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Abstract

energy structure.

Background: Structured RNAs have many biological functions ranging from catalysis of chemical reactions to gene
regulation. Yet, many homologous structured RNAs display most of their conservation at the secondary or tertiary
structure level. As a result, strategies for structured RNA discovery rely heavily on identification of sequences sharing a
common stable secondary structure. However, correctly distinguishing structured RNAs from surrounding genomic
sequence remains challenging, especially during de novo discovery. RNA also has a long history as a computational
model for evolution due to the direct link between genotype (sequence) and phenotype (structure). From these
studies it is clear that evolved RNA structures, like protein structures, can be considered robust to point mutations. In
this context, an RNA sequence is considered robust if its neutrality (extent to which single mutant neighbors maintain
the same secondary structure) is greater than that expected for an artificial sequence with the same minimum free

Results: In this work, we bring concepts from evolutionary biology to bear on the structured RNA de novo discovery
process. We hypothesize that alignments corresponding to structured RNAs should consist of neutral sequences. We
evaluate several measures of neutrality for their ability to distinguish between alignments of structured RNA
sequences drawn from Rfam and various decoy alignments. We also introduce a new measure of RNA structural
neutrality, the structure ensemble neutrality (SEN). SEN seeks to increase the biological relevance of existing neutrality
measures in two ways. First, it uses information from an alignment of homologous sequences to identify a conserved
biologically relevant structure for comparison. Second, it only counts base-pairs of the original structure that are
absent in the comparison structure and does not penalize the formation of additional base-pairs.

Conclusion: We find that several measures of neutrality are effective at separating structured RNAs from decoy
sequences, including both shuffled alignments and flanking genomic sequence. Furthermore, as an independent
feature classifier to identify structured RNAs, SEN yields comparable performance to current approaches that consider
a variety of features including stability and sequence identity. Finally, SEN outperforms other measures of neutrality at
detecting mutational robustness in bacterial regulatory RNA structures.

Keywords: RNA structural robustness, RNA de novo discovery, RNA structural ensemble, Mutational robustness

Background

RNA plays key roles in both bacterial and eukaryotic
gene regulation [1,2], and changes to RNA structure
have been implicated as causes for human genetic dis-
eases [3]. Yet, unlike protein sequences which are readily
identified in genomic sequences, RNAs with homolo-
gous functions may be difficult to identify in genomic
sequences due to a lack of well defined start and stop
signals and poor primary sequence identity [4,5]. Rather,
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the biological function of structured RNAs often depends
on a well-defined three-dimensional shape that is largely
determined by interactions between discrete and sta-
ble secondary structure elements [6-8]. These structural
constraints lead to covarying mutations, a conserva-
tion pattern characterized by the maintenance of base-
pairing interactions involved in RNA secondary structure
[9,10]. These features are exploited to identify homol-
ogous sequences of previously characterized structured
RNAs and to discover new putative RNAs [11]. How-
ever, this process is often further complicated by the
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potential for multiple biologically functional conforma-
tions [12], and cases where only a portion of a larger RNA
structure is required for biological function. For exam-
ple, RNAse P is a ribozyme involved in the maturation of
small noncoding RNAs whose phylogentically conserved
core is functional in isolation, although with significantly
decreased activity [13,14]. Despite these challenges, sev-
eral computational tools have been developed both for
RNA homology searching and de novo structured RNA
identification [11,15].

De novo non-coding RNA (ncRNA) discovery in
genomic sequence is largely accomplished with computa-
tional tools that identify a stable thermodynamic structure
that is maintained across many species [16-19]. While
thermodynamic stability alone is not sufficient to distin-
guish functional structured RNAs from random genomic
sequence [20], the rapid growth of sequence databases has
allowed the use of comparative genomics to determine
whether such putative stable structures are conserved,
and to identify the characteristic covarying mutation pat-
tern of structure conservation within predicted pairing
elements [11]. Machine learning techniques, specifically
support vector machines (SVMs) [17,19], leverage both
the thermodynamic stability of structured RNA, and the
presence of covarying mutations as an indicator of con-
served structure, to distinguish alignments correspond-
ing to putative biologically functional structured RNAs
from alignments of sequences conserved for other reasons
and non-conserved thermodynamically stable structures.
There are six quantifiable features commonly used by de
novo ncRNA prediction approaches including: the ther-
modynamic stability of the structures formed by individ-
ual sequences, as measured by the mean of the Z-score of
the minimum free energy (MFE) structure of sequences in
a putative alignment [21,22]. The ability of sequences in
the alignment to fold into the common predicted consen-
sus structure, as measured by the structure conservation
index [17]. The extent to which sequences are diverse and
contain covarying mutations, as measured by the mutual
information [9], entropy [23] of base-pairing regions, and
the mean pairwise sequence identity between alignment
sequences. Finally, because more sequences lead to higher
prediction accuracy, the number of sequences in the align-
ment is also a common feature.

There exists a facile computational link between RNA
sequence and secondary structure due to the consider-
able efforts toward RNA secondary structure prediction.
As a result, simulation of RNA evolution using struc-
ture as a proxy for fitness has been used to explore a
variety of evolutionary ideas [24-26]. These studies have
shown that sequences with the same structure often are
part of networks of sequences separated by single muta-
tions (1-mutant neighbors) that share an MFE structure
[4,27]. In silico experiments reveal that some structures
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are mutationally robust because they have large networks
of highly connected sequences [28] allowing them to
maintain structure while tolerating many different muta-
tions. Using in silico methods, mutational robustness has
been demonstrated for naturally occurring RNAs such as
pre-miRNAs [29] and virus genome elements [30], though
RNAs without structure (e.g. SRNAs) do not seem to
display this feature [31,32].

Mutational robustness, therefore, should be a feature
that can distinguish between random putative struc-
tures formed by genomic sequence, and biologically rel-
evant ncRNA structures. Robustness is measured using
neutrality, which is calculated as the mean secondary
structure similarity (i.e. normalized base-pair distance)
between a sequence and those that differ by exactly
one point mutation (1-mutant neighbors) [29]. There
are a variety of existing computational methods [33]
and programs designed to evaluate RNA robustness
(e.g. RNAmute, RDMAS, RSRE, RNAmutants, SNPfold,
RNAsnp, RemuRNA, and Rchange) [3,5,34-39]. All of
these approaches focus on a single input sequence and
the ability of its neighboring mutants to maintain a “wild-
type” structure. RNAmute, RSRE, and RDMAS evalu-
ate the normalized base-pair distance between an MFE
starting structure and the low energy suboptimal struc-
tures generated for mutant sequences using the Vienna
RNA package [34,35,39]. However, using the MFE struc-
ture as the sole reference limits the accuracy of pre-
dicted structure disrupting mutations [40]. RNAmutants
samples mutant sequences and structures according to
their probability in the structural ensemble to identify
sequences that severely disrupt structure, but fundamen-
tally determines the structural disruption based on the
MEE structure of the mutant [36]. To improve the accu-
racy of structure comparisons, SNPfold compares the
structure ensemble of an RNA sequence with that of its
mutants using the Pearson’s correlation coefficient (PCC)
[3], and RNAsnp uses this measure in combination with
the base-pair distance to evaluate structural similarity
and disruption [37]. RemuRNA measures the effect of a
mutation on the entire RNA secondary structure distri-
bution using relative entropy rather than sampling from
the structural ensemble [5]. Alternatively, Rchange takes
a different approach and reports the expected change in
mean ensemble free energy and thermodynamic entropy
of structures [38].

In this work, we propose utilizing sequence neutral-
ity as an SVM feature to classify potential structured
RNAs. To do so, we introduce a new measure of neu-
trality, the structural ensemble neutrality (SEN). Similar
to previous efforts to assess RNA robustness, this mea-
sure considers the thermodynamic ensemble of struc-
tures for 1-mutant neighbors and their difference from
a given reference structure. However, rather than utilize
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the MFE structure of our initial sequence as the ref-
erence structure, we utilize a structure that is derived
from a multiple sequence alignment (MSA) of homol-
ogous RNAs to more accurately reflect the biologically
relevant structure [41]. In addition, to account for the
over-prediction of secondary structure elements relative
to tertiary structure interactions necessary for function,
our distance metric prioritizes maintenance of the exist-
ing structure rather than considering all base-pair changes
(both newly formed and broken base-pairs) as equal. We
demonstrate that this measure of neutrality successfully
distinguishes alignments of known bacterial structured
regulatory RNAs from several different types of decoy
data including both shuffled alignments and alignments
constructed from intergenic or protein-coding sequence.
We extend this finding to evaluate neutrality as a feature
for classification of putative ncRNA alignments using an
SVM. This analysis shows that neutrality can correctly
classify ncRNA alignments nearly as well as the combi-
nation of existing features implying that the calculation
of neutrality encompasses many of these existing features.
Finally, we also show that many RNAs involved in bacte-
rial regulation are mutationally robust using the structural
ensemble neutrality.

Methods

Sequence neutrality

Before calculating neutrality, some common variables
must be defined. Let a given input sequence S, without
gaps and of length L, fold into a structure 7. The set of
sequences which differ from S by one point mutation are
the 1-mutant neighbors

1mut(S) = {1-mutant neighbors} (1)

Additionally, the size of the set 1mut(S) is |1mut(S)| =
3L. A single 1-mutant neighbor of S is represented by S’
such that S’ € 1mut(S). Let the structure ensemble of S’
be

e(S") = {structure ensemble of S’} (2)
The set of all e(S’) created from 1mut(S) is defined
I's = {e(S)|S € 1mut(S)} (3)
Additional functions using e(S’) are:
MFE(e(S')) = {the MFE structure of e(S')} (4)
where |[MFE(e(S"))| = 1 and
Tsamp = {sample(N, e(S))) (5)

is created using RNAsubopt which samples N structures
with replacement from e(S’) according to their probability
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of occurrence [42]. Let the secondary structure be repre-
sented as an L x L adjacency matrix M where an entry

__ ] 1 if position i and j base pair
Mij = {0 otherwise ©)

The base-pair probability matrix for all base-pairs i,; in

Ty amp 1S determined by calculating
1
BPROB(T4yy) = i > My @)
Nsamp' 1o

Nsamp

where M7 is the adjacency matrix M for a sampled
structure in T]’Vsamp. Alternatively, the base-pair proba-
bilities can be explicitly calculated using ‘RNAfold -p’
in the Vienna RNA folding suite and parsing the result-
ing postscript file. However, we find this process to be
be somewhat slower in aggregate. The centroid structure
only represents base-pairs occurring in more than half of

the sampled structures

1 if BPROB(T}i0)ij > 05

Tx =
cent( Nsamp) {o otherwise )

V{i,j} € BPROB(T}sqp)

For some distance metric calculations, the secondary
structure must be converted to a vector representation
which represents a base-pairing character as 1 and 0
otherwise

1 if position i is base-pairing

V(structure) = { 0 otherwise (9)

Vi € structure

Neutrality calculations fundamentally rely on two fac-
tors: the accuracy of the two structures being compared
(T and MFE(e(S")) or cent(TI’\[mmp)), and the distance
metric used to measure the difference between these
two structures. In this work, we develop a novel mea-
surement of neutrality, the structural ensemble neutrality
(SEN) and compare it with several existing neutrality
measures. These include neutrality as determined by the
programs RNAmute and RemuRNA. To allow direct com-
parison of different distance metrics we implemented
the normalized base-pair distance (bp-distance), and the
Pearson’s correlation coefficient (PCC). RNAmute takes
a sequence S and reports neutrality. RemuRNA takes an
input sequence (S) and calculates the Kullback-Leibler
divergence (KLD) between e(S) and each e(1mut(S)). In
our assessment, we take the mean KLD over all 1-mutant
neighbors.

We implement normalized base-pair distance as

1 d(T, MFE(e(S")))
|1mut(S)| 2. 1- L

S’ elmut(S)

(10)
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where d(T, MFE(e(S"))) is the base-pair distance between
the given structure T and the MFE structure of S’
(MFE(e(S"))) [29]. PCC is calculated by

1 1—d(V(T), V(cent(TI/\[mmp)))
] 2 2

S’ elmut(S)

(11)

where d(V(T), V(cent(T]’\,mmp))) is the Pearson’s correla-
tion coefficient between the structure vector V(7T') and the
centroid structure vector V(cent(T]’\[mmp)) created from
1000 sampled structures of e(S") [40].

Our novel neutrality measure, the structural ensemble
neutrality (SEN), leverages two factors to increase the bio-
logical relevance of neutrality measurements. First, we
focus on maintenance of the core RNA structure (i.e. min-
imal structure for biological function). Rather than con-
sider all base-pair changes deleterious, only base-pairs in
the original structure T disrupted in 7" are counted by our
measurement. Second, we utilize a structure derived from
comparative genomics as the reference structure 7 rather
than the MFE(e(S)). This choice reflects understanding
in the field that consensus structures defined from phylo-
genetic studies are much more likely to be accurate [43].
Structural ensemble neutrality is calculated by

1 1 ITNT|
[1mut(S)| Z Z |T|

T/
sctmmts) | TNsamp! T'€ T amp

(12)

T’ is a suboptimal structure of ', |T| is the number of
base-pairs in T and |T N T”| is the number of base-pairs
shared by both structures; therefore, |T|r}‘T/|, a modifica-
tion of Jacard distance, is the fraction of base-pairs in T
retained in 7”. To simplify equation 12, the distance mea-

sure comparing 7T to T, is the mean fraction of bases

samp
retained
1 |TNT|
W ey = 20 g O
Nsamp T/eTI/\I amp
Here, |T]’mep| = 1000 because sampling 10000

structures does not significantly improve the results
and sampling 100 structures causes inconsistent results
due to small sample size. Substituting equation 13 into
equation 12 results in

1
SEN= —— d (T, T! )
[1mut(S)| Z Nsamp
S'elmut(S)

(14)

Alignment neutrality calculation

To streamline our process, we created a pipeline to calcu-
late the neutrality of sequences in an MSA that can accom-
modate all neutrality measures in a uniform manner. This
pipeline consists of a 3-step workflow. Starting with a
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structure alignment, 1) S and T are created by select-
ing a sequence and simultaneously degapping both the
sequence and structure. In addition, structure positions
with non-canonical base-pairings (not Watson-Crick or
G-U wobble) are considered single stranded. 2) From S,
we calculate 1mut(S) (Equation 1) and I's (Equation 3). 3)
Neutrality is calculated by utilizing the distance between
the elements of I's and T, which are calculated using
a specified distance function: normalized base-pair dis-
tance (bp-distance) (Equation 10), Pearson’s correlation
coefficient (PCC) (Equation 11), or sampled ensemble
neutrality (SEN) (Equation 14).

Test data

Data used to construct the test data sets was drawn from
35 seed alignments of regulatory structured RNAs found
in bacteria (Additional file 1: Table S1) from the RNA
Families database (Rfam) [44]. Regulatory RNAs in bac-
teria were chosen due to the large size and diversity of
alignments available, as well as the structural data that
verify many of the predicted structures. Several data sets
were constructed by varying how the positive and nega-
tive alignments were generated. Positive alignments were
generated by either utilizing all sequences in the Rfam
seed alignment (all), or a randomly chosen subset of 3-
6 sequences (subset). Structural information for these
alignments was either derived directly from the RFam
seed alignment (given) or calculated using RNAalifold
(predicted) [45] (Table 1). For each positive data set, a
corresponding set of negative training alignments were
created using one of three methods: dinucleotide shuf-
fle of the positive alignments (shuffled) [46], gathering
5-flanking, or 3’-flanking, genomic sequence for each
entry in the alignment (5" and 3’ respectively). To con-
trol for sequence verse structure alignment, the 5 and
3’-flanking sequences are aligned using Clustal W or Mxs-
carna [47]. All negative alignment consensus structures
are calculated using RNAalifold [45].

Impact of alignment quality on SEN

In order to assess the impact of alignment quality on SEN
values, we determined the difference between SEN val-
ues obtained using an entire Rfam seed alignment (full
alignments, positive Dataset2) or subsets of this alignment
(subalignments, positive Dataset3). The delta SEN (SEN
of full alignment - SEN of subalignment) is an estimate

Table 1 Summary of data set sources

Data set Sequence Structure Negatives

1 subset predicted shuffled

2 all given 35" shuffled
3 subset predicted 35




Pei et al. BMC Genomics (2015) 16:35

for the distance from the “true” SEN value obtained when
using a subset of sequences that may result in a lower
quality alignment and structure. To gauge how the delta
SEN corresponds to differences between the structure
predicted from the subalignment and the given structure
from the Rfam alignment we examined the delta SEN as a
function of two measures of structural difference: the bp-
distance, and the ratio of the number of base pairs in the
full alignment compared to the subalignment.

Positional neutrality
Let S; be the set of three possible point mutations of S at a
given position i.

S ={S' € 1mut(S)|S contains point mutation at i}
(15)

Positional neutrality is calculated by averaging equa-
tion 13 over S;
. 1
SEN(i) = il > AT, Ty (16)
i s

Mutational robustness
For a sequence S to be considered mutationally robust,
neutrality(S) must be greater than the mean background
neutrality (i.e. inverse folded sequences). Mutational
robustness of S is calculated by comparing its neutrality
to the mean neutrality of 100 inverse folded sequences
(Equation 17).
100

neutrality(S) > 100 ; neutrality(inv); (17)

For each sequence tested for robustness, RNAinverse
[48] was used to generated 10 inverse folded sequences
and each of those are used to seed 10 random walks
resulting in a total of 100 inverse folded sequences for
each S. Input sequences were omitted if no inverse folded
sequence could be made from its structure.

RNAinverse [48] was used to generate an initial null
set of sequences for comparison. As an alternative, we
also used RNAifold to generate inverse folded sequences.
However, the alignment consensus structure is not nec-
essarily the MFE structure, which often causes RNAifold
to fail and return no sequences. Because of this failure-
mode, we did not force the inverse folded sequences to
have the an MFE structure identical to the target structure
when using RNAinverse. To control for base composi-
tion [29], the generated inverse folded sequences were
constrained by Jensen-Shannon divergence (JSD) < 0.01
when compared to S. This process yielded an initial set of
background sequences.

To ensure that background sequences generated by
RNAinverse [48] are unbiased with respect to neutrality
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[49], the inverse folded sequences were used as a seed for
a random walk along neutral sequences [31]. 4L steps are
attempted and a step will be accepted only if the structure
does not change. Any mutation which occurs in a base
pair will also get a compensatory mutation to restore base
pairing. If the random mutation results in the base being
changed to a G, then the compensatory mutation will
be randomly chosen, with equal probability, between a C
and U.

Support vector machine

To implement a binary classifier support vector machine
(SVM), the LibSVM package [50] in R was used. The SVM
uses the calculated features to classify an input sequence
as either “structured RNA” or “other”. The features used
are a standard 6-feature set, including the Z-score of
the MFE, structure conservation index, mean entropy of
stems, mean mutual information of stems, mean pairwise
identity and number of sequences [17,19], and neutrality,
which is calculated using the measures described above.
Performance of the SVM is evaluated by using 10x cross-
fold validation on a data set and compared by calculating
the area under the curve (AUC) in receiver operating
characteristic (ROC) curve analysis.

Statistical analysis

All statistical tests were done in the R project for statisti-
cal computing. To test the significance of the separation of
neutrality between structured and unstructured sequence,
we used the Wilcoxon rank sum test, which is a non-
parametric test and does not assume normally distributed
data. Individual measures of neutrality were considered
independently in this analysis.

To test correlation of neutrality using different mea-
sures, we first standardized the data by calculating the
mean neutrality of RNA families because not all sequences
are compatible with the structure or neutrality mea-
sure. Then the correlation was determined using the
Spearman’s rank correlation coefficient.

Logistic regression was carried out using a generalized
linear model where neutrality was used to predict the
structure disruption, represented as 0 (no disruption) or 1
(disruption).

Results and discussion

Reference structure and distance metric impact calculated

neutrality

A set of structured RNA alignments derived from Rfam
seed alignments (Dataset2, Table 1, Additional file 1:
Table S1) was used to validate SEN as a measure of neu-
trality by comparing its performance to other measures
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that are the basis of most programs designed to cap-
ture RNA structural robustness: bp-distance and PCC.
First, bp-distance performance was evaluated using both
the original method which only takes an input sequence,
implemented in RNAmute, and a modified version we
implemented, which requires a given sequence and struc-
ture. By comparing these bp-distance implementations,
we examine the effect of the input structure on neutral-
ity and establish a baseline performance to compare SEN
with existing methods. In addition, RNAmute can use
two different structure representations to provide either
a fine grained view (dot-bracket (db) notation) or coarse
grained view (Shapiro representation) of structure to cal-
culate base-pair distance. The neutrality RNAmute cal-
culated using the db notation shows a small separation
between structured (median = 0.8454) and unstructured
sequences (medians = 5’-Clustal = 0.7807, 5’-Mxscarna =
0.7855, 3’-Clustal = 0.8069, 3’-Mxscarna = 0.8069, Shuf-
fled = 0.7731) (Figure 1A). Using the Shapiro structure
as an alternative representation to calculate neutrality
shifted the neutrality lower (structured median = 0.7777,
unstructured medians = 0.6553, 0.6850, 0.6925, 0.6925,

Page 6 of 12

0.6615), but the results remain highly correlated (p =
0.9306) (Table 2) with the db structure notation results
(Figure 1B) indicating similar performance. However,
using our modified version of bp-distance that imports the
structure from the alignment does incrementally improve
separation of structured RNAs and negative data (0.7654
vs. 0.6293, 0.7229, 0.6692, 0.6692, 0.6618) compared to
RNAmute (Figure 1C) demonstrating that using the con-
sensus structure from the alignment improves the accu-
racy of the structure. The correlation between using the
MEE structure and a given structure (p = 0.565) indicates
that using the given structure may improve the neutrality
calculation but does not completely deviate from existing
methods.

To assess alternative distance metrics, we compared
SEN, PCC, and bp-distance. Using PCC to calculate
neutrality shows a better separation between structured
(median = 0.7369) and unstructured sequences (medians
=0.5569, 0.5857, 0.5555, 0.5649, 0.4535) than bp-distance
(Figure 1D). Again the calculated neutrality is moder-
ately similar to existing methods (p = 0.608) indicating
consistency with RNAmute. SEN performance creates

Positive 4 A

5prime—Mxscarna - — 1T 8z
5prime—Clustal 5 1T 1 & £
3prime—Mxscarna - e I I 55
3prime-Clustal - — T 1— e®
Shuffled e o—— [T }——
Positive - B e wemam———— | TT}+—
5prime-Mxscarna - . — 1T w3
5prime—Clustal 5 . 71Tt 52
3prime-Mxscarna - —_—1 1T }+— 2 2
3prime—Clustal - —_— 1T }— @
Shuffed ® ew——— [ ——
—
[} Positive = C o— [hih—
O 5prime-Mxscarna - —O— o o
8’ 5prime—Clustal - 1 1 (in;
‘€ 3prime-Mxscarna - oo — 11— o 5
‘s 3prime-Clustal - eonew — [ —wee o 3
F Shuffled - [ 0——Dj——
Positive = D . 1 1
5prime—Mxscarna - — T g
5prime-Clustal —T— @ g
3prime—Mxscarna 1T 1 >
3prime—Clustal 5 o —  [T———eame oy
Shuffledq  —{ | }
Positive - E I N
Sprime-Mxscarna- —| | f————
Sprime—Clustal4 I }——— o oo ®
3prime-Mxscarna- {1 }———————————o aameem =

3prime-Clustal 5

Shuffled 5

T
0.00

Figure 1 SEN calculated neutrality has larger separation between structured and unstructured sequence. Distribution of neutrality values
from Dataset2 compare the performance of various distance functions (A) RNAmute dot-bracket representation, (B) RNAmute Shapiro
representation, (C) bp-distance, (D) Pearson’s Correlation Coefficient (PCC), and (E) Sampled Ensemble Neutrality (SEN). The 3"and 5’ flanking region
used for negatives are referred to as 3prime and 5prime, respectively. The SEN on the positive test set has a larger separation between the negatives,
compared to other measures. All distance metrics show unstructured sequence to be low on their respective scales. Lastly, the SEN uses a large
dynamic range of values compared to the base pair distance metric which will increase its sensitivity between highly similar structures.

0.50
Neutrality
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Table 2 Spearman’s correlation between distance
measures

RNAmute
PCC SEN db Shapiro
Bp-distance 0.221 0.256 0.565 0.501
pCC 0.614 0.608 0.595
SEN 0.608 0.651
RNAmute-db 0.930

the largest degree of separation between structured
(median = 0.5991) and unstructured sequences (med-
ians = 0.04368, 0.2625, 0.0791, 0.0789, 0.0215) (Figure 1E)
as well as consistent performance to established methods
(p = 0.608).

We also assessed RemuRNA, a program that com-
pares the structural ensemble of an RNA sequence and
its mutants. RemuRNA returns the KLD between the
“wild-type” structure ensemble compared to the mutant-
neighbor ensemble, therefore a low value indicates that
the mutant secondary structure distribution is not signif-
icantly different. Using RemuRNA, there is no significant
difference between the positive sequences in Dataset2
(structured median = 2.3269) and most decoy sequences
(unstructured medians = 2.244, 2.246, 2.271, 2.271). Shuf-
fled sequences do show a significant loss of neutrality
compared to other data (unstructured median = 2.785)
(Table 3, Additional file 1: Figure S1).

All the neutrality measures except RemuRNA we exam-
ined are able to distinguish between structured RNAs
and negative sequence datasets with statistical signifi-
cance (Table 3). The neutrality of negative sequences
is near the bottom of the range for each measure. In
addition, shuffled sequences are particularly easy to dis-
tinguish from structured RNAs using the PCC and the
SEN compared with negative data derived from flank-
ing genomic sequence. This, combined with the fact that
RemuRNA is only able to distinguish shuffled sequences
from structured RNAs, suggests that column shuffled
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alignments may not be the most effective way to generate
negative data meant to mimic natural sequences. Aligning
5" and 3’ flanking negative data based purely on sequence
(ClustalW), or using more sophisticated algorithms that
consider potential structure (Mxscarna), typically does
not change the results. However, the 5-flanking nega-
tive dataset aligned using Mxscarna (5’-Mxscarna) does
show significantly higher neutrality as calculated by SEN.
This is caused by a poorly conserved predicted struc-
ture where each sequence only contains few predicted
base pairs. This reduction in the number of base pairs
in the reference structure (24.2 versus 10.9 mean base
pairs per alignment for positive and 5’-Mxscarna, respec-
tively) artificially increases SEN calculated neutrality as
the potential number of base pairs that may be broken
and considered deleterious is small. Despite this poten-
tial drawback in the SEN calculation, by combining an
alignment based reference structure and relaxing the dis-
tance measure to consider only core structure, SEN cal-
culated neutrality better distinguishes structured RNAs
from decoy sequences than existing approaches. In addi-
tion, SEN utilizes a wider dynamic range that may allow it
to have higher sensitivity. These properties are especially
important for measurements that may be used as features
in machine learning approaches.

Impact of alignment quality on SEN

In order to assess the effect of reduced alignment qual-
ity on SEN, we compared the difference between SEN
values determined using an entire Rfam seed alignment
(full alignment, Dataset2), and a subset of these sequences
(subalignments, Dataset3). We observe a relatively small
difference (delta) on most SEN values between the full
and subalignment of the same ncRNA (Figure 2A). One
common result of a lower quality alignment is altered pre-
dicted structure. To determine whether altered structure
contributed to a large delta SEN, we examined the delta
SEN as a function of base-pair distance between the pre-
dicted structure for the subalignment and the given struc-
ture of full alignment and found no strong correlation

Table 3 Wilcoxon rank sum determined P-values show significant difference between the

neutrality of sequences

3’ Flanking 5’ Flanking
Distance metric Shuffle ClustalW Mxscarna ClustalW Mxscarna
SEN 0 2.06e-92 2.03e-92 4.99%e-33 349e-21
Pearson’s CC 0 1.20e-108 1.92e-84 5.07e-28 1.45e-23
Bp-distance 1.14e-285 740e-44 7.40e-44 6.12e-19 3.75e-05
RNAmute: dot-bracket structure 2.72e-107 2.15e-10 2.15e-10 8.19e-08 1.34e-09
RNAmute: Shapiro structure 451e-121 8.07e-16 8.07e-16 243e-09 345e-10
RemuRNA 4.68e-132 9.99e-01 9.99e-01 9.99e-01 9.99e-01
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Figure 2 Lower alignment quality has small impact on SEN. The
effect of alignment quality on SEN. Lower quality alignments
simulated by subalignments derived from Dataset3. The delta refers
to (delta = full alignment SEN — subalignment SEN). A) Poorer
quality alignments have a modest effect on SEN. B) No correlation is
observed between the delta SEN and the base-pair distance between
the structures derived from the full and subalignments. C) Large
changes in relative number of base-pairs (full/subalignment) do affect
SEN values.

Page 8 of 12

(Figure 2B). Since the structures for a given pair of full and
sub alignments can vary in length, base-pair distance may
be an imperfect comparison. Therefore, we also examined
the delta SEN as a function of the ratio of the number
of base pairs in the full alignment compared to the sub-
alignment (Figure 2C). From this comparison we observe
that there are a small number of subalignments that are
highly impacted by using subsets of the aligned sequences.
Often, these are alignments that have limited biologi-
cally relevant structure in the Rfam seed alignment, and
thus may be especially prone to over prediction of struc-
ture in the subalignment. Specifically the STnc150 Hfq
binding RNA (RF01402) Rfam full alignment structure
has many fewer base pairs than those predicted for the
subalignments.

Overall we find that SEN is robust to changes to the
alignment. Most SEN values derived from lower quality
alignments are within 0.2 of the full alignment (Figure 2A).
The SEN calculation does not depend on perfect accuracy
of the consensus structure and tolerates minor changes to
the number of base pairs present. This result suggests that
even alignments of relatively few sequences can be used to
calculate neutrality using SEN without a large decrease in
accuracy.

Neutrality as an SVM feature

Given that most of the neutrality measures we exam-
ined exhibited a statistically significant difference between
the structured and unstructured sequence, neutrality
should be a highly discriminative feature in an SVM
binary classifier. Because of the large separation between
structured and unstructured sequence, the classification
performance of SEN and PCC was predicted to be com-
parable to each other and higher than bp-distance. To
test neutrality as a feature, we use neutrality as both
an independent classifier and as part of an existing fea-
ture set for comparison with existing 6-feature SVMs
[19]. First, as independent classifiers, neutrality calcu-
lated by both the SEN (Dataset2 AUC = 0.87, Dataset3
AUC = 0.903) and PCC (Dataset2 AUC = 0.864, Dataset3
AUC = 0.900) demonstrate a similar ability to cor-
rectly classify structured and unstructured sequence in
all training examples regardless of sequence or structure
origin (Table 4). Both of these methods significantly out-
perform bp-distance (Dataset2 AUC = 0.735, Dataset3
AUC = 0.766). This is likely because SEN and PCC
are less stringent forms of comparison than bp-distance
which equally weighs all base-pair changes, additions and
disruptions.

However, natural RNA structures do not necessarily
require all base-pairs to form a biologically relevant ter-
tiary structure. It is common to see RNA alignments
containing many homologs that have pairing elements of
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Table 4 SVM performance using neutrality as a feature

Data set Feature(s) Area under curve (AUC)
Dataset1 6-feature set 0918
6-feature set + SEN 0.925
3-feature set 0.927
SEN 0.925
Dataset2 SEN 0.870
PCC 0.864
Bp-distance 0.735
Dataset3 SEN 0.903
PCC 0.900
Bp-distance 0.766

variable length, or with mismatches within pairing ele-
ments. From biology we know that these differences in
structure do not necessarily affect function. Thus, because
PCC only considers effects on the overall structure, and
SEN only considers changes to the core structure they
more accurately reflect requirements for biological func-
tion. Consistent with our previous analysis of delta SEN,
SVM performance with Dataset2 (full alignments) and
Dataset3 (subalignments) is comparable.

Next, to determine whether neutrality could be used
as an additional feature to improve classification of puta-
tive ncRNA alignments, we added the SEN to the 6-
feature set SVM revealing a marginal improvement with
SEN (Datasetl AUC = 0.925) verse without (Datasetl
AUC = 0.918). Interestingly the SEN used in isolation as
a feature has equivalent performance (Datasetl AUC =
0.925). Using the top 3 discriminative features (Zscore of
MEFE structure, mean mutual information of stems, and
neutrality) also had comparable performance (Datasetl
AUC = 0.927) to using SEN alone.

Overall, neutrality as an independent classifier was able
to separate structured and unstructured sequences. This
finding is based on the similar classification performance
when using either SEN or the currently used 6-feature set
(Table 4). In fact, using the most discriminating features
(Zscore of the MFE structure, mean mutual information of
stems and SEN) offers comparable performance indicat-
ing the remaining features are redundant. The comparable
performance of neutrality with existing feature sets is
likely because current methods capture aspects of neu-
trality: structural maintenance despite sequence mutation
and thermodynamic stability. The Zscore of MFE struc-
ture measures the thermodynamic stability which is also
quantified in neutrality when comparing the alignment
structure to 1-mutant neighbors ensemble of structures.
The structure maintenance through covarying mutation
is measured using the mean mutual information of stems
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which neutrality encompasses as the effect of single muta-
tions on the structure.

Using SEN to detect structure disruption

One objective of many neutrality measures is to predict
which bases are most disruptive to structure [3,5,37]. To
evaluate whether SEN can be used to predict such bases,
we sampled multiple sequences from our training set and
interrogated the effect of position specific mutations on
the calculated neutrality. Though the neutrality profiles by
position are not identical for all sequences, the neutral-
ity predicted by SEN has consistent performance across
multiple sequences drawn from the same alignment. In
agreement with previous observations [38,51], mutations
to bases in structured regions (Figure 3) are more likely to
be disruptive. The most disruptive mutations occur at the
edges of stems. Mutations in the middle of stems appear
to create either bulges or internal loops which have a small
effect on the neutrality. Mutations in the loop regions also
had little effect on the structure.

To assess the accuracy of predicted structure disrupt-
ing mutations, we compared our predictions to exper-
imental data obtained on the purine riboswitch using
2D SHAPE (Selective 2’-hydroxyl acylation analyzed by
primer extension) [52]. Like evaluating neutrality using 1-
mutant neighbors, 2D SHAPE interrogates the changes in
RNA structure when making single mutations to an RNA
sequence. To compare our predictions to the 2D SHAPE
data, the reported change in base reactivity was converted
to the expected structure disruption coefficient (eSDC)
using (1—PCC)%+/L [40]. The top 50% of eSDC values are
considered to be “structure disrupting”. Logistic regres-
sion using SEN to predict structure disruption indicates
that predicting which bases disrupt structure continues to
be very difficult (AUC = 0.55) (Figure 4).

Mean neutrality

1 LI N B R R | I
D030 (0 o 6P 1 12 P P & @O A2 ¢ @ S P PO
NLPPEP R PRPRRPOPR PP PSP

Position

Figure 3 Structure disruption generally occurs in stem regions.
Profile view of the purine riboswitch (RF00167) showing the mean
neutrality at each position of all mutant neighbors at that position. The
structure has been overlaid onto the graph. Mutations in the stems
show larger structure disruption whereas mutations which occur in
the single stranded regions do not significantly affect structure.
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Figure 4 Ability to predict which base mutations disrupt
structure. The receiver operator characteristic (ROC) curve shows the
performance of SEN to correctly call structure disrupting mutations
compared to random guessing (diagonal line). The line reveals SEN
performs better than random.

Current methods rely on RNA folding algorithms to
predict which nucleotides can potentially be structure
disrupting. Incorporating the structure ensemble does
improve prediction accuracy [40] but such methods fun-
damentally still have poor performance. The similar pre-
dictions of both SEN and current methods to detect
structure disruption is likely due to the use of the same
thermodynamic model for RNA folding that cannot fully
encompass three-dimensional interactions, which results
in similar prediction accuracy. However, the inability of
SEN to make accurate predictions could also be due to the
limited data on structure disrupting bases derived from
2D SHAPE. Because a vast majority of positions have
small impacts on structure, it is very difficult to establish
the eSDC threshold at which the structure is disrupted.
Furthermore, if the eSDC threshold is too high, then there
is very little data available to build regression or machine
learning models.

SEN detects mutational robustness

Finally, we use SEN to calculate the mutational robust-
ness of positive sequences in our data sets. Robustness is
defined as the ability of a sequence to maintain its struc-
ture despite perturbations to the sequence. The sequence
is considered mutationally robust when its neutrality is
greater than the mean background neutrality. Using SEN
as a distance measure detects 74.9% of the sequences
in Dataset2 as being mutationally robust (Table 5). In

Page 10 of 12

Table 5 Fraction of robust sequences

Bp-distance 0405
pCC 0.588
SEN 0.749

comparison, using PCC (58.8%) or bp-distance (40.5%)
detected fewer robust sequences. The background neu-
trality calculated by PCC and bp-distance is relatively
high compared to the SEN background neutrality and
likely contributes to the ability of distance measures to
detect mutational robustness (Figure 5, Additional file 1:
Figure S2).

Despite the equivalent classification performance of
PCC and SEN in the SVM, PCC has reduced ability
to detect mutational robustness. The PCC calculation
involves converting the structure into a binary vector;
therefore, the base pairing information is removed and
only the base-pairing status remains. By removing this
information, the PCC potentially has difficulty differen-
tiating similar distributions of 0’s and 1’s which could
represent different structures. Bp-distance had difficulty
detecting mutational robustness in the data, likely due to
the high stringency of the neutrality measure. Thus, exist-
ing commonly used measures of neutrality, normalized
base-pair distance and PCC have potentially decreased
accuracy for opposite reasons. The ability of SEN to detect
mutational robustness in ncRNA regulators can likely be
attributed to the hybrid nature of the calculation which
still considers individual base pairs but is only concerned

>.0.8

=

g Distance metric
S

g Bp-distance
8.0-6 7 ® Pearson's CC
= SEN

o

= 0.4 -

0?3 0?5 0?7

Mean background neutrality
Figure 5 Mean alignment neutrality organized by distance
metrics. The line represents wildtype sequence neutrality equal to
mean background neutrality. If the wildtype sequence neutrality is
higher than the mean background neutrality, the sequence is
considered robust. To reduce the number of points, only the mean
sequence neutrality for an alignment is compared against the
average of the mean background neutrality. Plotting individual
sequence neutrality reveals a similar trend (Additional file 1: Figure
S2). The SEN better detects mutational robustness of these sequences
compared to PCC or bp-distance.
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with the maintaining the core structure and not with
additional base pairs added by in 1-mutant neighbor.

SEN run time

SEN relies on the sampling of suboptimal structures from
the ensemble of secondary structures. The run time is
directly proportional the number of sampled subopti-
mal structures and thus slower than traditional methods
like bp-distance. However, the calculation for each sam-
ple structure is identical so SEN calculations have been
implemented to run in parallel, which can significantly
reduce the run time. Code for calculating SEN is avail-
able at: https://github.com/ship561/sampled-ensemble-
neutrality.

Conclusions

In this work, we show that RNA sequence neutrality is an
effective feature for machine learning approaches to clas-
sify structured RNAs from various decoy sequences. We
find that the most accurate classification occurs for neu-
trality measures that consider the ensemble of possible
RNA structures rather than just the minimum free energy
structure (PCC or SEN). Furthermore, neutrality used as
the sole classifying feature is nearly as effective as exist-
ing SVMs [17,19] indicating that current SVM features
capture aspects of mutational robustness.

During the course of this work, we developed a novel
measure of RNA sequence neutrality, the structural
ensemble neutrality (SEN). The SEN differs from existing
measures of neutrality in that it directly addresses sev-
eral potential limitations. First, as a reference structure for
neutrality calculation, SEN utilizes a consensus structure
determined from an alignment of putative homologous
sequences rather than an MFE structure, increasing the
likelihood of utilizing a biologically relevant reference.
Second, to assess the structure of the 1-mutant neighbors
SEN considers not a single structure, but samples from
the ensemble of potential low-energy structures. Finally,
rather than consider all deviations from the reference
structure equally deleterious, SEN only counts base pairs
that are disrupted in the structure of the mutant sequence.
This property renders SEN relatively robust to incomplete
data that often degrades the quality of the predicted struc-
ture. The SEN is highly correlated with existing measures
of neutrality (Table 2), but shows improved separation
of structured and unstructured sequences in our data
sets compared to these measures (Figure 1). While SEN’s
underlying model predicts structure disrupting mutations
to occur in stems, this model does not completely explain
experimental data (Figure 4) indicating there are other
variables such as potential tertiary contacts to consider
in such determinations. However, SEN does indicate that
many of regulatory RNA structures in bacteria are muta-
tionally robust (Figure 5).
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Additional file

Additional file 1: Supplemental data. The file is in a PDF format. It
contains Table S1 and Figures S1 and S2. Figure S1 shows the distribution
of neutrality values returned by RemuRNA on Dataset2 compared with
various decoy datasets. Figure S2 shows the robustness of sequences in
Dataset2 organized by distance metric. Table S1 is a table listing the Rfam
families used as positive alignments (Dataset2).
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