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Impacts of low coverage depths and post-mortem
DNA damage on variant calling: a simulation study
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Abstract

Background: Massively parallel sequencing platforms, featuring high throughput and relatively short read lengths,
are well suited to ancient DNA (aDNA) studies. Variant identification from short-read alignment could be hindered,
however, by low DNA concentrations common to historic samples, which constrain sequencing depths, and
post-mortem DNA damage patterns.

Results: We simulated pairs of sequences to act as reference and sample genomes at varied GC contents and
divergence levels. Short-read sequence pools were generated from sample sequences, and subjected to varying
levels of “post-mortem” damage by adjusting levels of fragmentation and fragmentation biases, transition rates at
sequence ends, and sequencing depths. Mapping of sample read pools to reference sequences revealed several trends,
including decreased alignment success with increased read length and decreased variant recovery with increased
divergence. Variants were generally called with high accuracy, however identification of SNPs (single-nucleotide
polymorphisms) was less accurate for high damage/low divergence samples. Modest increases in sequencing depth
resulted in rapid gains in total variant recovery, and limited improvements to recovery of heterozygous variants.

Conclusions: This in silico study suggests aDNA-associated damage patterns minimally impact variant call accuracy and
recovery from short-read alignment, while modest increases in sequencing depth can greatly improve variant recovery.
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Background
The field of ancient DNA (aDNA) has reached 30 years
of age, in which time it has progressed from the ampli-
fication of fragments of single loci to the complete
sequencing of individual complex genomes [1,2]. In its
first two decades, aDNA research was primarily focused
on PCR-based amplification and subsequent Sanger
sequencing of selected loci and organellar genomes, with
results applied to analyses of population differentiation
and phylogeography, phylogenetics, and even metage-
nomics (reviewed in [3,4]). In the last decade the field of
aDNA has moved from the genetic to the genomic level
with the advent of massively parallel sequencing plat-
forms. This has been accompanied by a concurrent shift
in focus to full genome sequencing and assembly, and
genome-scale analyses of population trends [5-12].
As this field enters its fourth decade, it is inevitable

that application of genome-level sequencing will become
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more commonplace. This will facilitate the broader
development of ancient population genomics and phy-
logenomics approaches [1,2] in a wider range of taxa.
Nonetheless, in order to fully benefit from genome-
scale approaches, it is critical to understand how the
unique characteristics of aDNA might impact results
from high-throughput sequencing and read-mapping
technologies. In general, there are several important
characteristics that distinguish ancient from modern
DNA samples. First, not only are aDNA molecules
highly fragmented [13], but the fragmentation process
itself is biased toward breakpoints bordered by 5′ purine
residues (and hence 3′ pyrimidine residues) [14] which
could result in biased coverage patterns. Further, deamin-
ation of cytosine residues at or near fragment ends
ultimately leads to C-T and G-A misincorporations
at 5′ and 3′ sequence ends, respectively [15], and could
confound aDNA read mapping and variant calling. Last,
but not least, ancient samples typically feature relatively
low proportions of endogenous DNA [13,16] such that
sequencing multiple samples to higher coverage depths
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(for example >20× depth) to enable confident genomic
assembly and variant calling, is often either cost-prohibitive
or simply not possible due to limited sample or DNA
availability. As a consequence of this, most reports
applying high throughput sequencing to full genomes of
ancient samples have been limited to one or several
samples sequenced and at low or ultra-low (i.e, less than
1×) to moderate coverage depths [2]. This combination
can severely impact the accuracy of variant calls [17].
While it is relatively simple to document the biases

associated with mapping aDNA sequence reads (for ex-
ample [18]), it is more difficult to measure the impacts of
these biases on variant calling when analysing empirical
data. Considering this, we designed a study to quantify the
impact of aDNA fragmentation and misincorporation
biases on variant calling using simulated data. By utilizing
simulated datasets, we were able to control for a number
of potentially confounding factors that commonly feature
in and could have an effect upon aDNA studies. These
include level of divergence between sample and reference,
average read length, average sequencing depth and
damage level (here designated by levels of fragmenta-
tion bias and cytosine deamination at sequence ends).
In addition, by synthesizing in silico reference and sample
sequences prior to incorporation of aDNA-associated dam-
age patterns, it is possible to know the exact “pre-damage”
nucleotide sequences of samples. This allows direct
comparison of called variants to the true variants, in
terms of both accuracy and overall completeness.

Results
To explore the impacts of post-mortem DNA damage
on variant calling, we first simulated triplicate pairs of
reference and diploid sample sequences at each of three
GC contents (35%, 50%, 65%) and two divergence levels
(ca. 0.3% and 3%), and at ca. 10 Mbp (million base pair)
lengths, as described in the Methods. Short read
sequence pools were artificially generated from the
sample sequences at average read lengths of 40, 60 and
80 bp, and were further subjected to either zero, low or
high levels of synthetic post-mortem damage reflective of
previous reports. This damage included both fragmen-
tation bias and elevated 5′ C-T/3′ G-A transitions near
sequence ends. These pools were subsequently mapped
back to their corresponding reference sequences using
commonly applied alignment software and at a range
of ultra-low to moderate sequencing coverage depths
(0.1×, 0.5×, 1×, 2×, 4×, 8× and 16×). This method allowed
us to directly compare known damage patterns and
variant positions to those measured from mapped read
pools, and ultimately to estimate whether and to what
extent a variety of variables, including coverage depth,
read length and damage level, might impact upon
variant calling.
Synthetic damage patterns
Implemented patterns of fragmentation bias were clearly
seen when mapping reads with both low and high levels
of synthetic damage (Additional file 1). In low damage
read pools, 5′ guanosine and adenosine residues were
elevated by ca. 20% and 10%, respectively, over genomic
levels at positions immediately 5′ to mapped low
damage reads. Conversely, guanosine and adenosine
residues were diminished by ca. 20% and 10% compared
to genomic levels at positions immediately 3′ to mapped
low damage reads. The same pattern was seen in mapped
high-damage reads, but at ca. 60% and 30% differences
from reference genome levels. For both low and high
damage read pools, complementary pyrimidine residues
at genomic positions immediately 5′ and 3′ of mapped
reads showed a pattern directly opposite of purine resi-
dues. Fragmentation bias was not evident in mapped
reads from no damage read pools.
Misincorporation rates of mapped reads in low and

high damage read pools followed expected trends based
on patterns of synthetically introduced damage, and were
similar to reports from empirical data for 5′ C-T and
3′ G-A transition rates (for example [19,20]) (Additional
file 1). Nonetheless, we also found significant differences
between expected and observed misincorporation rates.
For example, misincorporation rates of mapped reads
were generally lower than expected based on the fre-
quencies of incorporated damage in low and high damage
treatments (Additional file 2), in some sample replicates
dropping to ca. 40% of the expected value at sequence
read ends. While misincorporation frequencies at both
5′ and 3′ ends of reads were significantly and positively
correlated to damage level (Additional file 2), they were
also significantly and negatively correlated to read length
at 5′ ends and the 3′-most position of mapped reads
(Additional file 2). In addition, 5′ C-T misincorpo-
rations were slightly but significantly less common than
3′ G-A misincorporations, with 5′ C-T misincorpora-
tions averaging ca. 84-98% of the frequency of 3′ G-A
misincorporations across divergence and damage levels
(Additional file 2).

Read mappability
GC content, read length and damage all had significant
impacts on the proportion of read pools able to be
mapped back to their reference at both levels of
divergence, while coverage depth was not significantly
correlated for either low or high divergence read pool
mapping (Table 1). Read length clearly had the most
dramatic impact on read mappability, however, and
decreases in successful read mapping were strongly
correlated with increasing read length for all damage
levels and GC contents at both levels of divergence
(Figure 1, Table 1). The rate of decrease in read mapping



Table 1 Impact of independent variables on the percent
of reads mapped from read pools

Divergence %GC Read length Damage Coverage depth

Low -0.1212* -0.7032*** -6.4180*** -0.0005

High -0.1068* -0.8363*** -5.9020*** 0.0008

Slope coefficients resulting from multiple variable regression analysis are
shown applying best-fit linear models, considering as dependent variables the
percent of reads mapped from a pool, while GC content, read length, damage
level and coverage depth were treated as independent variables. Values of 1,
2 and 3 were assigned to variables no-, low- and high-damage, respectively.
Values not significant at Pr < 0.05 unless otherwise indicated; * signifies 0.01 <
Pr < =0.05; *** signifies Pr < =0.001.
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success was very similar for low and high divergence
read pools (Table 1, Additional file 3). Nonetheless, the
overall lower success rate of read mapping in high
divergence read pools resulted in an approximately
three-fold decrease in the percent of reads mapped when
read lengths were increased from 40 to 80 bp, as opposed
to an approximately two-fold decrease observed in low
%
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Figure 1 Average proportions of simulated read pools mapped
to references across treatments. A) Low divergence level and
B) high divergence level. White, grey and black circles represent no
damage, low damage and high damage treatments, respectively.
Error bars represent standard deviations of measurements. For A)
and B), best-fit linear relationship is shown for no damage (solid
line), low damage (dashed line) and high damage (dashed/dotted
line) samples; slopes for linear relationships in A) and B) range from
-1.03 to -1.29; R2 values range from A) 0.89 to 0.92 and B) 0.98 to
0.99 (see Additional file 3 for full details).
divergence pools. Increasing average read length of a read
pool also resulted in a greater decrease in average length
of mapped reads across all damage levels and at both low
and high divergence (Pr <<0.001 for linear regression),
such that average lengths of mapped reads at 40/60/80 bp
expected size were 40.05/59.99/79.44 and 40.03/59.92/
79.16 bp for low and high divergence read pools, respect-
ively. The impact of damage levels on read mappability
was also clear, albeit lesser than that of read length, as
the average percent of reads mapped decreased with in-
creased damage at all read lengths, for both divergence
levels (Figure 1, Table 1).

Accuracy of variant calls
Both SNPs (single nucleotide polymorphisms) and indels
(insertions-deletions) were generally called with high
accuracy across coverage depths, GC contents, read
lengths, and damage levels. Indels averaged 95.4%
(sd = 2.5) and 92.4% (sd = 2.2) correct, and SNPs averaged
91.7% (sd = 11.6) and 97.8% (sd = 2.4) correct, for low
and high divergence treatments, respectively. Nonetheless,
SNP and indel call accuracy were differentially impacted
by damage levels. The accuracy of indel calls was not
substantially affected by damage level at either level of
divergence (Table 2). In contrast, SNP call accuracy was
diminished by higher rates of damage, particularly at
low divergence (Table 2, Figure 2). A significant and
positive correlation between read length and variant call
accuracy was also demonstrated for both SNPs and
indels in high divergence treatments, and for SNPs in
low divergence treatments, although the impact of this
relationship was relatively small (Table 2). GC content
had significant correlations to variant call accuracy only
for SNP calls (negative relationship) at high divergence
(Table 2); the magnitude of this relationship was also
relatively small.

Completeness of variant recovery
In contrast to variant call accuracy, variant call com-
pleteness was substantially impacted by coverage depth
at both levels of divergence for both SNPs and indels
(Table 2, Figure 3). For example, SNP calls in low diver-
gence samples varied from ca. 0.01% complete at 0.1×
coverage depth to nearly 81.55% complete at 16× cover-
age depth. This trend was not quite as pronounced at
high divergence, as on average SNP recovery ranged from
ca. 0% (0.1× coverage depth) to ca. 47% (16× coverage
depth) for high divergence read pools. Indel call complete-
ness was lower on average than SNP call completeness for
low divergence read pools, peaking at ca. 59% complete-
ness for 16× coverage depth, but was nearly indistinguish-
able from SNP call completeness for high divergence read
pools. Both SNP and indel call completeness at low and
high divergence were also significantly and negatively



Table 2 Impact of independent variables on variant call accuracy and variant call completeness

Divergence %GC Read length Damage Coverage depth

Low % indels called correctly -0.0194 0.0153 0.2150 0.4723log(covdepth)***/-0.1687***

% SNPs called correctly -0.0757 0.0828* -5.1790*** -0.2730log(covdepth)/0.0405

% of total indels called -0.0459 -0.1057*** -2.7754** 3.9708***

% of total SNPs called -0.0314 -0.0521 -1.6778* 5.5177***

High % indels called correctly 0.0092 0.0396*** 0.2563* 1.660log(covdepth)***/-0.3292***

% SNPs called correctly -0.1495*** 0.0249*** -0.9437*** -0.2730***

% of total indels called -0.0282 -0.1159*** -1.8524*** 2.8565***

% of total SNPs called -0.0867** -0.0616** -1.0032* 3.1498***

Slope coefficients resulting from multiple variable regression analysis, considering as dependent variables the percent of indels/SNPs correctly called (variant call
accuracy) and the percent of total indels/SNPs called (variant call completeness), while GC content, read length, damage level and coverage depth were treated as
independent variables. Values of 1, 2 and 3 were assigned to variables no-, low- and high-damage, respectively. Values not significant at Pr < 0.05 unless otherwise
indicated; * signifies 0.01 < Pr < =0.05; ** signifies 0.001 < Pr < =0.01; *** signifies Pr < =0.001. For each row, the independent variable with the strongest significant
effect is highlighted in bold. Results solely for best-fit linear models are shown except for “%indels called correctly” at low and high divergence and “% SNPs called
correctly” at low divergence. For these cases, a slight improvement in correlation was seen using a logarithmic model, and slope coefficients for both models are
shown as: log coefficient / linear coefficient.
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correlated with read length, with the exception of SNP
call completeness at low divergence (negative relation-
ship, but not significant) (Table 2). However, this impact
was more than an order of magnitude smaller than that of
coverage depth in all cases. Damage level had a significant
and negative influence on variant call completeness for
both SNPs and indels, although this relationship did not
have as strong an impact as coverage depth (Table 2).

Recovery of homozygous versus heterozygous variants
We observed for both SNP and indel recovery at both
levels of divergence that ratios of homozygous to hetero-
zygous variant calls approached their expected values
with increasing coverage depth (Figure 4, Additional file 4),
but closely approached expected values only for SNPs
at the highest coverage depth tested (16×). Neither
GC content, read length or damage level significantly
affected ratios of homozygous to heterozygous variant
calls, with the exception of a slight negative correlation
between read length and SNP homozygous to heterozy-
gous ratios at high divergence. The impact of read
length in this case was more than an order of magnitude
less than that of coverage depth.

Discussion
As aDNA research broadens its utilization of genome-
level sequencing, it is essential to understand how the
unique characteristics of aDNA molecules might impact
variant calling from short-read sequence data sets gener-
ated by massively parallel sequencing platforms. In the
current study, we quantified the impact of several vari-
ables, including the level of divergence between reference
and sample sequences, levels of damage in “ancient”
sample sequences, and coverage depth on variant call
accuracy and completeness. Our use of simulated datasets
enabled precise and relatively unbiased measurements of
the effects of aDNA-associated damage on read mapping
and variant calling through comparison of known variants
to variants called from mapping of short reads with
calculated damage patterns. The variable settings used
in this study, including the divergence level between
reference and sample sequences, sequencing coverage
depth and damage patterns, were chosen based on pre-
viously reported aDNA studies. For example, in some
cases highly similar, same-species reference genomes are
available for read mapping for aDNA samples [1,8,21].
Our low divergence reference-sample pairs, at approxi-
mately 0.3% divergence, reflect this scenario. Alternatively,
in many cases it is necessary to apply more divergent
reference genomes from extant genus- or family-level
congeners when sequencing extinct taxa [12,22]. Our
high divergence reference-sample pairs, at approxi-
mately 3% divergence, were used to estimate these
effects. In addition, results from these divergence levels
may be used as proxy for predicting variant call success
across regions of varying evolutionary rates within the
same genome. Importantly, the divergence levels (and
misincorporation frequencies) employed in this study
also capture the challenges associated with mapping reads
harbouring multiple variant positions, as sequence reads
from high divergence read pools averaged more than one
variant position per read length. GC content, while not
expected to have an effect on variant calling a priori, was
also varied in order to reflect the range of conditions that
could be encountered across a nuclear genome, or when
sequencing organellar, prokaryotic or viral genomes.
Levels of fragmentation, fragmentation biases, and

misincorporation rates used in the present study were
also based on previously reported aDNA damage levels.
Fragmentation is a universal process associated with
post-mortem DNA degradation [23,24], with the result
that average read lengths reported in aDNA studies are
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Figure 2 Effects of damage on accuracy of SNP calls across all
triplicate-averaged read pools. Box and whiskers plots for A) low
and B) high divergence levels.
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typically under 100 bp, and can range to under 50 bp
[24]. In turn, nucleotide frequencies at positions imme-
diately adjacent to fragment ends can shift by approxi-
mately 10% to over 70% of expected values due to
fragmentation bias (for example [20,25]). Although it
may seem intuitive that levels of fragmentation and
fragmentation bias would increase with sample age and
level of damage, as misincorporation rates do, these
relationships do not hold consistently, and may in some
cases be reversed [26]. Nonetheless, our goal was to
both encapsulate typical variation in aDNA damage
levels, as well as model “worse-case” scenarios for
comparative purposes. Similarly, the misincorporation
frequencies used in this study were within the range of
reported values for a range of aDNA samples. Misin-
corporation frequencies for late Pleistocene Neandertal,
cave bear and mammoth sequences have been reported
in the range of ca. 0.2-0.25 at sequence read ends [27],
while over 0.3 for a Holocene human sample [10], and
as low as ca. 0.05-0.1 for a quagga museum specimen
and a late Pleistocene Hippidion fossil [28].
Importantly, although our damage levels fell within

those previously reported in a range of studies, our data
suggest that fragmentation and deamination patterns of
aDNA molecules can result in misrepresentation of the
characteristics of aDNA read pools as reported solely
from mapped reads. For example, read length, deamin-
ation rates at fragment ends, and increased divergence
to reference all substantially impacted the efficiency of
read mapping. As a result, the proportion of sequence
reads mapped successfully from a given read pool ranged
from over 90% to under 20% (Figure 1), which in turn
would result in up to ca. five-fold under-estimation of
the endogenous content of a read pool. Similarly, misin-
corporation rates recorded from mapped read pools
tended to be lower than values set in read pools prior to
mapping, and across treatments were significantly and
negatively correlated to read length (Additional file 2).
Taken together, these results further suggest that the
loss of information due to unsuccessful read mapping of
aDNA fragments can in some cases be substantial. In
our study, this loss was exacerbated by relatively longer
read lengths, increased divergence between reference
and sample sequences and by increased misincorpora-
tion damage near the ends of sequence reads. It is pos-
sible that the utilization of alternative mapping and
variant calling pipelines could also impact these results.
In particular, other short read alignment algorithms
designed for higher sensitivity, such as SOAP [29],
BWA-MEM (unpublished, http://bio-bwa.sourceforge.
net/bwa.shtml) or BWA-PSSM [30], might improve
read mapping or variant call performance, particularly
at higher divergence levels [31]. Alternatively, adjusting
BWA mapping parameters alone could improve read
mapping success rates in some cases. However, explor-
ation of BWA parameters on Illumina aDNA sequence
reads has been shown to result in very small gains
(ca. 1%) in the number of reads mapped to a reference
[32], and alignment algorithms beyond BWA have not
yet been widely applied to aDNA studies. Finally, the
magnitude of decrease in mapped reads with longer
read lengths is likely dependent to some degree on the
read-simulation algorithm used in this study [33], and
so might also vary with different reference-sample
combinations and the sequencing platform employed
in aDNA studies.

http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
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Figure 3 Effects of coverage depth at low and high divergence levels on variant call completeness. A) Percent of indels called correctly
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found regressed on divergence level is significant at P < 0.05 and P < 0.001 for A) and B), respectively.
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Our results also suggest that damage patterns associ-
ated with aDNA molecules may often have relatively
little impact on variant call accuracy at low to moderate
average coverage depths. Simulated indels, and to a
slightly lesser extent, SNPs, were generally called accur-
ately across read lengths and damage levels, and the
magnitude of the impact of damage on variant call
accuracy was small for indels. The absolute values for
variant call accuracy reported here are also likely
affected by the use of simulated data (both sequences
and sequencing data) and the applied variant calling
pipeline, and may be higher in biological datasets or
with alternative bioinformatic strategies (for example,
see [34]). However, it is also clear that SNP call accuracy
is impacted at high damage levels. This trend is rein-
forced by the significant and positive correlation be-
tween damage level and misincorporation frequency in
mapped reads (Additional file 2). It is somewhat sur-
prising that the impact of damage on SNP call accuracy
was more pronounced at a lower level of divergence
(Figure 2). It is likely in these cases that uneven cover-
age (due to fragmentation bias) coupled with relatively
higher levels of misincorporations, resulted in sufficient
numbers of reads carrying identical ‘post-mortem’ damage
to give erroneous SNP calls. In support of this, we found
significant negative correlations (Pr <<0.001 from linear
regression) between damage levels and the proportion
of mapped reads in a pool with unique 5′ mapping posi-
tions at both low and high divergence levels, suggesting
that increased fragmentation bias (and possibly misin-
corporation bias) does lead to uneven distribution of
mapped reads across a reference genome. This trend
may be lessened at higher divergence, as the introduc-
tion of high levels of ‘post-mortem’ damage into reads
already containing multiple variants further decreases
the probability of mapping reads with misincorpora-
tions. At the same time, the significant and positive cor-
relations between read length and variant call accuracy
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for both SNPs and indels (Table 2) further underscore
the potential for loss of information through unsuccess-
ful mapping of longer and/or damaged reads noted
above. In this regard, it is also worth noting that a high
proportion of the lowest triplicate-averaged variant call
accuracy scores came from read pools with the shortest
average read lengths. For example, among SNP and
indel call accuracy scores less than 90 percent, approxi-
mately two thirds were from read pools with 40 bp aver-
age read lengths (18/26 and 1/2 for SNPs and indels,
respectively, in low divergence pools; 5/8 and 13/19 for
SNPs and indels in high divergence pools).
We also found that variant call accuracy and coverage

depth were significantly correlated, particularly at high
divergence (Table 2). Unexpectedly, this relationship was
negative, suggesting that under the variant calling algo-
rithm applied here, variant call accuracy can suffer
slightly as coverage depth increases across low coverage
levels. This impact was relatively minor, however, and
was approximately an order of magnitude smaller than
concurrent percentage gains in overall variant recovery
(discussed below). In addition, we found the negative
impact of increasing coverage depth on variant call
accuracy was diminished when considering coverage
depths greater than 1×, suggesting that optimal gains in
variant calls may be encountered by increasing sample
coverage from low to moderate levels as opposed to, for
example, increasing coverage depths from ultra-low to
low levels.
Similar to variant call accuracy, overall variant recovery

was not strongly impacted by damage levels, although we
did find significant and negative relationships between
damage and variant call completeness for both SNPs and
indels (Table 2). In contrast, coverage depth clearly had a
substantial impact on the completeness of variant recov-
ery, with recovery increasing by ca. 2.8-5.5× for SNPs and
indels for each 1× increase in coverage depth (Figure 3).
Slight negative correlations between variant call comple-
teness and read length (Table 2) again likely reflect
the difficulty in mapping longer reads, which results in
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lower coverage depth and decreased variant recovery.
In addition, divergence clearly impacted variant call
completeness for both SNPs and indels (Figure 3), in
particular at high coverage levels, suggesting that the
availability of a closely related reference may be of sub-
stantial benefit in this regard.
As a general trend, the lower overall recovery rate for

indels compared to SNPs evident in our low divergence
results is not unexpected. The combination of short
read lengths and the requirement for efficiency in align-
ment algorithms leads to a general bias in calling small
polymorphisms, such that confidently called SNPs are
overrepresented relative to small insertions and dele-
tions [35,36]. At the same time, small indels have been
implicated in phenotype development in a range of
organisms [37-42], and may play a stronger role than
SNPs in early divergence of closely related taxa [43,44].
Considering this, and the fact that phenotype interroga-
tion will likely become more prevalent with increased
genomic sequencing of ancient samples [8,10,45], re-
searchers may consider increasing sequencing efforts
beyond that required for efficient SNP recovery in order
to more fully capture small indels present in ancient
genomes. It is worth noting, however, that a logarithmic
correlation between variant call completeness and se-
quencing coverage depth was nearly as well supported
as the best-fitting linear relationships. This suggests that
there may be a point of diminishing returns for variant
recovery in many cases.
Finally, relative recovery rates of homozygous and

heterozygous variants were significantly impacted by
coverage depth for both SNPs and indels, with observed
rates more closely reflecting expected rates as coverage
depths increased (Figure 4, Additional file 4). Nonetheless,
ratios of homozygous to heterozygous variants closely
approached expected values only for SNPs at 16× coverage
depth. The trends in homozygous versus heterozygous
variant call success in our analyses suggest that the
application of population demographic algorithms based
on patterns of heterozygosity (for example [46,47]) may
be challenging for aDNA samples at low average cover-
age depths.

Conclusions
Overall, the trends in our data are promising for aDNA
studies, as increasing sequencing capacity of high-
throughput platforms and decreased per bp sequencing
costs [48] will continue to enable both broader and deeper
sequencing of ancient samples. In addition, targeted
enrichment strategies, either focused on sub-genomic
targets [21,49] or entire genomes [50], may further in-
crease sequencing efficiency and enable greater per-
sample coverage depths. Nonetheless, it is clear that
under some circumstances variant calling is significantly
impacted by post-mortem damage patterns and low
DNA availability typical of aDNA samples, particularly
so for accuracy in SNP calls at high levels of damage,
and for overall indel and SNP recovery at low coverage
depths. Further, evolutionary analyses requiring accur-
ate identification of homozygous versus heterozygous
variants are likely to suffer when incorporating low
coverage aDNA variant calls. Considering that aDNA-
associated damage patterns are essentially unavoidable
yet quantifiable features of ancient samples, it is
recommended that researchers carefully consider read
mapping and variant calling strategies individually for
different projects or even for different samples within
a project. Further, it is likely that relatively recent
efforts in recalibration software based on aDNA dam-
age patterns [51,52] may also aid in increasing variant
call accuracy, and ideally will continue to be developed
and find broad application in the future.
Methods
Generation of divergent reference-sample sequence pairs
Pairs of divergent sequences of moderate size (ca. 10,001,000
base pairs (bp) aligned length) were created using INDELible
v1.03 [53] to represent reference sequences and diploid
sample sequences. We applied moderate settings for
sequence evolution, using the HKY substitution model
[54] with transition probabilities set at twice that of
transversion probabilities, the gamma distribution par-
ameter set at 1.0 with four discrete rate categories, and
the proportion of invariant sites set to 0.1. Indels were
simulated under the power law setting, with a = 1.7 and a
maximum length (M) of 5 bp. Since INDELible does not
directly simulate diploid sequence evolution, we approxi-
mated diploid sample sequences by adding a bifurcation
event halfway along each sample’s divergence from the ref-
erence lineage in the user-specified tree (i.e., (reference:1x,
(chromosome1:0.5x,chromosome2:0.5x):0.5x)). The result-
ing sequence pair was treated as homologous chromo-
somes. This synthesis was done in triplicate for each of
three GC content levels (35%, 50%, and 65% GC content)
at two levels of divergence, resulting in six sets of triplicate
sequence pairs, or 18 total sequence pairs. Divergence
levels were set such that positions were affected by SNPs
and indels at approximately equal frequencies, with on
average ca. 2.6 variant positions per 1000 bp for “low”
divergence and 2.9 variant events per 100 bp for “high”
divergence sequence pairs. Under the read length dis-
tributions used in this study (see below), this resulted
in, on average, approximately 0.11-0.21 variant posi-
tions per read length for low divergence read pools,
and 1.2-2.3 variant positions per read length for high
divergence read pools. Resultant indel lengths averaged
1.84 bp (standard deviation (sd) = 0.02).
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Generation of read pools and damage patterns from
sample sequences
From each “chromosome” of each diploid sample sequence,
a pool of 100 bp single-end Illumina sequence reads
was synthesized to 300× coverage using ART v1.5.0
(art_Illumina Q version) [55] under default settings. Illu-
mina sequence reads were generated, as the Illumina
platforms are currently the most commonly used high-
throughput platforms [56], and their combination of
throughput and read length are well-suited to aDNA
sequencing [57]. Read pools for homologous chromo-
some pairs were combined and randomly ordered, and
reads were then drawn repeatedly from these pools and
subjected to different treatments representing all per-
mutations of damage levels and coverage depths consid-
ered in this study, as described below and illustrated in
Additional file 5.
First, the reads from a pool were trimmed to represent

read size distributions reflective of highly fragmented
ancient DNA. For this purpose, reads were trimmed to
fit exponential size distributions spanning 30-50 bp,
50-70 bp or 70-90 bp in length, with average lengths of
40 bp, 60 bp or 80 bp, respectively. For each size distri-
bution, 15% of trimmed reads were equal in size to the
average read length value, and represented the largest
group of reads; the subsequent proportions of larger or
smaller reads in a pool decreased by 25% for each single
bp change in read length.
Next, the reads from each trimmed read pool were

subjected to “no”, “low”, and “high” damage treatments
to incorporate fragmentation biases. Read pools in low
and high damage treatments were designed to reflect
fragmentation bias toward purine residues immediately
prior (i.e., 5′) to read starts and pyrimidine residues
immediately after (i.e., 3′ to) read ends. In addition,
fragmentation adjacent to guanosine residues was favoured
over fragmentation adjacent to adenosine residues at
5′ read ends (and similarly for cytosine versus thymine
residues adjacent to 3′ read ends) by a factor of ap-
proximately two, based on previous reports [25,27,58].
Detailed frequencies for all combinations of bordering
nucleotides are shown in Additional file 6. For no damage
read pools, trimmed reads were chosen with a probability
of 0.5, without bias based on adjacent sample sequence
positions.
Transition misincorporations were then added to reads

in the low and high damage read pools, such that 5′ and
3′ ends of reads had elevated C-T and G-A transitions,
respectively. The probability of misincorporation was also
based on an exponential distribution to approximate
the increasing probability of deamination events closer
to sequence ends, with the highest probability of misin-
corporation at the 5′- and 3′-most positions of reads,
and each position further away from sequence ends
having 75% of the probability of a transition damage as
the previous position. Low and high damage read pools
were differentiated by the probability of misincorpora-
tion at each position and by the total number of posi-
tions in reads potentially affected by misincorporations.
Reads starting with a cytosine in low damage pools had
0.12 probability of C-T transition, while similar reads in
high damage pools had 0.4 probability of transition. 5′
C-T and 3′ G-A transitions were allowed in sequence
reads until the probability of transition fell below 0.01,
at which point transitions were no longer purposefully
incorporated into sequence reads. This resulted in tran-
sitions present in the first and last nine positions and
first and last thirteen positions of reads for low and high
damage pools, respectively.
Last, reads from each treatment were randomly drawn

to reach seven different levels of coverage depth in map-
ping to their original reference sequence, representing
a range of ultra-low to moderate coverage depths for
Illumina sequencing platforms: 0.1×, 0.5×, 1×, 2×, 4×,
8× and 16×. In total, permutations of the original 18
reference-sample sequence pairs (3× replicates at 3× GC
contents and 2× divergence levels, with 3× read length
distributions, 3× damage levels and 7× coverage depths)
presented 378 sets of triplicate read pools, or 1134 read
pools in total. Sequence read pools and the scripts/com-
mands used to generate damage patterns are available
upon request from the authors.

Read mapping and variant calling
The original reference sequences associated with sample
read pools were indexed using BWA v0.6.2 [59] and Picard
Tools v1.96 (http://broadinstitute.github.io/picard/)
with default settings. Read pools were mapped to their
corresponding reference using BWA v0.6.2, SAMtools
v0.1.18 [60] and GATK v2.4-9-g532efad [61]. We chose
this suite of software as BWA and SAMtools are com-
monly used to map reads from high-throughput aDNA
sequencing [11,25,32,62-65] (but see [5,8]). Further,
these softwares are amenable to forming efficient and au-
tomatable pipelines for genome-scale alignments and
variant-calling [52]. For read mapping, the BWA ‘aln’ and
‘samse’ modules were used under default parameter set-
tings except that read seeding was disabled for BWA aln
(-l 1024). For alignment manipulation in SAMtools, the
following modules were used: view (parameter setting
-bS), sort (default parameters), index (default parameters),
flagstat (default parameters) and mpileup (parameter set-
ting -Bg). The ‘PrintReads’, ‘RealignerTargetCreator’ and
‘IndelRealigner’ modules of GATK were also used under
default settings for indel mapping adjustments. Variant
calls were filtered using the bcftools view module of SAM-
tools (parameter setting -LNcgv), and the varFilter mod-
ule of vcfutils.pl from SAMtools, specifying minimum

http://broadinstitute.github.io/picard/
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and maximum depths of 1 and 30, respectively. Variant
calls were initially filtered for quality using four differ-
ent quality cutoff levels: 1) variant call quality ≥ 20, 2)
both variant call quality and genotype quality ≥ 20, 3)
variant call quality ≥ 30, and 4) both variant call quality
and genotype quality ≥ 30. For SNP variant calls, essen-
tially no difference was found in variant call success be-
tween quality filters 1-3, while quality filter 4 performed
slightly worse (as quantified by variant call accuracy and
completeness) across damage treatments and for both
levels of divergence. For indel variant calls, quality filter
1 was the most consistent for variant call success across
damage treatments and for both levels of divergence,
and either the best-performing quality filter or only
slightly less successful in accuracy than the other quality
filters. For this reason, only results from quality filter
1 are presented. Potential duplicate reads were not
flagged or removed from alignments, as the random
nature of read selection and trimming to size distribu-
tions for all read pools, and misincorporation events for
damage read pools, resulted in highly diverse read pools
(average percentage of unique sequences for reads in a
read pool = 99.60%, sd = 0.50%). Further, since duplicate
marking softwares, such as Picard Tools, designate
duplicates simply based on the 5′-most position of
mapped reads, it was estimated that duplicate removal
would eliminate a greater proportion of reads with
unique sequences than true duplicate (i.e., identical)
reads. An example set of mapping and variant call com-
mands is given in Additional file 7. Fragmentation bias
and misincorporation rates were evaluated from mapping
of sample read pools using mapDamage v2.0, under
default parameters but with maximum read lengths set
to 90 bp (-l 90) [18].
Original reference-sample sequence pairs were aligned

using MAVID v.2.0.4 [66] under default parameters
and with the reiterative option (-r). Variant calls were
directly identified from alignments using custom scripts
and were then compared to variant calls from read
mapping. Only variant calls mapping between positions
500 to 10000500 of the reference were recorded to negate
any potential difficulties of read mapping to ends of refer-
ence sequences, resulting in sample sequence lengths of
ca. 10 Mbp. Due to the potential for slight variances in
indel placement between MAVID and BWA/GATK align-
ments, indel events identified in read pool mapping were
considered called correctly if they occurred within three
base pairs of an indel event identified in the reference-
sample alignment. SNPs were more stringently compared
between alignments, and were considered called correctly
if both their position and base call matched. SNP calls
were also filtered to include only those occurring >5 bp
distant from indel positions. Heterozygous variant calls
were treated as separate calls to the same position, such
that a heterozygous variant position could contribute either
one correctly called and one incorrectly called variant, or
two incorrectly called variants, to the tallying process.

Statistical analyses of variant call counts
We considered the impacts of four variables (GC content,
read length, damage level and coverage depth) on read
mapping and variant identification for mapped read pools.
For each sample read pool, variant calls from read pool
mapping were summarized both in terms of their accuracy:

# SNPs or indels correctly called/total # SNPs or indels
called for a sample and completeness:

# SNPs or indels correctly called/total # SNPs or indels
present in reference-sample pair

For these calculations, again only variant calls mapping
to positions 500-10000500 of reference sequences were
included in analyses.

To estimate the effectiveness of homozygous versus het-
erozygous variant recovery, the ratio of correctly called
homozygous variants to correctly called heterozygous vari-
ants was calculated for SNPs and indels for each read pool.
This ratio was compared to the expected homozygous:het-
erozygous ratio as measured from original reference-
sample alignments, such that:

observed homozygous:heterozygous ratio in correctly called
variants/expected homozygous:heterozygous variant call ratio.

ideally would approach unity for both SNPs and indels
with effective variant calling.

From these variant call measurements for the 1134
sample read pools, triplicate results were averaged,
resulting in 378 final data points. The magnitude and
significance of impacts on read mappability and variant
calling were determined using multiple variable regres-
sion and ANCOVA in R v3.0.2 (http://www.r-project.
org/). In order to present a clearer view of trends at
different levels of divergence, analyses were performed
on high and low divergence read pools separately rather
than considering divergence level directly as an independ-
ent variable. In addition, damage levels were assigned
values of 1, 2 and 3 for no, low and high damage read
pools, respectively, for statistical analyses.

Additional files

Additional file 1: Examples of typical fragmentation bias and
misincorporation patterns. Example fragmentation and misincorporation
patterns for A) low damage sample read pool, B) high damage read pool

http://www.r-project.org/
http://www.r-project.org/
http://www.biomedcentral.com/content/supplementary/s12864-015-1219-8-s1.pdf
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and C) undamaged read pool. Charts shown are for sample read pool with
50% GC content and 60 bp average read length. Analyses performed using
mapDamage v2.0.

Additional file 2: Summaries of misincorporation frequencies of
mapped reads. A) Ratios of observed versus expected misincorporation
rates at 5′ and 3′ sequence ends. Expected values were based on frequency
of transition damages incorporated during read synthesis (see Methods).
** signifies confidence interval of value does not include 1 at 0.001 < Pr <
0.01; *** signifies confidence interval of value does not include 1 at Pr < 0.001;
remaining values not significant at Pr < 0.05. B) Slope coefficients from
multiple variable regression are shown, treating as dependent variables the
average misincorporation frequencies for mapped reads at all 5′ and 3′
sequence read positions with elevated misincorporation frequencies (all
elevated) or solely the 5′- or 3′-most positions of reads; GC content, read
length, damage level and coverage depth are independent variables.
Values of 1, 2 and 3 were assigned to no-, low- and high-damage read
pools, respectively. Values not significant at Pr < 0.05 unless otherwise
indicated; * signifies 0.01 < Pr < =0.05; *** signifies Pr < =0.001. Results in B)
are shown solely for best-fit linear models except for “damage” for 5′ and 3′
“all elevated positions” at both low and high divergence. For these cases, a
slight improvement in correlation was seen using an exponential model,
and slope coefficients for both models are shown as: exponential
coefficient/linear coefficient.

Additional file 3: Regression of read length on percent of reads
mapped at different damage and divergence levels. Slopes of linear
regressions and R2 values are shown, considering as the dependent
variable the percent of reads mapped from a pool, and read length
treated as independent variable.

Additional file 4: Impact of independent variables on the ratio of
homozygous to heterozygous variant calls. Slope coefficients resulting
from multiple variable regression analysis are shown, considering as
dependent variable the ratios of observed homozygous:heterozygous to
true homozygous:heterozygous variant call ratios, while GC content, read
length, damage level and coverage depth were treated as independent
variables. Values of 1, 2 and 3 were assigned to no-, low- and high-damage
categories, respectively. Values not significant at Pr < 0.05 unless otherwise
indicated; ** signifies 0.001 < Pr < =0.01; *** signifies Pr < =0.001.

Additional file 5: Schematic of generation of simulated reference/
sample sequence pairs and replicate sample read pools. A) For each
of three GC% levels, three replicate reference/sample pairs were
generated using INDELible v1.03 at low divergence and three replicate
pairs were generated at high divergence, for a total of 18 reference/
sample pairs; each sequence was ca. 10001000 bp in length. B) For each
replicate “sample” sequence, simulated Illumina 100 bp single-end read
pools were generated using ART v1.5.0 (art_Illumina Q version) to 600x
coverage depth; read pools were then trimmed to size distributions with
average lengths 40, 60 and 80 bp (C). D) Fragmentation bias and 5′ C-T and
3′ G-A misincorporations were added at high or low frequencies for
“damage” read pools. E) Final read pools were created by randomly
drawing reads to different coverage depths; these read pools were
mapped back to each “sample’s” original “reference”, and called variants
were compared to actual variants.

Additional file 6: Frequency of selection for fragmentation biases.
Calculations for the frequency of selection of reads based on the nucleotide
identity immediately prior to (5′) or after (3′ to) read starts and ends,
respectively.

Additional file 7: Example command lines used for mapping
sample read pools to corresponding reference sequences.
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