and 44, two MIKC® genes, were expressed at low levels
in Chiifu throughout the stress period, while in Kenshin
they showed constitutive expression. By contrast, three
genes from the Ma group (BrMADS103, 109 and 127)
showed differential expression within and between the
two lines, with Chiifu exhibiting higher expression than
Kenshin. Notably, two My genes (BrMADSI46 and
BrMADS155) showed higher responsiveness in Kenshin
than in Chiifu upon exposure to cold and freezing temper-
atures (Figure 5).
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Figure 5 Microarray (upper colored rows) and qPCR expression (lower grey colored rows) against each 19 MADS-box genes in B. rapa
under control (C1&K1), 4°c (C2&K2), 0°c (C3&K3), —2°c (C4&K4), and —4°c (C5&K5) temperature treatments. Here C and K stand for ‘chiifu’
and 'kenshin’ two inbred lines of B. rapa respectively. Responsive genes in different temperature from different MADS-box groups have been
shown on the left side. Color bar at the base representing differential expression in microarray. Values denoted by the same letter did not differ
significantly at P < 0.05 according to Duncan’s multiple range tests.

qPCR expression of MADS-box genes against abiotic stress

One of our main objectives was to identify MADS-box
genes that might show stress responsiveness in addition
to having different growth functions. At first, a qPCR ex-
periment was conducted to validate the cold and freez-
ing responsiveness of the 19 BrMADS genes which were
selected from the microarray analysis. We observed their
expression patterns and found them consistent with the
microarray results in most of the cases. Only two genes
(BrMADS43 and 44) were found to show their expres-
sions differently from those in the microarray experi-
ment (Figure 5). However, for a better understanding of

gene expression in response to three abiotic stresses
(cold, salt and drought) in a time course basis (0 h,
30 min, 1 h, 4 h, 8 h, 12 h, 24 h and 48 h) we again se-
lected two inbred lines of B. rapa, Chiifu and Kenshin.
Leaf and root tissues of stress treated B. rapa were ex-
amined for qPCR expression analysis. Besides cold
stress, we also examined the salt and drought respon-
siveness of the same MADS-box genes. Arora et al
found MADS-box genes involved in responses to multiple
stresses [35]. The 19 differentially expressed MADS-box
genes from the whole-genome low temperature-treated
data set were selected for qPCR experiments (Additional
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file 2: Figure S4 and Figure 5). In Chiifu, B-rMADSI11, 12,
14, 20, 23, 24, 36, 38, 39 40, 44, 103 and 127 showed dif-
ferential expression in response to cold stress, wherein they
were up-regulated from 0 h to 1 h and down-regulated at
4 h-8 h. Subsequently, all genes were up-regulated from
8 h to 24 h and exhibited their highest expression at 24 h
(except BrMADS20, which showed the highest expression
at 48 h), followed by a down-regulation at 48 h. Apart from
these, BriMADS103 showed the highest expression at 30 m,
after which it followed the same expression patterns as the
others. Conversely, in Kenshin, B-rMADS11, 12, 14, 23, 39,
44 and 103 were up- regulated at early hours of stress after
which they showed down-regulation and eventually be-
came inactive at later stages of cold stress. BrMADS24,
and 36 in Kenshin exhibited 19- and 12-fold higher ex-
pression respectively than the control throughout the
stress period and, more interestingly, expression of these
two genes in Chiifu was far below that in Kenshin. Not-
ably, from the thirteen cold responsive BrMADS genes
eleven were form MIKC® group. More specifically, among
these genes, three (BrMADS11, 12 and 14) were from
FLC-like clade, one (BrMADS20) from AGL17-like clade,
two (BrMADS23 and 24) from STMADS-like clade and
five (BrMADS36, 38, 39, 40 and 44) from TM3-like clade
(Figure 6a).

During salt stress, BrMADSI12, 14, 39, 103 and 127 in
Chiifu were up-regulated up to 1 h, showed down-regulation
in the mid-stage of stress and were up-regulated again at
later stages. BrMADS20 was alternatively up and down-
regulated up to 12 h and afterwards it showed down-
regulation from 24 h - 48 h. In Kenshin, these same six
MADS-box genes were induced early in salt treatment
(up to a maximum of 2-fold in BrMADSI2 and 39) and
down-regulated for the rest of the period (Figure 6b).

In the case of drought stress, BrMADSI11, 12, 14, 24,
38, 44, 103 and 127 were expressed differentially in both
Chiifu and Kenshin. Six genes (BrMADSI11, 12, 14, 38,
44 and 127) in Chiifu were up-regulated at 30 m after
administering drought stress, while BrMADSI11, 12, 14
and 38 were down-regulated from 4 h - 8 h. B-rMADS24
and 103 were down-regulated at early stage, after which
BrMADS24 was up-regulated from 4 h - 12 h and down-
regulated again from 24 h - 48 h. After 30 m, B-rMADS103
remained static except at 24 h when it was induced more
than 2 fold. By contrast, these six MADS-box genes in
Kenshin were down-regulated soon after drought treat-
ment and remained that way throughout the stress period.
Though BrMADS11, 24 and 127 showed up-regulation at
an early stage, they eventually became inactive for the rest
of the period (Figure 6c).
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Discussion

Duplication among MIKC genes seems to have played
major role in the expansion of MADS-box genes in

B. rapa

In this study, we have reported 167 MADS-box genes of
B. rapa, which is higher in number than the MADS-box
genes in Arabidopsis (107) [4]. The whole genome of B.
rapa underwent triplication events since its divergence
from Arabidopsis [32]. Thus, evolutionary relationship
between B. rapa and Arabidopsis is also supportive to
our findings. On the other hand, we observed the ex-
pansion of MIKC and M-type genes in these two lin-
ages. We found some disparity on the duplication
events between the MIKC and M-type genes of B.
rapa and Arabidopsis. For example, duplication events
took place with higher frequency among MIKC-type
B. rapa MADS-box genes compared to M-type genes.
And, in case of Arabidopsis this scenario was reverse,
where more number of M-type genes than MIKC
genes was found in the duplicated segments. More
specifically, 57 MIKC genes were found in duplicated
segments of B. rapa (black dotted lines in Figure 3).
This might be related to the fact that there are more
pseudogenes of M-type than of MIKC-type MADS-
box genes in the Arabidopsis genome and they expe-
rienced faster birth and death rates than MIKC type
[57]. Although the B. rapa genome is triplicated rela-
tive to that of Arabidopsis, the number of M-type
genes in B. rapa is almost the same as in Arabidopsis
(Additional file 1: Table S1). We speculate this might
be due to the presence of many non-functional M-type
genes (i.e., psuedogenes) that remained inactive and were
not duplicated or were deleted from the B. rapa genome.
MIKC-type genes have functioned in growth and devel-
opment of plants since their evolution and after mul-
tiple duplication events in B. rapa, MIKC-type genes
appear to have functionally differentiated in a relatively
short time and been maintained as functional genes in the
genome to perform more complex functions flower and
organ development.

Involvement of MADS-box genes in organ development
of B. rapa

Role in reproductive organ development

Investigations regarding the genetic and molecular basis
of floral development in the model eudicots Arabidopsis
and Antirrhinum have revealed the involvement of a
number of MADS-box genes in specifying floral organ
identity [58]. The high degree of sequence identity and re-
markably conserved genome structure between Arabidop-
sis and Brassica genomes enables comparison of crop
genomics among the Brassica complex [45]. In this study,
we investigated the Arabidopsis MADS-box homologs in
B. rapa that play specific roles in flower development.
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Consideration of the ABCDE model of flower develop-
ment in B. rapa revealed extensive similarities with that of
Arabidopsis and other higher plants.

All SQUA-like genes in B. rapa were typically expressed
in the flower buds like their Arabidopsis counterparts.
AP1I is involved in specifying sepals and petals as class A
floral organ identity gene [53]. Our results also suggest
that BrMADS61, 62, and 63 as putative orthologs of API
might play similar role, and they have sepal- and petal-
specific expression in B. rapa flowers (Figure 4k).

Regarding the B class genes in B. rapa, we found five
close homologs of Arabidopsis PISTILLATA (PI) and
APETALA3 (AP3) that showed distinct expression in
male reproductive organs but not female reproductive
organs. Besides being involved in the male and female
reproductive parts, these genes were also recruited for
petal identity in Arabidopsis [59]. We also found petal
expression for them in B. rapa flowers.

Genes involved in C and D functions are from the
monophyletic AG subfamily. All AG family genes in B.
rapa had higher expression in female organs than in male.
C and D class genes like STK/AGL11, SHATTERPROOFI
(SHPI), and SHP2, are together required for ovule identity
[52]. Close homologs of SEP (SEPALLATA) genes from
the AGL2-like subfamily in B. rapa showed widespread
expression mainly in the aboveground parts; this is sug-
gestive of their involvement in organ development. Pelaz
et al. studied triple mutants of Arabidopsis SEP family
genes (SEP1, SEP2 and SEP3) and found that their redun-
dant functions are required for petal, stamen and carpel
development and to prevent indeterminate growth of the
flower meristem [20]. Genes of this family have been iden-
tified in fruits during the ripening stage of grapevine [13].
Similarly, two tomato SEP genes, TM29 and LeMADSRIN,
appear to play roles in tomato fruit development [60]. The
AGL12 subfamily has three members in B. rapa, two in
poplar and one each in Arabidopsis and grapevine. Genes
from this subfamily have found to play roles in the regula-
tion of cell cycle in root meristems and as promoters
of flowering transition through up-regulation of SOCI,
FLOWERING LOCUS T (FT) and LEAFY (LFY) [27].

We found both reproductive and vegetative expression
of AGL15 subfamily genes in B. rapa, as in Arabidopsis,
whereas they were restricted to the flower buds, flowers
and fruits in grapevine [13]. AGL15 and AGLI8 are pro-
posed to function as repressors of floral transition, acting
upstream of FT and probably in combination with other
floral repressors like SVP or FLC [61]. Our results regard-
ing AGL17-like genes correspond with their expression in
Arabidopsis, where they are expressed primarily in roots,
which indicate that they might function in B. rapa root
development. The flower bud expression of the AGL17-
like genes in B. rapa is also consistent with the assump-
tion of a flowering promoter role for AGL17, which could
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participate in the photoperiodic induction of API and LFY
independent of FT [62].

Predominant expression of B. rapa MIKC* genes in
the young bud stage demonstrates their importance in
male reproductive organ development. Our results con-
trast with those for AtMIKC*, for which Verelst el al. re-
ported predominant expression during late stages (mature
pollen grain stage) of pollen development [47].

Predominant expression of three 7716 homologs
(GGM13-like genes) in the early stage of female repro-
ductive growth demonstrates their importance in the de-
velopment of this organ (Figure 4e). These findings are
similar to that of a previous investigation in Arabidopsis,
where GGM13-like gene expression was observed in fe-
male reproductive organs, especially in ovules, which is
also consistent with the situation in gymnosperms and
other angiosperms [63]. Moreover, TT16 from Arabidopsis
is the only GGM13-like gene for which a mutant pheno-
type is known. Analysis of this mutant revealed that 7716
is involved in the specification of endothelial cells and
control of flavonoid biosynthesis in seed coat [23].

Role of MADS-box genes in vegetative tissue development
Transcription of a number of MADS-box genes outside
flowers and fruits as well as an increasing number of
mutant and transgenic flowering plants suggest that
members of this gene family play regulatory roles during
vegetative development also, such as in embryo, root
and leaf development [1,10]. The existence of MADS-
box genes in gymnosperms, ferns, and mosses, which do
not form flowers or fruits, further demonstrates the role
of these genes in plants is not restricted to flower or
fruit development [12,64].

All homologs from the AGL17-like clade in the B. rapa
genome were predominantly expressed in roots and some
of them were detected in stem and leaf tissues as well.
Reports from different studies indicate that AGL17-like
genes show unusually diverse expression patterns in roots,
pollen, leaf guard cells and trichomes. It is likely that the
ancestral AGL17-like gene had an expression domain re-
stricted to vegetative tissues [1].

In Arabidopsis, AGL18 and AGL15 showed high expres-
sion in roots, flowers, siliques, and significant expression
was also observed in stem and leaves. Moreover, AGLI8
was detected up to the heart stage of embryo development
but not in the developing embryos at any stage [1]. Ac-
cordingly, we can also predict that BrMADS2, 3, 4 and 85
in B. rapa, as putative orthologs of AGLI8, might play
roles in vegetative tissue development.

TM3-like genes in Arabidopsis (AGLI4 and AGLI19)
have been reported to function in the roots (in the colu-
mella, lateral root cap, and epidermal cells of the meri-
stematic region and in the central cylinder of the mature
roots) [1,13]. SOC1I, a floral pathway integrator, expressed
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most abundantly in aboveground parts, is repressed by
another MADS-box gene, the floral transition repres-
sor FLC, which is involved in vernalization [65,66].

The ubiquitous expression of some B. rapa FLC genes
corresponds to that of their Arabidopsis homologs. Kim
et al. reported that the expression of three BrFLC genes
(BrFLC1, BrFLC2, BrFLC3) was associated with flower-
ing time and concluded that BrFLC genes act similarly
to AtFLC and ultimately help in controlling of flowering
time in B. rapa and other crops as well to produce higher
vegetative yields [40].

The ubiquitous expression of B. rapa STMADS11-like
genes suggests that these might be good candidates to
play regulatory roles. Reports on STMADSI1 genes
from different crops demonstrated that they play im-
portant roles in developing vegetative tissues. For ex-
ample, JOINTLESS, a tomato (Solanum lycopersicum)
MADS-box gene is required for the development of a
functional abscission zone in tomato flowers [67]. Tran-
scripts of the potato MADS-box genes STMADSII and
STMADS16 are present in all vegetative tissues of potato,
including roots and new tubers, but are not detected in
floral organs [68].

BrMADS SQUA-like genes expressed in the vegetative
tissues might have some regulatory roles related to vege-
tative tissue development. Potato MADS-box 1 (POTM1)
a potato SQUA-like gene, exhibited widespread expres-
sion in actively growing tissues such as meristems, roots,
new leaves and new tubers [69].

Stress responsive MADS-box genes in B. rapa

MADS-box genes have already been identified to play
roles under low temperature stress in tomato [70], while
seven MADS-box genes have been demonstrated to take
part in stress (cold, salt and drought) responses in rice
[35]. Our qPCR analysis revealed differential expression
of thirteen MADS-box genes (BrMADSI11, 12, 14, 20, 23,
24, 36, 38, 39, 40, 44, 103, and 127) in response to cold
stress (Figure 6a). We observed, expression patterns some
of these potential genes (BrMADS23, 24, 36, 38, 44 and
103) were not consistent with the microarray results.
However, we identified some candidate stress-resistance
and stress-susceptibility genes based on up- and down-
regulation of the genes between two inbred lines, Chiifu
and Kenshin, of B. rapa. We found that Chiifu, as a cold-
resistant line, showed more up-regulation of MADS-box
genes than did Kenshin in response to cold stress via
qPCR analysis. The exceptions were BrMADS24 and 36,
which exhibited much higher up-regulation in Kenshin
than in Chiifu and these two genes might be related
to cold susceptibility in Kenshin. The highly expressed
MADS-box genes in Chiifu might be involved in cold re-
sistance, while their inactivity or very low activity in
Kenshin might play a role in the cold susceptibility of
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that line. We also identified six (BrMADI2, 14, 20,
39,103, and 127) and eight (BrMADSI1, 12, 14, 24,
38, 44, 103, and 127) MADS-box genes as differen-
tially expressed in response to salt and drought, re-
spectively (Figure 6b & 6c¢). Similar phenomena as in
cold stress were also observed in case of resistance
against salt and drought stresses between the two lines of
B. rapa. Finally, we found BrMADS12, 14, 103 and 127 to
be co-responsive against all three stresses, suggesting that
these genes might have multiple stress resistance related
functions in B. rapa. Among the stress-induced genes,
eleven were from the important MIKC® group, which is
well known for regulatory roles in growth and devel-
opment of different higher plants. FLC is repressed by
cold and others FLC-like genes are also responsive to
temperature in different ways [71]. We also identified
three cold responsive B. rapa FLC-like genes (BrMADS11,
12 and 14) from this clade. In rice, all seven stress-
responsive genes were also from MIKC® [35]. Likewise, in
wheat, a large number of genes involved in flower devel-
opment are associated with abiotic stress responses [34].
Moreover, we found two Mua genes (BrMADS103 and
127) to show stress responsiveness in B. rapa, which has
not been reported in any plant yet. Our findings here
serve as an important resource guiding specific investiga-
tions on the stress resistance of B. rapa related to MADS-
box genes.

Conclusion

This is a comprehensive and systemic analysis of MADS-
box TFs in B. rapa wherein we demonstrated their expres-
sion patterns in different growth organs and examined
their responses to various abiotic stresses as well. Our data
set presented here, which includes likely B and C function
genes that display male organ-specific expression, should
be an important resource for study of male sterility in
B. rapa. Furthermore, the stress-responsive genes de-
scribed in this study might be exploited for molecular
breeding of B. rapa. The results presented here also facili-
tate selection of appropriate candidate genes for further
functional characterization.

Methods

Identification of MADS-box genes

A search of SWISSPROT annotations at the Brassica
database (BRAD) was conducted using keyword ‘MADS-
box” (http://brassicadb.org/brad/) [37]. Protein and CDS
of the resulting candidate B. rapa MADS-box genes were
obtained from the Brassica database (http://brassicad-
b.org/brad/) [37]. To confirm the presence of a MADS-
box domain, the web tool from EMBL (http://smar-
t.embl.de/smart/set_mode.cgi?GENOMIC=1) and hom-
ology searches using the Basic Local Alignment Search
Tool (BLAST; http://www.ncbi.nlm.nih.gov/BLAST/)
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were performed on the set of candidate MADS-box genes
in B. rapa. The primary structure of the genes was ana-
lyzed using protParam (http://expasy.org/tools/protpar-
am.html). The number of introns and exons was
determined by manually aligning the CDS sequences with
the genomic sequences using ClustalW [72] and with the
‘Gene Structure Display Server’ (GSDS) web tool [73].

Phylogenetic analysis of MADS-box proteins

B. rapa MADS-box proteins were aligned using ClustalX
with those of rice and Arabidopsis. [74]. The phylogen-
etic trees were generated with MEGA6.06 using the
Neighbor —Joining (NJ) algorithm [75]. Bootstrap analysis
with 1,000 replicates was used to evaluate the significance
of the nodes. Pairwise gap deletion mode was used to en-
sure that the divergent domains could contribute to the
topology of the NJ tree. For generating alternative phylo-
genetic trees all the protein sequences were aligned in
Clustal W using default parameters [72] and the phylogen-
etic trees were constructed using MEGA6.06 [75].

Analysis of conserved motifs in MADS-box proteins

The MADS-box protein sequences were analyzed using
the MEME software (Multiple Em for Motif Elicitation,
V4.9.0) [76]. A MEME search was executed with the fol-
lowing parameters: (1) optimum motif width >6 and <200;
(2) maximum number of motifs to identify =10.

Chromosomal locations and gene duplication of
MADS-box genes

All MADS-box genes of B. rapa were BLAST searched
(http://www.ncbi.nlm.nih.gov/BLAST/) against each other
to identify duplicate genes, with the criteria that both the
similarity and query coverage percentage of the candidate
genes were > 80% [77]. Positional information for all can-
didate MADS-box genes along the 10 chromosomes of
B. rapa were obtained from the Brassica database (http://
brassicadb.org/brad/) [37]. The map of all genes along the
10 chromosomes and duplication lines among genes were
drawn manually.

Analysis of syntenic relationships

To identify Arabidopsis orthologues of MADS-box genes
in B. rapa, each candidate MADS-box gene nucleotide se-
quence was employed in a BLASTX search of the NCBI
database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) using A.
thaliana as reference organism and the best hit A. thali-
ana homologue was considered to be the orthologue of
the B. rapa MADS-box gene.

Collection and preparation of plant material

B. rapa ‘SUN-3061" plants were grown in the Department
of Horticulture, Sunchon National University, Korea. For
the organ study, fresh roots, stems, leaves and flower buds
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were harvested, frozen immediately in liquid nitrogen, and
stored at —80°C for RNA isolation. For the three abiotic
stress treatments, two inbred lines of B. rapa ssp. pekinen-
sis ‘Chiifu’ and ‘Kenshin’ were used. Chiifu originated in
temperate regions, whereas Kenshin originated in sub-
tropical and tropical regions [78]. Plants were cultivated
under aseptic conditions in semisolid media for 10 d, after
which plants were transferred into liquid media to
minimize stress during the treatment time. Three stress
treatments, cold, drought and salt, were administered over
8 time periods (0 h, 30 min, 1 h, 4 h, 8 h, 12 h, 24 h and
48 h). Plant samples were transferred to the incubator at
4°C to induce cold stress. Drought/desiccation stress was
simulated by drying the plants on Whatmann 3 mm filter
sheets. To induce salt stress, plant samples were trans-
ferred to rectangular petri dishes (72 x 72 x 100 mm) with
medium containing 200 mM NaCl for the designed time
courses [35]. In each stress experiment, leaves of treated
samples were collected and processed to study the expres-
sion of different MADS-box genes.

Microarray expression analysis

Br135K microarray (Brapa_V3_microarray, 3’-Tiling micro-
array) is a high-density DNA array prepared with Maskless
Array Synthesizer (MAS) technology by NimbleGen
(http://www.nimblegen.com/). Probes are designed from
41,173 genes of B. rapa accession Chiifu-401-42, a Chinese
cabbage [36]. For the microarray experiment four-week-
old B. rapa inbred lines, Chiifu and Kenshin, were treated
with cold or freezing stress (4°C, 0°C, -2°C and -4°C).
Stress treatments were applied for 2 h and immediately
after stress, total and polysomal RNA was extracted from
the leaf tissues using the RNeasy Mini kit (Qiagen, USA).
RNA protect reagent (Qiagen) and DNA was removed by
on-column DNase digestion with the RNase-Free DNase
set (Qiagen). Labeling was performed by NimbleGen
Systems Inc. (Madison, WI USA), following their standard
operating protocol (www.nimblegen.com). The raw data
(pair file) was subjected to RMA (Robust Multi-Array
Analysis) [79], quantile normalization [80], and back-
ground correction as implemented in the NimbleScan
software package, version 2.4.27 (Roche NimbleGen, Inc.).
To assess the reproducibility of the microarray analysis,
we repeated the experiment three times with independ-
ently prepared total RNA. The complete microarray data
have been deposited in Omics database of NABIC (http://
nabic.rda.go.kr) as enrolled number, NC-0024-000001 -
NC-0024-000012.

RT-PCR expression analysis

RT-PCR was conducted using an AMV one step RT-PCR
kit (Takara, Japan). Specific primers for all genes were used
in RT-PCR, and Actin primers for B. rapa (F]969844) were
used as a control (Additional file 3: Table S4). PCR was

Page 19 of 21

conducted using 50 ng cDNA from the plant and flower or-
gans as templates in master mixes composed of 20 pmol
each primer, 150 uM each dNTP, 1.2 U Taq polymerase, 1x
Taq polymerase buffer and double-distilled H,O diluted to
a total volume of 20 pL in 0.5-mL PCR tubes. The samples
were subjected to the following conditions: pre-denaturing
at 94°C for 5 min, followed by 30 cycles of denaturation at
94°C for 30 s, annealing at 55°C for 30 s and extension at
72°C for 45 s, with a final extension for 5 min at 72°C.

gPCR expression analysis

Real-time quantitative PCR was performed using 1 pL
¢DNA in a 20-pL reaction volume employing iTaqTM
SYBR® Green Super-mix with ROX (California, USA).
The specific primers used for real-time PCR are listed in
Additional file 4: Table S5. The conditions for real-time
PCR were as follows: 10 min at 95°C, followed by 40 cy-
cles at 95°C for 20 s, 58°C for 20 s, and 72°C for 25 s.
The fluorescence was measured following the last step
of each cycle, and three replicates were used for each
sample. Amplification detection and data analysis were
conducted using LightCycler96 (Roche, Germany).

Additional files

Additional file 1: Table S1. Total number of MADS-box genes within
each group of Arabidopsis, Rice, Soybean, Maize, Sorghum and B. rapa.
Table S2. Homology analysis of 167 MADS-box genes in B. rapa. Table S3.
Synteny table showing A. thaliana orthologous MADS-box gene pairs
in B. rapa.

Additional file 2: Figure S1. (a) Phylogenetic analysis of 138 type |
MADS-box proteins from B.rapa (67), Arabidopsis (43) and Rice (28).
Figure S1. (b) Phylogenetic analysis of type Il B. rapa, Rice and
Arabidopsis MADS-box proteins.181 type Il MADS-box proteins from
B. rapa (100), Arabidopsis (43) and rice (38) showing 13 MIKC® clades
and MIKC" group as marked in the figure. FigureS2. Exon-intron
structures of B.rapa MADS-box genes. Green boxes, exons; lines, in-
trons. Five groups MIKCS, MIKC", Ma, M@ and My are labeled under
type Il and type I. Size of each gene can be estimated using the
scale (in Kilobase; Kb) on the top of the figure. Figure S3. Distribution of
Conserved motifs in Brassica rapa MADS-box type | proteins identified using
MEME search tool. Schematic representation of motifs identified in B.rapa
MADS-box type | proteins using MEME motif search tool for each group
(Ma, MB and My) given separately. Different motifs are indicated by different
colors, and the names of all members are shown on the left side of the
figure. The order of the motifs corresponds to the position of the
motifs in individual protein sequences. Figure S4. Microarray expression
analysis of MADS-box genes in B. rapa under different temperature
treatment. Here C and K indicates Chiifu and Kenshin, were treated
under five (5) temperatures as control (C1&K1), 4°c (C2&K2), 0°c
(C38K3), -2°c (C4&K4), and-4°c (C5&K5). Color bar at the top representing
differential expression like purple representing medium level expression
where pink to white showing low to no expression.

Additional file 3: Table S4. RT-PCR primer list of BIMADSs.
Additional file 4: Table S5. Primers for gantitative PCR of BrMADSs.
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