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Abstract

Background: Influenza viruses exist as a large group of closely related viral genomes, also called quasispecies.
The composition of this influenza viral quasispecies can be determined by an accurate and sensitive sequencing

technique and data analysis pipeline. We compared the suitability of two benchtop next-generation sequencers for
whole genome influenza A quasispecies analysis: the lllumina MiSeq sequencing-by-synthesis and the lon Torrent
PGM semiconductor sequencing technique.

Results: We first compared the accuracy and sensitivity of both sequencers using plasmid DNA and different ratios of
wild type and mutant plasmid. lllumina MiSeq sequencing reads were one and a half times more accurate than those
of the lon Torrent PGM. The majority of sequencing errors were substitutions on the lllumina MiSeq and insertions and
deletions, mostly in homopolymer regions, on the lon Torrent PGM. To evaluate the suitability of the two techniques
for determining the genome diversity of influenza A virus, we generated plasmid-derived PR8 virus and grew this virus

next-generation sequencing data.

in vitro. We also optimized an RT-PCR protocol to obtain uniform coverage of all eight genomic RNA segments. The
sequencing reads obtained with both sequencers could successfully be assembled de novo into the segmented
influenza virus genome. After mapping of the reads to the reference genome, we found that the detection limit for
reliable recognition of variants in the viral genome required a frequency of 0.5% or higher. This threshold exceeds the
background error rate resulting from the RT-PCR reaction and the sequencing method. Most of the variants in the PR8
virus genome were present in hemagglutinin, and these mutations were detected by both sequencers.

Conclusions: Our approach underlines the power and limitations of two commonly used next-generation sequencers
for the analysis of influenza virus gene diversity. We conclude that the lllumina MiSeq platform is better suited

for detecting variant sequences whereas the lon Torrent PGM platform has a shorter turnaround time. The data
analysis pipeline that we propose here will also help to standardize variant calling in small RNA genomes based on

Keywords: Influenza virus, Quasispecies, Next-generation sequencing, lllumina MiSeq, lon Torrent PGM, RT-PCR

Background

Viruses outnumber all other known life forms on earth.
Furthermore, viruses in general and RNA viruses in
particular have a huge genetic diversity, which is the
driving force of their evolutionary success. Viral genomic
diversity is well captured in the term ‘quasispecies’. The
term ‘quasispecies theory” was first introduced by Manfred
Eigen as a theoretical model to study molecular evo-
lution by mutation and selection in self-reproducing
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macromolecules [1,2]. Later, the term was also used to
describe an RNA virus population consisting of a mixture
of related genomes [3-6]. A viral quasispecies is defined as
a proliferating population of non-identical but closely
related viral genomes in a mutation-prone environment
subjected to continuous competition and selection [5,7].
Biologically, the quasispecies is the level at which selection
takes place [8]. Human influenza viruses represent a
prototypical example of rapid virus evolution facilitated
by error-prone genome replication combined with the
selection pressure imposed by host immune responses.
This situation favors the emergence of fit mutant viruses
that escape the herd immunity induced by infection with
parental viruses or by vaccination [9,10].
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Influenza is an acute and highly contagious viral disease
of the respiratory tract in humans. It is caused by influ-
enza A and B viruses and occasionally by influenza C
virus. These viruses represent three of the five genera of
the Orthomyxoviridae family, which is characterized by
enveloped viruses that have a segmented, single-stranded,
negative sense RNA genome [11]. Replication of the RNA
genome of influenza viruses is associated with a relatively
high mutation rate (2.3 x 107°) because the viral RNA-
dependent RNA polymerase lacks 3’'-5'-exonuclease
activity and therefore has no proof-reading function
[12,13]. Mutations that are introduced during replication
are tolerated because they are neutral for virus fitness in a
particular environment, rapidly lost because they reduce
fitness, or expanded because they are advantageous [5].

The mutation rate of influenza A viruses has been
traditionally determined by sequencing different cDNA
clones obtained from multiple plaques descending from
a plaque-purified influenza A virus [14]. In other words,
viral genomes that are fit enough to generate plaques
were sequenced. This approach revealed a mutation rate
of approximately 1.5 x 10™° per nucleotide per infectious
cycle. Sequence analysis of multiple clones of cDNA
fragments derived from one or more gene segments has
also been used to study sequence variation of influenza
virus derived from clinical samples [15,16]. In addition,
deep amplicon sequencing of one or two gene segments
from avian H7N1 and equine H3N8 influenza viruses
has been applied to study within and between host
genetic variation [17,18]. However, identification of the
extent of genetic variation in a viral quasispecies under a
given condition requires a highly accurate sequencing
method that does not rely on molecular cloning, or a
phenotypic selection method such as plaque generation.
Next-generation sequencing (NGS) seems to fulfill this
requirement [19-21]. However, experimental errors are
introduced during the preparatory steps, i.e. reverse
transcription and PCR amplification, and the NGS method
itself is also an error-prone process [22].

NGS enables sequencing of multiple gigabases of DNA
in a single run; the output size depends on the sequencing
instrument [23]. Consequently, because the influenza
genome consists of only 13,000 ribonucleotides, it is
straightforward to sequence it at high coverage (i.e. the
number of times the genome is sequenced). However,
its segmented RNA genome makes it technically chal-
lenging to obtain full genome coverage. Stoichiometric
RT-PCR amplification of each of the eight genomic
RNA segments is difficult, in particular when starting
from ex vivo samples such as nasal swabs or bronchoal-
veolar lavage from experimentally infected animals.
NGS studies of influenza virus reported to date did not
start from the amplification of all eight full-length gen-
omic segments in sufficient amounts in a single reaction,
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and homogeneous coverage across all eight segments was
not always obtained [24-29].

Here, we compared the suitability of two NGS methods
to determine the influenza A virus quasispecies diversity.
We deep-sequenced A/Puerto Rico/8/34 (PR8) influenza
virus, which is used extensively in many research labora-
tories for in vitro and mouse experiments. In addition,
PR8 virus is used as a donor to generate egg-grown reas-
sortant viruses for seasonal influenza vaccine production.
Importantly, we also took advantage of the available
plasmid-based reverse genetics system for PR8 virus
because it is a genetically stable equivalent of the virus
[30]. We compared the quality of the primary sequence
data, the read length, the coverage across the viral gen-
ome, the method-associated error rate, and the sensitivity
of two modern NGS platforms: the Illumina MiSeq
sequencing-by-synthesis and the Ion Torrent PGM semi-
conductor sequencing technique. For both sequencing
platforms, we used the latest available software and the
most recent chemistries available.

Results

High-throughput sequencing of plasmid samples

Our aim was twofold: (1) to compare the performance
of two high-throughput sequencing instruments; (2) to
determine the complexity of an influenza A virus quasis-
pecies (to count the number of nucleotide variants present
in a swarm of genomes of that virus). We selected the
[lumina MiSeq and the Ion Torrent PGM sequencing
platforms because the accuracy of single nucleotide
polymorphism (SNP) identification of these two popular
NGS platforms is unclear. A study by Quail and colleagues
concluded that the overall SNP calling rate is slightly
higher for the data generated by Ion Torrent PGM than
for Illumina MiSeq data [21], whereas Loman and col-
leagues reported a lower substitution error rate for the
[lumina MiSeq [20].

We first compared the accuracy and sensitivity of these
two sequencers. We used plasmid DNA to compare the
accuracy of the sequencing output because it is genetically
very stable. We also generated a plasmid with two tracer
mutations, which allowed us to prepare mixtures with
different, defined amounts of wild type and mutant plas-
mid before sequence analysis, in order to determine the
sensitivity of the sequencers for picking out the occur-
rence of the introduced SNPs. For this comparison, we
chose plasmids that also allowed us to generate PR8 virus
with or without the introduced tracer mutations [30,31].

We generated a mutated version of plasmid pHW197-M
(pHW197-Mmut). This mutant has two silent mutations
in the influenza virus M1 open reading frame (ORF) that
served as tracers when mixing pHW197-Mmut and
pHW197-M plasmids at different ratios. Because we
intended to perform such mixing experiments with both
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plasmids and viruses generated from these plasmids, we
carefully selected two silent mutations that most likely
would not affect virus fitness. We chose these mutations
based on their prevalence in human HINI virus isolates
(see Methods). We selected two silent mutations in M1,
which at the same time also added a restriction site to
facilitate screening (Figure 1A). These mutations were intro-
duced in pHW197-M at positions 797 (C797T, pHW197-
M numbering; C3547T, segment 7 numbering) and 1088
(A1088T, pHW197-M numbering; A645T, segment 7
numbering). So the resulting plasmid, pHW197-Mmut,
had additional HindIII and Pvull restriction sites. The
presence of these mutations was verified by restriction
analysis and conventional Sanger sequencing (Figure 1B).

Sequence read length
Assuming an equal error rate per base, longer read
lengths are preferred for the de novo sequence assembly.
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Figure 1 Introduction of synonymous tracer mutations in gene
segment 7 of PR8 virus. (A) Schematic representation of the
influenza M segment present in pHW197-Mmut. The open reading
frames of M1 (yellow, starting at position 489, relative to the upstream
CMV promoter (not depicted)) and M2 (orange, starting at position 489
and ending at position 1470) are indicated. The resulting Hindlll and
Pwull restriction sites are indicated. (B) Fluorograms showing the
synonymous substitutions in pHW197-Mmut relative to pHW197-M

at positions 797 (Cto T) and 1088 (A to T). The predicted amino acid
sequence is shown underneath the nucleotide sequence.
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In addition, longer read lengths increase the likelihood
that one can conclude whether mutations observed in a
genomic segment are linked or not. The two point
mutations that we introduced in the M gene segment
are 291 nucleotides apart. Therefore, to confirm the
presence of these two mutations on the same DNA
molecule, read lengths after processing should be at least
291 nucleotides long. Such a length should be obtained
when using the Ion Torrent PGM 400 base-pair sequen-
cing kits. The length distribution of the sequencing reads
of the plasmid samples generated by both sequencers is
shown in black in Figure 2. Plasmid samples were
fragmented with Nextera XT transposase for Illumina
MiSeq and mechanically sheared by Covaris, followed by
adaptor ligation before Ion Torrent PGM sequencing.
Nearly 70% of the unprocessed reads obtained on the
[llumina MiSeq (2x250 bp sequencing) have a length of
250 bp, and the mean read length is 233.70 bp + 1.65 bp
(Figure 2A). The length of the unprocessed reads gener-
ated by the Ion Torrent PGM (400-bp sequencing on
Ion 318 chip v2) follows a Gaussian distribution with a
peak around 280 bp and a mean read length of 261.06
bp +2.51 bp (Figure 2B). These values are lower than
expected since the Ion PGM Template OT2 400 Kit, Ion
PGM Sequencing 400 Kit and Ion 318 chip v2 (revision
2.0) that we used should offer sequence reads of 400 bp
according to their manuals. As analyzed on a High
Sensitivity DNA Chip on the Agilent Bioanalyzer, the
peak fragment size before emulsion PCR (emPCR) was
situated around 450 bp (data not shown), indicating
that Covaris shearing and subsequent size selection did
not account for this relatively short average sequence
length. We note that Junemann et al. also obtained
fragments with the OT2 400 kit that were shorter than
expected [19].

In silico processing of the sequencing reads

Accurate analysis of viral quasispecies composition has
to be based on high quality reads to ensure that SNPs
and insertions and deletions (indels) can be confidently
counted, because low quality reads could lead to over-
interpretation of the number of mutations. In addition,
high quality reads will lead to a higher accuracy of de
novo sequence assembly. Therefore, we performed a
quality control using the CLC Genomics Workbench
software; we also propose a NGS data analysis pipeline
that is generally applicable (Figure 3). First, we removed
adaptor contamination and the low quality ends of the
sequencing reads from the data generated by the two
deep sequencing techniques. It was recently reported
that applying a Phred score of 20 or higher to filter
[lumina MiSeq NGS data dramatically reduces the noise
in SNP calling [32]. Hence, we applied this quality
threshold to all our plasmid-derived sequencing reads. A
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Figure 2 Quality of sequencing reads obtained on the lllumina MiSeq and lon Torrent PGM platforms. The pHW197-M and pHW197-Mmut
plasmids (= 7) were fragmented with the Nextera XT DNA sample preparation kit (Illumina MiSeq) or with Covaris mechanical shearing followed by
adaptor ligation (lon Torrent PGM). Distribution of the read lengths obtained on the Illumina MiSeq (A) and lon Torrent PGM (B) before processing (in
black, output files of sequencer) and after processing (in orange) the obtained sequencing reads. Processing implies removal of adaptor contamination,
quality trimming (> Q20), the removal of ambiguous bases and removal of reads shorter than 50 bases. For the lllumina MiSeq reads, broken pairs after
read processing were also removed during the processing. Error bars represent the standard deviation. (C, D) Per-base quality distribution of sequencing
reads. The Phred score distribution (Y-axis) relative to the processed reads obtained after sequencing on the lllumina MiSeq (C) and lon Torrent PGM
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Phred score is logarithmically related to the base-calling
error probabilities. When a Phred score of 20 is assigned
to a base, it means that the chance that this base is
called incorrectly is 1 in 100. We also discarded ambigu-
ous bases and read lengths below 50 bases, which
further reduces the background because such short
reads are often mapped inaccurately. This quality trim-
ming and read length filtering retained 94.89% + 0.55%
of the Illumina MiSeq and 95.26% + 0.57% of the Ion
Torrent PGM reads. On the other hand, 85.99% + 0.72%
of the bases sequenced on the Illumina MiSeq and
78.99% + 1.22% of the bases sequenced on the Ion Tor-
rent PGM were retained. This indicates that the greatest
loss of bases was due to quality trimming rather than
read length filtering and that Illumina MiSeq sequencing
provides higher sequencing quality than Ion Torrent
PGM. The resulting read length distribution after this in

silico filtering is shown in orange in Figure 2, where the
mean read length is 211.78 bp + 2.18 bp on the Illumina
MiSeq and 216.43 bp + 1.15 bp on the Ion Torrent PGM
after processing of the reads.

Quality of the sequencing reads

The per-base quality distribution on both sequencers,
using the plasmid samples as template, is shown in
Figure 2. Bases with a Phred score of 30 (chance of a
wrong base call of 1 in 1000) are a measure of high qual-
ity data. For the processed reads obtained on the Illumina
MiSeq, the 25th percentile of the Phred scores is >33
until position 251, and thus most of the sequencing
reads are without sequencing error (Figure 2C). For the
reads obtained on the Ion Torrent PGM, the median of
the Phred scores is > 30 until position 266 (Figure 2D).
Therefore, we conclude that the overall sequencing
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NGS data analysis pipeline

Import sequencing data in CLC Genomics Workbench

Trim/Filter reads
Remaove adaptor contamination
Remove ambiguoushases
Trim low quality ends of reads (<Q20)
Removereads <50bases
lllumina MiSeq: remove broken pairs

Alignment of reads to reference genome
match= +1, mismatch=-2, insertionf/deletion=-3
lengthfraction = 0.9, similarityfraction= 0.8
ignore non-specific matches

Variant detection
Minimum coverage: 100, central base quality score: = Q20

Variantfiltering
Forward reverse balance: 0.25-0.75
Independentcounts: >10
Average quality variant: » Q20
Frequency:

DNA: >2%errorrate

\ Viral sample: »0.5%

J

next-generation sequencing data.

Figure 3 Next generation sequencing data analysis pipeline. Schematic representation of the analysis pipeline for in silico processing of

quality of the reads obtained on the Illumina MiSeq is
higher than that obtained on the Ion Torrent PGM.

Mapping of the sequencing reads

To evaluate the accuracies of both sequencers, the proc-
essed reads were mapped to the plasmid reference
sequence (Table 1). The percentage of unmapped bases
was lower for the Illumina MiSeq (0.17% + 0.02%) than
for the Ion Torrent PGM (1.14% + 0.10%). This is due to
the lower quality of the Ion Torrent PGM sequencing
reads, which reflects the intrinsic sequencing errors that
lead to reduced alignment and a higher number of un-
mapped bases, particularly at the ends of the longer
reads.

For both sequencers, we observed a striking fluctu-
ation in coverage depth (times a nucleotide is sequenced
plotted against the position in the genome) (Figure 4).
The largest fluctuation was seen for the Illumina MiSeq
(Figure 4B). It is known that Illumina MiSeq and Ion
Torrent PGM sequencers perform rather poorly when

sequencing DNA with very low or very high GC content,
which leads to low sequencing coverage of AT and GC
rich regions [33,34]. In addition, the Nextera transposon-
based fragmentation that we used for the samples
sequenced on the Illumina MiSeq has some sequence
preference, which can lead to a fragmentation bias,
particularly in small genomes [35].

Since the plasmid reference sequence is known, we
were confident that any mismatching nucleotide variant
could be reported as a sequencing error. The error rate
per read position was 0.08% + 0.01% for the Illumina
MiSeq and 0.12% + 0.01% for the Ion Torrent PGM. The
error rate increases slightly with the read length for both
sequencers, with a pronounced rise at the end of the
reads on the Ion Torrent PGM (data not shown). For
the Illumina MiSeq, substitutions are the dominant error
type with A-to-C and T-to-G being the most prevalent
(Figure 5A), which is consistent with an earlier report
[36]. In contrast, indels are dominant on the Ion Torrent
PGM (Figure 5B), and most of them are single nucleotide
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Table 1 Alignment metrics for lllumina MiSeq and lon Torrent PGM sequencing runs

lllumina MiSeq

lon Torrent PGM

pHW197-M pHW197-Mmut pHW197-M pHW197-Mmut

S1 S2 S1 S2 S1 S2 S1 S2
Minimum coverage 683 744 815 609 3532 4510 3995 4830
Maximum coverage 27389 28589 32802 26275 15716 17632 14664 18196
Average coverage 15369 16315 18236 14610 11525 13236 11118 13636
Standard deviation 6739 7120 7888 6315 3323 3499 2853 3562
Unmapped reads (%) 020 0.16 021 022 1.06 1.05 1.28 1.19
Unmapped bases (%) 017 0.14 0.19 0.19 1.07 1.05 1.26 1.18

Wild type (pHW197-M) and mutant (pHW197-Mmut) plasmids were sequenced in duplicate (ST and S2) on both sequencers and the processed reads were

mapped to the plasmid reference sequence.

insertions or deletions (data not shown). Nearly all of
these indels occur in homopolymeric regions. Since these
regions require multiple incorporations of identical nucle-
otides, this increases the chance of non-linearity between
the signal intensity and homopolymer length, explaining
the higher indel error rate of the Ion Torrent PGM.

Variant detection

We considered the frequency of a given nucleotide sig-
nificant (a real mutation) when it was higher than twice
the sequencing error background, ie. above 0.16% for
the Illumina MiSeq and above 0.24% for the Ion Torrent
PGM. Since we are dealing with proportions very close
to zero, the proportion of variants that could be mis-
called at this threshold was estimated using the Agresti-
Coull interval as an approximate binomial confidence
interval [37]. Setting twice the background error rate as
upper bound of the binomial confidence interval, only
0.0041% and 0.00002% of the variants are expected to be
miscalled as true variant on the Illumina MiSeq and Ion
Torrent PGM, respectively. Despite this stringent cut-
off, false positive errors were still detected, mostly as a
consequence of the sequence specific error profiles of
both sequencers (Table 2, [21,38,39]). The largest num-
ber of variants was deduced from the Ion Torrent PGM
data, and all of them were indels (Table 2). In contrast,
the variant calls on the Illumina MiSeq were mainly
SNPs (Table 2). To eliminate false positive variants, we
applied extra in silico filtering parameters. We set the
forward/reverse balance between 0.25 and 0.75, mean-
ing that the minimum ratio between the number of for-
ward and reverse reads that support the surmised
variant should be at least 0.25. In addition, a nucleotide
variant should be counted at least 10 times independently
and should have an average Phred score of at least 20
(based on [40]) (Figure 3). Applying these variant filters
removed most of the false positive variant calls and
retained one variant from the Illumina MiSeq and six or
five variants from the Ion Torrent PGM data (Table 2). So
applying the variant filtering parameters has the largest

impact on removing false positive variants detected in the
Ion Torrent PGM data. Regardless of the sequencing
method used, all false positive indels were present in ho-
mopolymer regions (at least two consecutive identical
bases in the plasmid reference sequence). These variants
can be excluded by using a homopolymer indel filter.
However, homopolymeric regions are also the sites
were the viral RNA polymerase may have the highest
error rate. Therefore, applying this homopolymer indel
filter to analyze viral RNA sequences (see below) could
lead to underestimation of the number of variant ge-
nomes. Alternatively, the number of called variants based
on the Ion Torrent PGM data can be reduced in order to
exclude likely false positive variants, by increasing the
average Phred score for a registered variant to 30. How-
ever, this also increased the number of false negative vari-
ant calls (data not shown).

To determine the sensitivity for variant calling, we mixed
pHW197-M and pHW197-Mmut plasmids in ratios of
95:5, 99:1 and 99.9:0.1 (v:v) and then sequenced the
mixtures on both platforms. On both sequencers, the
calculated frequency of pHW197-M or pHW197-Mmut
based on the output data closely resembled the used
ratios (Table 3). Nevertheless, the average quality (average
Phred score) of the tracer mutations was higher on the
[lumina MiSeq (37.97 £0.09) than on the Ion Torrent
PGM (30.72 + 1.07), making the detected variants on the
[lumina MiSeq more reliable. Since the mutations are
physically linked on one plasmid, both mutations should
be present at similar frequencies in a single sample. This
was indeed the case: the observed frequencies of the
linked tracer mutations varied only slightly with on aver-
age 0.18% + 0.26% on the mapped Illumina MiSeq reads
and 0.22% +0.15% on the mapped Ion Torrent PGM
reads. Finally, we found that the 99.9:0.1 plasmid input
ratio could not be resolved because it is too close to the
intrinsic error rate of both sequencers. Overall, the
[llumina MiSeq is more accurate than the Ion Torrent
PGM sequencer but they have similar sensitivities for
detection of SNPs in plasmid DNA.



Van den Hoecke et al. BMC Genomics (2015) 16:79

Page 7 of 23

pHW197-M M1

3.988bp

pMB1 ori
B Sequencing depth pHW197-M
300000 llumina MiSeq —— lon Torrent PGM
o 200004
[=:]
s
3 \wy
O 100004 V!
L‘.
h
0 Ll L] L] L
0 1000 2000 3000 4000
Position
C GC content pHW197-M
80~
70+
U 60"
O
= 504
404
30 : : T '
(] 1000 2000 3000 4000
Position

( Figure 4 Next generation sequence analysis of pHW197-M. (A)
Schematic representation of pHW197-M. HCMV: human cytomegalovirus
promoter, T7: T7 RNA polymerase promoter, M1: matrix protein 1 open
reading frame, M2: matrix protein 2 open reading frame (interrupted by
an intron), hPoll: human RNA polymerase | promoter, pMB1 ori: origin of
replication, Amp": ampicillin resistance gene. (B) Mean sequencing depth
after mapping the processed reads (n = 2) to the reference plasmid
genome. The pHW197-M plasmid was fragmented with the Nextera XT
DNA sample preparation kit before lllumina MiSeq sequence analysis or
by Covaris mechanical shearing, followed by adaptor ligation before lon
Torrent PGM sequence analysis. (C) Percentage GC distribution in the
pHW197-M plasmid reference sequence. The peak after position 2000
corresponds to the origin of replication.

Sequencing of influenza virus samples

To compare the efficacy of the sequencers for detecting
mutations in an influenza A virus sample, we generated
influenza virus starting from eight plasmids, including
pHW197-M or pHW197-Mmut. This resulted in wild
type PR8 and mutant PR8 (PR8mut), respectively, the
latter carrying two silent mutations in the M1 ORF
(C354T and A645T, segment 7 numbering). These muta-
tions did not seem to affect viral fitness because PR8
and PR8mut replicated equally well in vitro (Figure 6).
In addition, Sanger sequencing and restriction analysis
of the mutant M segment after RT-PCR revealed that
the introduced tracer mutations in PR8mut were uni-
formly present in the stock preparation (data not
shown). These viral samples were sequenced in duplicate
(i.e. from each RT-PCR sample two libraries of DNA
fragments were generated in parallel) to evaluate the
consistency of the two NGS methods. In addition, wild
type and mutant viruses were mixed at a ratio of 99:1
before RNA isolation to compare the accuracy of the two
NGS sequencing methods to resolve this ratio. Finally, we
also wanted to quantify the number of differences, if any,
between the plasmid encoded influenza virus information
and the in vitro cultured virus samples. This quantification
would reflect the baseline quasispecies diversity, in the
absence of exogenous selection pressure.

Amplification of the genomic influenza virus segments

Ensuring sufficient coverage across all segments requires
an RT-PCR protocol that amplifies all eight influenza
genome segments with equal efficiency. We used an
RT-PCR protocol based on the conserved termini of the
influenza genome segments, which allowed us to amplify
all eight segments in sufficient amounts (Figure 7A)
[41-43]. Surprisingly, next to the eight genomic segments,
an unexpected band with a length of about 850 bp was
also amplified. This band was identified by conventional
Sanger sequencing after blunt-end cloning in pBlueScript
and corresponded to the first 847 nucleotides of HA. Its
amplification in the RT-PCR reaction was probably due to
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Figure 5 Comparison of nucleotide variants revealed by lllumina MiSeq and lon torrent PGM sequencing. The pHW197-M and pHW197-Mmut
plasmids were fragmented with the Nextera XT DNA sample preparation kit (Illumina MiSeq) or by Covaris mechanical shearing, followed by adaptor
ligation (lon Torrent PGM). The samples were sequenced in duplicate and the sequence reads were processed (adaptor removal, Q20 trimming,
removal of ambiguous bases and removal of reads shorter than 50 bases). For reads obtained on the lllumina MiSeq: broken pairs after read processing
were also removed. The relative percentages of substitutions, insertions and deletions were determined after mapping the processed lllumina MiSeq
(A) and lon Torrent PGM (B) sequencing reads to the pHW197-M (n = 2) or pHW197-Mmut (n = 2) reference sequence. Bars represent averages from

4 samples and error bars represent the standard deviation.
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partial overlap of the CommonUnil2G primer with a
nine-nucleotide perfect match in the coding region of HA
(GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG,
match in bold). By lowering the concentration of the
CommonUnil2G primer, we could avoid this extra band
and obtained the eight amplicons of the expected size
(Figure 7B). Overall, these results show that this RT-PCR
protocol based on the conserved termini of the influenza
A genome segments is suitable for amplifying all eight
segments simultaneously and efficiently.

De novo assembly of sequencing reads derived from viral RNA
Accurate de novo nucleotide sequence assembly is essential
to identify the viral quasispecies that is present in (clinical)
samples. The viral RT-PCR products were purified and
subjected to NGS on the Illumina MiSeq and the Ion
Torrent PGM platforms. Before assembly, the reads

Table 2 Number of detected variants in the pHW197-M
sample before and after filtering

lllumina MiSeq lon Torrent PGM

were processed in silico as described above for the
plasmid-derived sequences (Figure 3). Afterwards, the
sequencing reads were assembled de novo using de
Bruijn graphs [44]. This assembly method is ideally
suited for high coverage next-generation sequencing
data since the computational burden is lowered by first
subdividing all sequencing reads in all possible subse-
quences with a certain short length (k), followed by
looking for all neighbors with k-1 overlap. The consensus
sequence is then constructed as being the alignment of k-
mers that follows the shortest path connecting all overlap
sequences [45]. In this way, 99.90% + 0.02% of the reads
on the Illumina MiSeq and 99.65% + 0.16% of the reads on
the Ion Torrent PGM were assembled in eight contigs
corresponding to the eight genome segments of the PR8
virus. These eight contigs had a mean coverage depth of
23020 + 3504 on the Illumina MiSeq and 13768 + 394 on
the Ion Torrent PGM. All viral genome segments were
almost completely covered by the consensus contigs
(Table 4). Only the extreme 3’ and 5 ends of each
segment were not covered in all consensus sequences.
This is partly due to the high sequence similarity and

Before After® Before After®
S1° s® S1° s2® s1° si® 1P s Pbartial complementarity of the 5 and 3’ ends of the
SNP© 4 4 0 0 0 0 0 0 influenza virus genome, making those reads more
difficult to assemble de novo. In addition, the transposase-
Insertion 0 0 0 0 14 12 3 1 . .
based fragmentation and tagging of the samples sequenced
Deletion 0 2 0 1 71 66 3 4

The filtering parameters used were average quality threshold > Q20, forward/
reverse balance > 0.25, and independent counts of variant > 10.

PSequencing was performed in duplicate (51 and $2).

“SNP = single nucleotide polymorphism.

on the Illumina MiSeq disfavors coverage of free ends,
making de novo assembly at these ends more difficult. For
the Ion Torrent PGM samples, the adaptors were ligated to
the DNA fragments that had been generated by sonication,
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lllumina MiSeq

lon Torrent PGM

797 1088 797 1088
pHW197-M pHW197-Mmut C T T C T A T
0 100 <dl 99.97 <dl 99.96 <dl 99.56 <dl 99.89
0 100 <dl 99.95 <dl 99.94 <dl 99.62 <dl 99.96
95 5 94.84 5.14 95.40 4.58 9522 4.75 95.02 4.96
99 1 98.78 1.19 98.93 1.06 98.97 1.02 98.96 1.02
999 0.1 99.80 0.17 99.85 <dl 99.93 <dl 99.87 <dl

The observed mutation frequencies (%) after mapping the reads to the reference sequence of pHW197-M are shown. < d.l. = mutation frequency falls below detection
limit (< 2*error rate, < 0.16% for llumina MiSeq and < 0.24% for lon Torrent PGM). The pHW197-Mmut plasmid contains the tracer mutations C797T and A1088T.

with the free ends of the influenza genome DNA segments
favoring adaptor ligation, resulting in higher coverage
of the segment termini and making full-length de novo
assembly easier. Nevertheless, in all viral contigs, the
coding sequences were highly covered and entirely present.
In summary, both sequencers are equally suited for de novo

PR8mut
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Figure 6 Comparison of the in vitro replication of PR8 and PR8mut
influenza viruses. (A) Individual plagues of PR8 and PR8mut. Plaques
were revealed by immunostaining with an anti-M2 ectodomain-specific
monoclonal antibody. (B) Multi-cycle growth analysis of PR8 and PR8mut
viruses. MDCK cells were infected in triplicate at a MOI of 0.01 of PR8 or
PR8mut virus. Every twelve hours after infection, samples in the cell
supernatant were analyzed for the presence of infectious virus by plaque
assay. Error bars represent the standard deviation.

assembly of the influenza virus genome, and transposase-
based fragmentation should be avoided when high coverage
of the influenza virus genome ends is desired.

Mapping of sequencing reads

Mapping of the above-mentioned reads to the viral
reference genome (based on the eight plasmids used to
generate the recombinant PR8 virus, with addition of
the extra 20 nucleotides present at the 5" site in the RT-
PCR primers) resulted in sufficient full-length coverage
of the entire influenza genome (Figure 8 and Table 5).
This allowed us to study the viral quasispecies, i.e. to
determine the number of variable nucleotides at each
position in the viral genome. When mapping was done
with the Illumina MiSeq data, we noticed a significant
coverage dip near the middle of the NP segment as well
as a dip around position 600 of the PA segment, but this
did not occur when the Ion Torrent PGM data were
used (Figure 8). These parts of NP and PA are not par-
ticularly GC-rich or AT-rich, and these coverage dips
therefore likely reflect a sequence dependency of the
Nextera transposase [35,46]. Indeed, when we used
mechanical shearing to fragment the RT-PCR products
before Illumina MiSeq sequencing, coverage of the NP
and PA segments was high and consistent over the entire
length of all PR8 genome segments (Figure 9, orange). For
the viral samples sequenced on the Ion Torrent PGM,
the sequencing depth is more homogenous across the
segments, and the regions close to the ends of the viral
segments are slightly overrepresented. This overrepre-
sentation is probably due to mechanical shearing and
subsequent adaptor ligation. The inadvertent RT-PCR
amplification of the 847-bp HA fragment mentioned
earlier was clearly reflected in the sequence read cover-
age of that segment, which showed a higher coverage
for the 5" half of this segment (Figure 8). Moreover, the
gradual versus steep drop of coverage near position 847
in the HA segment reflects the different chemistries of
the Nextera transposase and the Covaris shearing/adapter
ligation methods. Homogenous coverage across the HA
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Figure 7 RT-PCR amplification of influenza A virus PR8 and PR8mut genomic RNA. (A) Electrophoretic analysis of RT-PCR products of PR8
and PR8mut separated on a 1.5% agarose gel and subsequently stained with Ethidium Bromide. PB1: polymerase basic
PA: polymerase acidic, HA: hemagglutinin, NP: nucleoprotein, NA: neuraminidase, M: matrix, NS: non-structural. The amplified PB1 and PB2 RT-PCR
products run at the same position in the gel. * = aspecific amplification product of 847 bp. (B) Optimized RT-PCR product resolved as in A.

B PRS
3000 .
2500  — PB2, PB1
PA
2000  —
HA
NP
1500 ——— | NA
M
1000 -
NS
750 -
1, PB2: polymerase basic 2,

J

segment was evident with the optimized RT-PCR method
in which the extra partial HA-fragment was not present
(Figure 9).

Analysis of the viral quasispecies

After mapping the reads to the reference genome, we
called the variants using the optimal parameters described
above (Figure 3). Since we started with viral RNA, we
increased the background threshold for variant calling to
0.5%, what we believe is the biologically relevant frequency
threshold. This value is above the estimated total error
rate (including errors introduced by the virus itself)
obtained after mapping all sequencing reads to the PR8

Table 4 Percent coverage of the influenza PR8 reference
sequence after de novo assembly

Segment lllumina MiSeq® (SD®) lon torrent PGM? (SD®)
PB2 99.55 (0.30) 100.00 (0.00)

PB1 99.37 (0.52) 100.00 (0.00)

PA 99.35 (0.54) 99.30 (0.2

HA 98.65 (0.52) 99.04 (0.50)

NP 98.79 (0.92) 98.07 (0.00)

NA 98.92 (0.82) 99.97 (0.07)

M - Mmut 98.20 (1.36) 99.55 (0.89)

NS 96.94 (0.76) 7(2.12)

2Viral RT-PCR product sequencing reads obtained on lllumina MiSeq and lon
Torrent PGM were de novo assembled, followed by alignment of the obtained
consensus sequence to the PR8 (n = 2) or PR8mut (n = 2) reference genome.
For each segment, the percentage of the influenza reference sequence (based
on the sequence from the plasmids from which the virus was produced) that
is covered by the assembled contigs is given.

BSD = standard deviation.

reference genome, which is 0.10% +0.01% on Illumina
MiSeq and 0.12% + 0.01% on Ion Torrent PGM.

PRS8, PR8mut and a mixture of PR8 and PR8mut (99%
PR8:1% PR8mut, v:v, virus samples mixed before RNA
isolation), were used to prepare RT-PCR products that
were subsequently sequenced on both platforms (in
duplicate, except for the mixed sample) (Figure 7A). All
obtained sequences were aligned to the PR8 reference
genome. The output data of both sequencing platforms
were processed in silico as described above and used to
count the number of reads with C/T at position 354 and
A/T at position 645 in the M segment. Illumina MiSeq
slightly overestimated and Ion Torrent PGM slightly
underestimated the expected percentage of tracer muta-
tions in the PR8:PR8mut mix (Table 6). As the two
introduced mutations are linked, we expected to retrieve
them with the same frequency. This was indeed the case,
and the observed frequencies of the linked tracer muta-
tions differed on average by only 0.05% on the mapped
[llumina MiSeq reads and by 0.27% on the mapped Ion
Torrent PGM reads.

Next, we determined the number of variants at each
nucleotide position in the virus-derived sequences, which
would reflect the quasispecies diversity of in vitro
grown PR8 and PR8mut virus. Sequencing each sample
in duplicate and simultaneously on the same machine
also allowed us to determine and compare the intrinsic
variability of the two platforms. The number and types
of nucleotide variants that were retained after applying
the variant filter are presented in Table 7. Most variants
were present in both sequencing duplicates, with the
highest proportion of shared variants on the Illumina
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Figure 8 Sequence coverage of the influenza virus genome. Sequence coverage for the different genome segments of wild type PR8 virus
sequenced on lllumina MiSeq (2x250 bp, black lines, n = 2) or lon Torrent PGM (lon 318 chip v2, orange lines, n = 2). The obtained sequences
were mapped to the reference genome (based on the pHW plasmids that were used to generate the virus, with addition of the extra 20
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Table 5 Alignment metrics for lllumina MiSeq and lon Torrent PGM sequencing runs
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lllumina MiSeq
PR8 S1

Segment Length Mapped reads Minimum coverage Maximum coverage Average coverage
PB2 2381 159869 12 20525 15057

PB1 2381 126244 6 16513 11960

PA 2273 107490 7 14883 10533

HA 1815 213169 6 58709 25756

NP 1605 149599 9 29927 19883

NA 1453 139858 5 29353 21256

M 1067 180592 13 56656 37788

NS 930 140785 4 47293 31651

PR8 S2

Segment Length Mapped reads Minimum coverage Maximum coverage Average coverage
PB2 2381 163969 14 20266 14923

PB1 2381 128791 9 16043 11750

PA 2273 110954 5 14733 10486

HA 1815 222513 5 57511 25860

NP 1605 150831 " 29497 19330

NA 1453 135597 14 27006 19834

M 1067 177520 13 54233 35854

NS 930 136505 12 44068 29591

lon torrent PGM

PR8 S1

Segment Length Mapped reads Minimum coverage Maximum coverage Average coverage
PB2 2381 93676 6396 11399 8765

PB1 2381 72187 4016 10132 6471

PA 2273 70492 4735 9315 6940

HA 1815 148242 4613 39585 17544

NP 1605 94509 8518 19617 12324

NA 1453 77561 7918 14959 11904

M 1067 119301 15170 31854 24331

NS 930 112041 16425 33280 25428

PR8 S2

Segment Length Mapped reads Minimum coverage Maximum coverage Average coverage
PB2 2381 84783 5612 10775 7947

PB1 2381 65635 3442 9253 5900

PA 2273 63994 4529 8607 6290

HA 1815 139240 4438 37662 16517

NP 1605 88966 8283 18590 11625

NA 1453 74318 7629 14494 11453

M 1067 115512 15395 30397 23553

NS 930 109661 16936 32481 24950

Wild type PR8 virus was sequenced in duplicate (S1 and S2) on both sequencers and the processed reads were mapped to the reference sequence (based on the
sequence obtained from the plasmids from which the virus was produced, with addition of the extra 20 nucleotides present at the 5' site in the RT-PCR primers).
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Figure 9 Coverage of PR8 virus genome with the optimized RT-PCR protocol. Sequence coverage for the different genome segments of wild
type PR8 virus sequenced on lllumina MiSeq (2x250 bp) using two different fragmentation methods: Nextera XT transposase-based fragmentation
(black lines) and mechanical Covaris shearing followed by adaptor ligation (orange lines). The obtained sequences were mapped to the reference
genome (based on the plasmids used to generate the virus).
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Table 6 Sensitivity of lllumina MiSeq and lon Torrent
PGM to detect mutations in viral samples

lllumina MiSeq lon Torrent PGM
354 645 354 645
PR8 PR8mut C T A T C T A T

0 100 <05 9996 <05 9995 <05 9961 <05 9995
0 100 <05 9996 <05 9995 <05 9962 <05 9995
¥ 1 9821 177 9831 164 9890 076 9895 0.90

The observed mutation frequencies (%) after mapping the reads of the PR8
and PR8mut viral samples to the wild type PR8 viral reference genome (based
on the sequence from the plasmids from which the virus was produced) are
shown. The PR8mut virus contains the tracer mutations C354T and A645T.

MiSeq (Table 7). However, the variants that were identified
in only one of the duplicates were actually also detectable
in the duplicate sample, but just below one of the four
variant filtering parameters. As for the plasmid samples, all
of the indels in the samples sequenced on the Illumina
MiSeq and most of the indels in the samples sequenced on
the Ion Torrent PGM were present in homopolymer re-
gions. The frequencies of the sequencing variants detected
by both sequencers in duplicate are presented in Tables 8
(PR8) and 9 (PR8mut). This revealed 19 mutations (18
SNPs and 1 deletion) for wild type PR8 and 29 SNPs for
PR8mut. Nearly all SNPs were detected with a higher
average Phred score on the Illumina MiSeq (37.39 + 0.43
for PR8) and were thus more reliable than on the Ion
Torrent PGM (28.58 + 2.44 for PR8).

The average difference between the frequencies of a
variant in PR8 sequencing duplicates was only 0.17% +
0.12% for the Illumina MiSeq and 0.16% * 0.18% for the
Ion Torrent PGM, again indicating that both sequencing
platforms provide reproducible output (Table 8). How-
ever, the frequency of occurrence of the variants differed
substantially between sequencers. For example, the mean
variant frequency differed between 0.06% (position 1199
in the PR8 HA segment) and 4.5% (position 1249 in the
PR8 NP segment) for the same viral sample sequenced
on both sequencers. In addition, most detected variants

Table 7 Number of variants detected in wild type and
mutant PR8 quasispecies after filtering

lllumina MiSeq lon Torrent PGM  Shared
S1% S2% shared S1* S2° Shared
PR8 SNP® 25 26 24 19 21 18 18
Insertion 0 0 0 1 1 0 0
Deletion 6 5 4 9 9 3 1
PR8mut SNP® 48 46 46 2 37 32 29
Insertion 0 0 0 4 4 4 0
Deletion 5 6 5 8 11 4 0

The filtering parameters were: average quality threshold > Q20, forward/reverse
balance > 0.25, independent counts of variant > 10, and frequency > 0.5%.
*The wild type and mutant PR8 quasispecies were sequenced in duplicate
(S1 and S2). PSNP = single nucleotide polymorphism.
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were present at a lower frequency based on the Ion Torrent
PGM output. Similar results were obtained for the PR8mut
samples (Table 9). To determine whether this difference in
frequencies is significant between the sequencing platforms,
variant frequencies obtained in PR8 and PR8mut were
analyzed using logistic regression, considering loci with low
(< 15%) and high (> 15%) minor variant frequencies as
separate classes. This analysis clearly indicates that when
the minor variant is present at a low frequency, the Illu-
mina MiSeq systematically detects the minor variants at
significantly higher frequencies than the Ion Torrent
PGM (Figure 10).

Almost all mutations detected in the wild type and/or
mutant PR8 quasispecies are also present in HIN1 viral
sequences retrieved from the Influenza Research Data-
base and/or Genbank. The exceptions are indicated with
a number sign (#) in Tables 8 and 9. These sequence
variants (Glu203Lys and Ser383Gly in HA, Ile225Thr in
NP and Aspl73Gly/Metl6Val in NS1/NS2) might exist
in nature but have not been reported yet. Most of the
detected mutations are present in the HA segment,
which is also the most variable influenza protein in
nature [70]. Most of the detected mutations were substi-
tutions occurring at a frequency < 5%. However, three
mutations in HA and one in NP of PR8 as well as four
mutations in HA and one in NS of PR8mut were present
at a frequency >10% (based on Illumina MiSeq data)
(Tables 8 and 9). Of all detected variants, only seven (five
non-synonymous and two synonymous) were shared
by both PR8 and PR8mut and present in all samples
sequenced. These were all in the HA segment, except
for one variant in PB1 (Tables 8 and 9, bold).

Taken together, these results show that both the wild
type and mutant PR8 virus behave as a fairly heteroge-
neous virus populations even in the absence of external
selection pressure.

Discussion

Next generation sequencing (NGS) has become increas-
ingly valuable to study virus diversity. NGS instruments
have a very high sequencing capacity and therefore allow
a very high coverage of the relatively small genome of
RNA viruses. NGS analysis is thus in principle well
suited for determining the genetic heterogeneity of RNA
viruses. Unfortunately, in many research articles on viral
quasispecies diversity there is little information on how
the raw data were processed. Furthermore, the perform-
ance of different commercially available NGS platforms
for quasispecies analysis has not been evaluated. Here,
we compared the quality of the sequencing output
obtained on the Illumina MiSeq and Ion Torrent PGM
benchtop sequencers. We also propose an analysis pipe-
line for in silico processing of the sequencing data that
allows identification and frequency determination of
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Table 8 Wild type PR8 quasispecies sequenced in duplicate on both lllumina MiSeq and lon Torrent PGM

Frequency (in %)

Segment Position Type Reference Allele aa change Illumina lon Torrent Function/location
MiSeq PGM

PB1 1482 Deletion A frameshift 187 219 318 288
PB1 1486 SNP A G Lys481Arg 232 262 191 191 K481 crucial for polymerase function

in vivo, not in vitro [47]
PA 539 SNP A G silent 137 142 056 054 /
HA 607 SNP A G silent 160 156 202 185 /
HA* 659 SNP G A Glu203Lys 113 123 065 060 enhanced receptor binding activity [48]
HA 660 SNP A G Glu203Gly 311 302 176 155 slightly increased a2-6 and decreased a2-3 binding [49]
HA 747 SNP A G Glu232Gly 1156 1143 729 719 receptor specificity [50]
HA 764 SNP G A Asp238Asn 083 080 065 060 enables binding to a2.3- and

a2.6-linked sialic acids [51]
HA 765 SNP A G Asp238Gly 39.73 3943 3533 3500 enables binding to a2.3- and

a2.6-linked sialic acids [52,53]
HA 768 SNP A G GIn239Arg 281 312 143 123 preferential binding to a-2,3-linked glycans [52]
HA 823 SNP A G lle257Met 176 154 072 074 located in head domain close to Sa antigenic site [54]
HA* 1199 SNP A G Ser383Gly 141 115 114 129 located in stem domain
HA 1330 SNP A G silent 159 150 102 120 /
HA 1424 SNP G A Val458Met 9525 9567 9785 97.77 located in stem domain
HA 1440 SNP A G Glu463Gly 191 175 058 056 located in stem domain
HA 1451 SNP A G Serd67Gly 070 081 062 063 located in stem domain
NP 212 SNP C T silent 180 176 083 064 /
NP 1249 SNP A G Asn395Ser 1071 11.01 597 676 located in NP-NP and NP-PB2 interaction

domain [55,56]
NP 1324 SNP T G Phe420Cys 343 341 131 1.15 located in the hypervariable NP,;g426 CTL epitope [57]

*not present in Genbank or Influenza Research Database.
Bold = variant also present in PR8mut quasispecies.
HA segment = numbering of HA amino acid residues is based on the PR8 HA open reading frame with the starting methionine as position = 1.

nucleotide variants in the influenza A virus (Figure 3).
This analysis pipeline will help to standardize variant
calling in small RNA genomes based on NGS data.

To determine the influenza genome diversity by NGS
technology, different hurdles have to be overcome. First, it
is technically challenging to obtain high quality full-length
RT-PCR products that cover the complete segmented
RNA genome of influenza viruses. We optimized an
RT-PCR protocol with primers based on the conserved
3" (Unil2) and 5" ends (Unil3) of the eight genome
segments [42,43,71]. Critical steps in this protocol are
primer concentration and annealing and elongation
times. Because the sequence of these segment ends is
conserved, this RT-PCR should be applicable to different
influenza A virus strains.

A second hurdle is to distinguish between mutations
that truly represent the viral genome diversity from
errors introduced by RT-PCR amplification and the NGS
chemistry. The first step is to filter the output sequence
data in silico to retain only high quality reads. However,
the available software and filtering parameters vary and

are not always clearly described in the literature, making
comparison of results very difficult. To reduce false posi-
tive variant calls introduced by the sequencing method,
we applied specific trimming, filtering and variant calling
parameters in the CLC Genomics Workbench software.
We first applied this bioinformatics analysis pipeline to
sequencing reads derived from plasmid DNA samples.
We removed adaptor contamination, ambiguous nucleo-
tides and trimmed low quality bases at the end of the
reads by applying a Phred score of 20. Then, we excluded
reads shorter than 50 bases to avoid unspecific mapping
of these short reads. Trimming eliminated relatively more
bases from the Ion Torrent PGM, meaning that the base
quality of sequencing reads from the Ion Torrent PGM is
lower than that from the Illumina MiSeq. In other words,
the potential advantage of longer read lengths obtained
with the Ion Torrent machine was cancelled by their
relatively low quality. Together this resulted in a higher
relative loss of bases for the Ion Torrent PGM data than
for the Illumina MiSeq data (21.01% versus 14.01%
respectively). Furthermore, the Phred score distribution
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Table 9 Mutant PR8 quasispecies sequenced in duplicate on both lllumina MiSeq and lon Torrent PGM

Frequency (in %)

Segment Position Type Reference Allele aa change lllumina lon Torrent  Function/location
MiSeq PGM

PB2 416 SNP A G silent 155 130 059 057 /
PB1 1486 SNP A Lys481Arg 252 280 179 237 K481 crucial for polymerase function

in vivo, not in vitro [47]
PA 212 SNP G T Glu56Asp 572 485 209 218 located in endonuclease domain [58,59]
PA 1139 SNP GIn365His 250 240 100 105 located in PB1 interacting domain [60]
HA 524 SNP A C Ser158Arg 13.17 1293 970 963 Compensatory mutation in [61],

located in Ca antigenic site [54]
HA 524 SNP A T Ser158Cys 098 090 061 063 located in variable Ca antigenic site [54]
HA 607 SNP A G silent 154 143 223 247 /
HA 747 SNP A G Glu232Gly 3995 40.14 36.74 36,02 receptor specificity [50]
HA 765 SNP A G Asp238Gly 317 307 150 144  enables binding to a2,3- and

a2,6-linked sialic acids [52,53]
HA 823 SNP A G lle257Met 292 308 149 164 located in head domain close to Sa antigenic site [54]
HA 828 SNP A G Glu259Gly 517 496 209 195 located on surface head domain

close to Sa antigenic site [54]
HA 1088 SNP T A Phe346lle 699 676 375 418 located in fusion peptide [62]
HA 1090 SNP T G Phe346Leu 128 109 059 069 located in fusion peptide [62,63]
HA 1109 SNP A G lle353Val 5069 6002 6248 61.74 described as fusion peptide pseudorevertant [62,64]
HA* 1199 SNP A G Ser383Gly 103 118 097 105 located in stem domain
HA 1330 SNP A G silent 159 167 194 114 /
HA 1424 SNP G T Val458Leu 343 313 163 164 located in stem domain, not surface exposed
HA 1430 SNP A G Asn460Asp 10.08 960 582 6.10 presentin the PR8 quasispecies

grown on MDCK cells [65]
HA 1431 SNP A G Asn460Ser 1479 1462 1015 1029 located in stem domain
HA 1487 SNP G A Gly479Arg 159 139 061 057 located in stem domain, not surface exposed
NP 635 SNP G A silent 444 393 245 187 /
NP* 739 SNP T C [le225Thr 101 115 052 056  surface exposed, in NP-NP interaction domain [56]
NA 476 SNP T A Cys146Ser 685 671 433 385 located in head domain, involved in coupling

of subunits [66]
NA 994 SNP - C T silent 103 100 060 065 /
M 354 SNP C T introduced 99.96 9996 9961 9962 /
M 645 SNP A T introduced 99.95 9995 9995 9995 /
NS 409 SNP G T NST: GIn121His 4037 3954 3196 3261 situated next to the NS1;55_139 CTL epitope [67]
NS 549 SNP G A NS1: Gly168Glu 127 120 071 059 NST: located in effector domain [68]

NS2: Asp11Asn NS2: N-terminal domain
NS* 564 SNP A G NS1: Asp173Gly  1.05 1.10 065 064 NST:located in effector domain [68]
NS2: Met16Val NS2: Met16 is involved in nuclear export NP [69]

*not present in Genbank or Influenza Research Database.
Bold = variants also present in PR8 quasispecies.

HA segment = numbering of HA amino acid residues is based on the PR8 HA open reading frame with the starting methionine as position = 1.

across the reads, a measure of the intrinsic sequencing
quality, was higher for the Illumina MiSeq data than for
the Ion Torrent PGM data, resulting in a lower error rate.
After this quality control, the sequencing reads were
mapped to the reference sequence, resulting in a higher
percentage of mapped reads for the Illumina MiSeq. The

total mapping error rate of the Illumina MiSeq (mainly
nucleotide substitutions) was lower than that of the Ion
Torrent PGM (mainly indels). This finding is in agreement
with Loman and colleagues [20]. However, for plasmid
DNA analysis the substitution error rate on the Ion
Torrent PGM appeared to be lower than that of Illumina
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Figure 10 Low frequency minor alleles are detected at
significantly higher frequencies by lllumina MiSeq compared to lon
Torrent PGM. Nucleotide variants were subdivided in two frequency
classes: high (frequency minor allele > 15%, n=4) and low (frequency
minor allele: < 15%, n=42). Mean proportions + s.e. of the minor variants
detected in PR8 and PR8mut viral samples by the lllumina MiSeq and lon
Torrent PGM are shown. Minor allele proportions were analyzed by
logistic regression (link function = logit). Significance levels of pairwise
comparisons were assessed by a Fisher's protected least significance
difference test *=p <005, *=p < 001.

MiSeq (Figure 5). After variant calling, the resulting hits
were filtered based on frequency, forward/reverse balance,
average quality, and independent counts to remove false
positive variants. After filtering, both sequencers detected
the tracer mutations we had introduced with excellent
accuracy and sensitivity. Nevertheless, the average quality
(Phred score) of the detected variants was higher on the
[lumina MiSeq than on the Ion Torrent PGM, making
the variants detected on the Illumina MiSeq more reliable.
The number of false positive variants can be further
reduced by cross-platform replication, but the different
biases of the sequencing platforms may cause many true
variants to be overlooked when cross-platform replicates
are compared [72,73].

We then applied the analysis pipeline outlined in
Figure 3 to PR8 and PR8mut virus, which were gener-
ated by a plasmid-based reverse genetics system and
amplified in MDCK cells. In our opinion, variants in the
influenza virus genome that appear with a frequency
below 0.5% are very difficult to distinguish from the
background noise that is cumulatively introduced by RT-
PCR and the inherent variation due to the chemistry of
currently available Illumina and Ion Torrent sequencers.
We propose that a similar threshold of 0.5% should be
applied to interpret the genetic diversity of RNA viruses.
Nevertheless, mutations with a frequency as low as
0.05 - 0.2% in Chikungunya virus have been reported in
the literature as meaningful based on Illumina GAIIX
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sequencing [74]. Given the error rate of the influenza
virus polymerase, resulting in approximately one mutation
per 10.000 nucleotides, together with the errors intro-
duced during RT-PCR and the technical background
error rate of the NGS platforms applied in this study, it
is not straightforward for both the Illumina MiSeq and
the Ion Torrent PGM to identify each variant in the
viral quasispecies. Nevertheless, even with the threshold
of 0.5% proposed here, NGS will enable studying of the
viral diversity in much more detail than in the past.

Our analysis showed that the de novo assembled PR8
and PR8mut sequences correspond very well to the
plasmid-derived reference genome. We detected 19 muta-
tions in PR8 and 29 mutations (including the two tracer
mutations) in PR8mut with a frequency of 0.5% or higher.
When a variant was present at low frequency (< 15%), the
[lumina MiSeq detected it with significantly higher fre-
quency than the Ion Torrent PGM. Most of the detected
mutations were transitions and appeared with a frequency
below 5%. However, three mutations in HA and one in
NP of PR8, as well as four mutations in HA and one in
NS of PR8mut, were present at a frequency > 10% (based
on Illumina MiSeq data) (Tables 8 and 9). We detected
only one single nucleotide deletion in the PR8 virus. This
deletion was in a homopolymer at position 1482 in PB1
but was detected with a frequency of 2-3% by both
sequencers, in both duplicates of PR8 virus. In addition,
this deletion was also detected with a similar frequency in
both PR8mut samples sequenced on the Illumina MiSeq
and in one of the duplicate samples sequenced on the Ion
Torrent PGM. This deletion disrupts the open reading
frame, leading to premature termination of PB1. This
detrimental mutation is in line with the finding of Brooke
and colleagues, who showed that most of the infectious
influenza A virions fail to express detectable levels of one
or more viral proteins [75].

We focused on the mutations detected by both
sequencers with a frequency > 5% and on the mutations
that appeared in both wild type and mutant PR8 viruses.
There are three such mutations in the HA head domain
of PR8 and four in the HA head domain of PR8mut,
and all of them are part of or close to the antigenic sites
(Figure 11A). The shared Asp238Gly mutation (Asp225Gly
for H3 numbering) is associated with enhanced virion
binding to the avian-type Sia(a2-3)Gal and was reported
previously as a position that is selected by egg-adaptation
of influenza viruses [76]. The Ser158Arg mutation (Ser14
5Arg for H3 numbering) in PR8mut has been described
as a compensatory mutation in PR8 virus possessing
the Lys165Glu mutation in HA (H3 numbering), which
decreases the receptor binding avidity and replication
kinetics of the virus [61]. The two mutations in the
stem domain are relatively conservative (Ser383Gly and
Val458Met; Ser40Gly and Vall15Met for H3 numbering
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Figure 11 Position of variants present in PR8 and PR8mut quasispecies in the HA, NP and NS1. The variants in HA (hemagglutinin), NP
(nucleoprotein) and NS1 (non-structural protein 1) detected in the PR8 and PR8mut quasispecies were modeled with PyMol (Delano Scientific,
http://www.pymol.org), using the HA from A/Puerto Rico/8/1934 (H1N1) (PDB code: 1RVX), the NP from A/Wilson-Smith/1933 (H1N1) (PDB code:
2IQH) and the effector domain of NS1 from A/Puerto Rico/8/1934 (HIN1) (PDB code: 3RVC). (A) Top (left) and lateral (right) view of the surface
exposed amino acids of the HA trimer. The Cb, Ca, Sa and Sb antigenic sites are shown in green. The mutations that are present in both PR8 and
PR8mut are shown in red or in magenta if they overlap with the antigenic sites. Mutations in PR8mut that are present at a frequency > 5% are
shown in blue or in yellow when overlapping with the antigenic sites or in purple when overlapping with the fusion peptide (orange). The
mature H3 amino acid numbering of the variants is provided in superscript. (B) Lateral view of the NP monomer with the N395S mutation
present in PR8 shown in brown. (C) The effector domain of NS1 with the Q121H mutation in PR8mut shown in blue.
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of HA2) and therefore might not affect virus replication.
Remarkably, the G-to-A substitution at position 1424,
leading to the Val458Met change in HA, had a frequency
close to 100% in the PR8 HA segment but was absent in
PR8mut (although a Val458Leu change is present in a
small percentage of PR8mut). This mutation was probably
fixed in the wild type virus genome at a very early step,
e.g. during plaque purification of the PR8 seed virus we
used to prepare stock virus. We also picked up two
other codon changes in the HA stem region of PR8mut:
Asnd60Asp (5-10%) and Asn460Ser (10 -15%) (Asnl
17Asp and Asn117Ser for H3 numbering of HA2). Based
on pyrosequencing of the HA segment, the Asn460Asp
mutation has been observed in 12.2% in PR8 virus grown
on MDCK cells [65]. In addition, the PR8mut caries the
Ile353Val (Ilel0Val for H3 numbering of HA2) mutation
in the HA fusion peptide at a frequency of about 60%.
A valine at this position has been observed in a PR8
pseudo-revertant after introducing the Ilel0Ala mutation.
A valine at this position is compatible with the a-helical
structure of the fusion peptide [64]. Both PR8 viruses also
contain mutations in other segments. For example, both
viruses share the conservative Lys481Arg mutation in
PB1. This lysine at position 481 is crucial for the polymer-
ase function of PB1 in vivo but mutating it to alanine was
tolerated in vitro [47]. In wild type PRS8, the Asn395Ser
variant in NP is in a domain involved in NP - NP and NP
- PB2 interactions (Figure 11B) [77]. The GInl21His
variant detected in NS1 of PR8mut is situated just before
a human CTL epitope (Figure 11C) [67]. Remarkably,
none of the variants we observed correspond to the vari-
ants described in an earlier study, in which a PR8 strain

(originally adapted for growth on embryonated chicken
eggs) was adapted for growth on MDCK cells [78].
However, we used MDCK cells only to expand our
virus stock, which corresponds to about six cycles of
PR8 virus replication. Furthermore, we generated our
PR8 virus starting from eight plasmids, indicating that
the passaging history is a determinant of the variants
detected in an influenza virus quasispecies.

Both sequencers are highly effective for accurate detec-
tion of low frequency mutations, but each one has its
advantages and limitations. On the one hand, the Illumina
MiSeq platform has about three times higher output
capacity than the Ion Torrent PGM, enabling sequencing
of more samples in parallel on the Illumina MiSeq. On the
other hand, the Ion Torrent PGM is significantly faster: its
time from sample preparation to data analysis is one day
less than for the Illumina MiSeq. After the in silico quality
control, the two sequencers produced reads of compar-
able lengths. The Illumina MiSeq had a higher intrinsic
sequencing quality than the Ion Torrent PGM, presum-
ably because detecting incorporated bases based on a
coupled fluorescent dye (Illumina) gives less noise than
a change in pH caused by release of a proton after
incorporation of a base (Ion Torrent). However, the Ion
Torrent PGM had a lower false-positive rate for detecting
SNPs. Another interesting observation is the lower
coverage of the ends of the viral segments on the Illumina
MiSeq due to the transposase-based fragmentation.
Nextera transposase-based fragment library preparation
is convenient and fast but results in low coverage of
segment termini. We also noticed some sequence bias of
this transposase-based fragmentation approach (Figures 8
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and 9). Mechanical fragmentation followed by adaptor
ligation enables comparable coverage of all bases of the
influenza virus genome, and is therefore the preferred
method for library preparation (Figures 8 and 9).

The proposed RT-PCR protocol and subsequent ana-
lysis pipeline for influenza viruses is widely applicable, e.g.
to study vaccine composition, analyze virus evolution
under selection pressure, monitor mutations associated
with antiviral resistance, and assemble the reference
genome of new viral isolates. For clinical samples, the
shorter turnaround time of the Ion Torrent PGM (sample
preparation, sequencing and analysis in about 2 days) is
clearly advantageous to the Illumina MiSeq (about 3 days).
In contrast, when analyzing many viral samples at high
coverage, the greater output of the Illumina MiSeq is an
important advantage.

Conclusion

Our study underlines the power and limitations of two
commonly used next-generation sequencers for the
analysis of influenza gene diversity. We propose an in
silico pipeline for selecting high quality reads obtained
by NGS platforms. This pipeline is also more widely
applicable. Due to the lower total error rate and the
higher sequencing quality of the reads, we conclude that
the Illumina MiSeq platform is more suited than the Ion
Torrent PGM for detecting variant sequences, whereas
the Ion Torrent platform has a shorter turnaround time.
In addition, we found that the detection limit for reliable
recognition of variants in the viral genome required a
frequency of 0.5% or higher.

Methods

Cell lines

MDCK and HEK293T cells were cultured in Dulbecco’s
Modified Eagle medium (DMEM) supplemented with 10%
fetal calf serum, non-essential amino acids, 2 mM L-glu-
tamine, 0.4 mM sodium pyruvate, 100 U/ml penicillin and
0.1 mg/ml streptomycin at 37°C in 5% CO,.

Generation and production of plasmids with tracer
mutations

Reverse genetics plasmids for PR8 virus were kindly
provided by Dr. Robert G. Webster (St. Jude Children’s
Research Hospital, Memphis, USA) [31]. We introduced
two silent mutations in the M coding gene, a C-to-T
substitution at position 797 (numbering relative to the
human cytomegalovirus promoter in the pHW197-M
plasmid) and an A-to-T substitution at position 1088 in
pHW197-M. These two positions were selected as follows.
First, we generated a consensus sequence of the M-gene
based on all full-length segment 7 sequences of human
HIN1 viruses present in the Influenza Virus Resource
Database (NCBI) on September 11th, 2011. Next, we
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aligned the consensus sequence to the M segment of PR8
(present in pHW197-M) and selected two synonymous
mutations in the M1 open reading frame at positions
C354T and A645T (segment 7 numbering). These two
mutations were introduced by two consecutive rounds of
quickchange site-directed mutagenesis (Stratagene) at
positions C797T and A1088T in pHW197-M to generate
pHW197-Mmut. The two mutations also introduced a
HindIII and a Pvull restriction site, respectively. These
plasmids and the plasmids encoding the other seven PR8
genome segments were transformed and amplified in E.
coli DH5a. Plasmid DNA was isolated with the Plasmid
Midi Kit (Qiagen) according to the manufacturer’s instruc-
tions. The resulting air-dried pellet was dissolved in 50 pl
of sterile ultrapure water. The presence of the introduced
mutations in pHW197-Mmut was confirmed by restriction
analysis and Sanger sequencing on a capillary sequencer
(Applied Biosystems 3730XL DNA Analyzer).

Generation of recombinant PR8 and PR8mut viruses

To generate recombinant wild type PR8 virus and PR8
virus with the two tracer mutations in the M gene
(PRSmut), 1 pg of pHW191-PB2, pHW192-PB1, pHW193-
PA, pHW194-HA, pHW195-NP, pHW196-NA and pHW
198-N, together with 1 pg of pHW197-M (wild type PR8)
or pHW197-Mmut (PR8mut) was transfected using
calcium phosphate co-precipitation into a HEK293T-
MDCK cell co-culture in Opti-MEM (3 x 10° HEK293T
and 2 x 10° MDCK cells in a 6-well plate). After 30 h,
L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-
treated trypsin (Sigma) was added to a final concentra-
tion of 2 pg/ml. After 72 h, the culture medium was
collected and the presence of virus was confirmed by
hemagglutination of chicken red blood cells. Reverse
genetics-generated PR8 and PR8mut viruses were plaque-
purified on MDCK cells as follows. Confluent MDCK cells
in a six-well plate were infected with a serial dilution
series of virus. After 1 h, an overlay of low melting agarose
(Type VII agarose, Sigma; final concentration 1%) in
serum-free cell culture medium containing 2 pg/ml
TPCK-treated trypsin (Sigma) was added. After 56 h,
cytopathic effect was checked, agar overlaying viral
plaques were selected with a pipette tip, and virus was
allowed to diffuse from the agar for 24 h at 4°C in
serum-free medium. Afterwards, virus derived from one
plaque was amplified on MDCK cells in serum-free cell
culture medium in the presence of 2 pg/ml TPCK-treated
trypsin (Sigma). After 96 h, the culture medium was
collected, and cell debris was removed by centrifugation
for 10 min at 2500 g at 4°C, and the virus was pelleted
from the supernatants by overnight centrifugation at
16,000 g at 4°C. The pellet was dissolved in sterile 20%
glycerol in PBS, aliquoted and stored at —80°C. The infec-
tious titer of the obtained PR8 and PR8mut virus stocks
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was determined by plaque assay on MDCK cells, on three
different aliquots each performed in triplicate. The pres-
ence of the introduced mutations in the M segment of
PR8mut was confirmed by segment-7-specific RT-PCR
followed by purification from 1% agarose gel (High Pure
PCR Product Purification Kit, Roche) and conventional
Sanger sequencing of the amplified PCR fragment.

Plaque assay

MDCK cells were seeded in complete DMEM in 12-well
plates at 3 x 10° cells per well. After 18 h, the cells were
washed once with serum-free medium and incubated (in
triplicate) with a two-fold dilution series of the virus
(made in serum-free cell culture medium containing
0.1% BSA) in 500 pl medium. After 1 h incubation at
37°C, an overlay of 500 pl of 1.6% Avicel RC-591 (FMC
Biopolymer) in serum-free medium with 4 pg/ml TPCK-
treated trypsin (Sigma) was added. After incubation at
37°C for 48 h, the overlay was removed and the cells
were fixed with 4% paraformaldehyde and permeabilized
with 20 mM glycine and 0.5% (v/v) Triton X-100. Plaques
were stained with an anti-M2e IgG1l mouse monoclonal
antibody (final concentration 0.5 pg/ml) followed by a
secondary anti-mouse IgG horseradish peroxidase (HRP)-
linked antibody (GE Healthcare). After washing, TrueBlue
peroxidase substrate (KPL) was used to visualize the
plaques.

RNA isolation

RNA was isolated with the High Pure RNA Isolation Kit
(Roche) according to the manufacturer’s instructions,
excluding the DNase I digestion step. In brief, a 200-ul
sample containing 1 x 10’ PFU of stock virus in serum-
free cell culture medium with 0.1% BSA was combined
with 400 pl lysis-binding buffer and mixed by vortexing.
The mixture was loaded on a two-layered glass fiber
column. After binding to the column and washing, the
RNA was eluted in 50 pl elution buffer (water, PCR
grade).

RT-PCR

Primers used for cDNA synthesis and PCR were designed
based on the 5’ and 3" conserved ends of the influenza A
genomic segments and contain an additional sequence
of 20 nucleotides at their 5° end necessary for PCR
amplification [41-43,79]. cDNA was generated using the
Transcriptor First Strand ¢cDNA Synthesis Kit (Roche).
Reverse transcription was performed with the Transcriptor
Reverse Transcriptase (10 U, Roche), using 12.5 pul RNA,
25 pM CommonUnil2G primer (GCCGGAGCTCTGC
AGATATCAGCGAAAGCAGQG), 1x Transcriptor Reverse
Transcriptase Reaction Buffer, 20 U Protector RNAse
inhibitor and 4 mM dNTPs, in a total volume of 20 pl. The
components were mixed, and the reaction was incubated
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for 15 min at 42°C, 15 min at 55°C, 5 min at 60°C, and
finally 5 min at 85°C to inactivate the reverse tran-
scriptase. Ten microliters of the resulting cDNA sample
was amplified in a 100-pl PCR reaction using 2 U Phusion
High Fidelity polymerase (Thermo Scientific), 0.2 uM
CommonUnil2G and CommonUnil3 (GCCGGAGCTC
TGCAGATATCAGTAGAAACAAGG), 0.2 mM dNTPs,
and 1x High-Fidelity buffer. Thermocycling was per-
formed in a PTC-200 Thermal Cycler (M] Research)
with the following conditions: initial denaturation for
30 s at 98°C, 25 cycles of 10 s at 98°C followed by
7.5 min at 72°C, and a final elongation step of 7 min at
72°C. PCR products were purified using the High Pure
PCR Product Purification kit (Roche) according to the
manufacturer’s instructions, and the product was eluted
in 50 pl sterile ultrapure water (preheated to 65°C). One
microgram of the product was analyzed by agarose gel
electrophoresis (1.5% agarose gel) followed by ethidium
bromide staining.

lllumina MiSeq sequence determination

We used 0.5 ng of purified plasmid or RT-PCR sample
and the Nextera XT DNA Sample Preparation Kit
(Ilumina) according to the manufacturer’s instructions
to generate multiplexed paired-end sequencing librar-
ies. Sequencing libraries were generated in duplicate,
meaning that from each plasmid or RT-PCR sample
two libraries were prepared in parallel and sequenced
on the same Illumina MiSeq sequencing chip. In brief,
DNA samples were fragmented and tagged with adapters
by Nextera XT transposase. These adaptor ligated DNA
fragments were amplified by a limited-cycle PCR program
(12 cycles) to add the barcodes and sequences required
for subsequent cluster formation. The resulting fragments
were purified and simultaneously size-selected by using
0.6x AMpure beads. Fragments were analyzed on a
High Sensitivity DNA Chip on the Bioanalyzer (Agilent
Technologies) before loading on the sequencing chip.
The fragment lengths showed a negatively skewed dis-
tribution with a peak at approximately 700—1000 bases.
From the optimized RT-PCR products, also 500 ng was
sheared with an M220 focused-ultrasonicator (Covaris)
set to obtain peak fragment lengths of 300-400 bp.
Next, the NEBNext Ultra DNA Library Preparation kit
(New England Biolabs) was used to repair the ends and
to add Illumina MiSeq-compatible barcode adapters to
100 ng of fragmented DNA. The resulting fragments
were size-selected using Agencourt AMPure XP bead
sizing (Beckman Coulter). Afterwards, indexes were added
in a limited-cycle PCR (10 cycles), followed by purification
on Agencourt AMpure XP beads. Fragments were ana-
lyzed on a High Sensitivity DNA Chip on the Bioanalyzer
(Agilent Technologies) before loading on the sequencing
chip. Equimolar amounts of normalized libraries were
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combined and diluted 25-fold in hybridization buffer. The
multiplex sample was heat denatured for 2 min at 96°C
before loading on the MiSeq chip. After the 2x250 bp
MiSeq paired-end sequencing run, the data were base
called and reads with the same barcode were collected
and assigned to a sample on the instrument, which
generated I[llumina FASTQ files (Phred +64 encoding).
These files were imported in the CLC Genomics Work-
bench software (CLC Bio, Qiagen). During import in CLC
Genomics Workbench, the uncallable ends of the MiSeq
reads (B in input file) were automatically trimmed and the
failed reads (Y in header information for the quality score)
were removed.

lon Torrent PGM 318 chip sequence determination
Samples for sequence analysis were generated in duplicate,
meaning that from each plasmid or RT-PCR sample two
libraries were prepared in parallel for sequencing on the
same Ion Torrent PGM 318 sequencing chip. From each
plasmid or RT-PCR product, 100 ng was sheared with an
M220 focused-ultrasonicator (Covaris) set to obtain peak
fragment lengths of 400-500 bp. After shearing, blunt
ends were created using the end repair enzyme from
the Ion Plus Fragment Library kit (Life Technologies).
Next, the fragments were ligated to Ion Torrent PGM-
compatible barcode adapters. Since the adaptors are
not 5° phosphorylated, the nick repair polymerase in
the kit repairs subsequently the nick on one strand at
each ligation site, in order to minimize adaptor-dimer
formation. We purified and simultaneously size-selected
the adapter-ligated library using Agencourt AMPure XP
bead sizing (Beckman Coulter). Fragments were analyzed
on a High Sensitivity DNA Chip on the Bioanalyzer
(Agilent Technologies); the fragment length peak was
situated around 450 bp. Barcoded libraries were pooled
in equimolar amounts. From the resulting diluted mul-
tiplexed library, 20 pl was loaded on an Ion OneTouch
2 instrument (Life Technologies) to perform emulsion
PCR on Ion Sphere particles using the Ion PGM Tem-
plate OT2 400 kit. We used the Ion PGM sequencing
400 kit (Life Technologies) to sequence templated ion
sphere particles deposited in the Ion 318 chip v2
(revision 2.0, Life Technologies). The Ion Torrent Suite
version 4.6 (Life Technologies) was used with the
default parameters for base calling and assigning of the
reads to a sample based on their barcode. The default
settings in the Ion Torrent Suite already filter and trim
the sequencing reads to some extent. These default
trimming parameters are not stringent and remove only
very low quality 3’ ends (mean Phred score of at least
15 in a base window of 30) and adaptor contamination.
The resulting FASTQ files were imported into CLC
Genomics Workbench for further analysis.
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Analysis of sequencing data

CLC Genomics Workbench version 7.0.3 (CLC Bio,
Qiagen) was used to analyze and process the sequencing
reads of both the Ion Torrent PGM and the Illumina
MiSeq. First, adaptor contamination was removed from
the reads. Next, the sequencing reads were trimmed from
both sides using the modified Mott trimming algorithm to
reach a Q20 score, which means that the chance that a
particular base in the sequence is called incorrectly by the
sequencer is 1 in 100. Afterwards, all ambiguous (N) bases
were trimmed from the reads. We also removed the reads
with a read length below 50. For the Illumina MiSeq, the
broken pairs resulting from trimming and filtering were
also removed. The remaining reads were assembled using
default settings for de movo assembly. In addition, the
processed reads were also aligned with the pHW197-M
plasmid reference sequence or the influenza PR8 reference
genome (based on the sequences encoding the eight
segments in the pHW vectors, determined by Sanger
sequencing, with addition of the extra 20 nucleotides
present at the 5 site in the RT-PCR primers) using local
alignment. For this, the following default penalties were
used: match = +1, mismatch = -2, insertion/deletion = -3,
filtering threshold: length fraction=0.9 and similarity
fraction = 0.8. Non-specific matches, defined as reads
aligning to more than one position with an equally
good score, were ignored. Sequence variants were
called using all available sequencing data that covered
each nucleotide at least 100 times and had a central
base quality score of Q20 or greater. The A-to-G
variant introduced by the primer at position 24 in
the HA, NP, NA, M and NS segments was not taken
into account during the influenza quasispecies variant
analysis. All numerical data mentioned in the text are
presented as averages with their standard deviations
(+ SD).

Statistical analysis

Sequence variants with the lowest proportion were
considered as minor alleles. Analysis of minor allele
proportions was performed by fitting a logistic regression
model of the form logit(p) = constant + PLATFORM*-
VIRUS*CLASS + error, where p indicates the minor
allele proportion, PLATFORM refers to the sequencing
platform, VIRUS refers to virus population, and CLASS
refers to class of loci having either low (< 15%) or high
(> 15%) minor variant frequencies. Significance of the
fixed PLATFORM, VIRUS and CLASS effects was
assessed by an F-test. Significance of pair-wise com-
parisons between mean proportions was assessed by a
Fisher’s protected least significance difference test. The
logistic regression and assessment of significance was
performed in Genstat v16.
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Sequencing data

The output sequencing reads obtained on the Illumina
MiSeq and Ion Torrent PGM were submitted to NCBI's
Sequence Read Archive and can be found under project
numbers SRP052608 (plasmid samples) and SRP052225
(viral samples).
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