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Abstract
Background  Recent advancements in next-generation sequencing (NGS) technology have ushered in significant 
improvements in sequencing speed and data throughput, thereby enabling the simultaneous analysis of a greater 
number of samples within a single sequencing run. This technology has proven particularly valuable in the context 
of microbial community profiling, offering a powerful tool for characterizing the microbial composition at the species 
level within a given sample. This profiling process typically involves the sequencing of 16S ribosomal RNA (rRNA) 
gene fragments. By scaling up the analysis to accommodate a substantial number of samples, sometimes as many 
as 2,000, it becomes possible to achieve cost-efficiency and minimize the introduction of potential batch effects. Our 
study was designed with the primary objective of devising an approach capable of facilitating the comprehensive 
analysis of 1,711 samples sourced from diverse origins, including oropharyngeal swabs, mouth cavity swabs, dental 
swabs, and human fecal samples. This analysis was based on data obtained from 16S rRNA metagenomic sequencing 
conducted on the Illumina MiSeq and HiSeq sequencing platforms.

Results  We have designed a custom set of 10-base pair indices specifically tailored for the preparation of libraries 
from amplicons derived from the V3-V4 region of the 16S rRNA gene. These indices are instrumental in the analysis of 
the microbial composition in clinical samples through sequencing on the Illumina MiSeq and HiSeq platforms. The 
utilization of our custom index set enables the consolidation of a significant number of libraries, enabling the efficient 
sequencing of these libraries in a single run.

Conclusions  The unique array of 10-base pair indices that we have developed, in conjunction with our sequencing 
methodology, will prove highly valuable to laboratories engaged in sequencing on Illumina platforms or utilizing 
Illumina-compatible kits.
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Background
Phylogenetic analysis of rRNA nucleotide sequences has 
emerged as a highly effective approach for investigating 
microbial communities. In this context, culture-indepen-
dent profiling predominantly hinges on the sequencing of 
the 16S rRNA gene, a ubiquitous genetic marker among 
prokaryotic microorganisms. This culture-independent 
approach, in contrast to traditional culture-based meth-
ods, offers a distinct advantage by enabling the compre-
hensive detection and analysis of a more extensive array 
of bacteria and archaea, even within seemingly uncom-
plicated microbial ecosystems [1].

The prokaryotic 16S rRNA gene, spanning approxi-
mately 1500 base pairs, comprises nine variable regions 
(nucleotides 69–99, 137–242, 433–497, 576–682, 822–
879, 986–1043, 1117–1173, 1243–1294, and 1435–1465 
for V1–V9, respectively) interspersed between geneti-
cally conserved regions. These conserved regions exhibit 
remarkable similarity across diverse bacterial species, 
furnishing a dependable foundation for universal ampli-
fication primers. Amplification and subsequent sequenc-
ing of the variable regions within the 16S rRNA gene 
facilitate the phylogenetic classification of a broad spec-
trum of microbial populations [2–4].

The region of the 16S rRNA gene targeted for sequenc-
ing on Illumina platforms often depends on the specific 
research goals and the sample type. However, due to the 
length limitations of Illumina sequencing reads (= 300 
bases), shorter regions of the 16S rRNA gene are typi-
cally chosen. This includes single regions like V4 or V6, 
or combinations like V1–V3 or V3–V5. The V3 and V4 
regions are commonly used, either individually or in 
combination. These regions provide a good balance of 
variability and length, allowing for effective differentia-
tion between bacterial species while accommodating the 
shorter read lengths of Illumina sequencing technologies.

The V3-V4 hypervariable regions of the 16S rRNA gene 
are known for their effective balance in providing taxo-
nomic resolution. A study by Sirichoat et al. indicated 
that the V3 region showed the greatest richness and 
diversity in the study of vaginal microbiota, followed by 
V6-V7 and V4. Studies have shown that while regions like 
V1-V2 might have a higher resolving power in certain 
contexts (e.g., respiratory samples), the V3-V4 regions 
still provide substantial sensitivity and specificity for 
microbial diversity analysis. Additionally, these regions 
have shown higher alpha diversity compared to other 
regions like V7-V9 [5]. Sequencing the V3-V4 regions 
is cost-effective, especially when using next-generation 
sequencing (NGS) platforms like Illumina. This economic 
efficiency makes it a preferred choice for various metage-
nomic studies. These regions provide a balance between 
the length of the sequence and the depth of coverage, 
combining one of the most conserved regions (V4) with 

one of the most variable regions (V3), which is essential 
for achieving accurate taxonomic classification [6].

In summary, the V3-V4 region of the 16S rRNA gene 
is advantageous for sequencing on platforms like Illu-
mina due to its effective balance of taxonomic resolution 
and diversity analysis, suitability for high-throughput 
sequencing methods, cost-efficiency, comparative advan-
tages over other hypervariable regions, and broad appli-
cability across different ecological studies [7].

To target this region, researchers commonly employ 
the 341F–805R primer set, generating amplicons approx-
imately 465 base pairs in length. The Illumina MiSeq 
platform, offering the capacity to sequence up to 600 
nucleotides from both ends of an amplicon [(300 bp)×2], 
conveniently accommodates such amplicons with full 
coverage.

However, limitations arise when considering the Illu-
mina HiSeq platform. The use of the Illumina Rapid SBS 
kit restricts sequencing to a maximum of 500 cycles per 
run. Furthermore, the commercial indices available for 
use permit the pooling of no more than 384 samples. 
These constraints collectively impede the sequencing of 
sample sets exceeding 384 in a single run. Consequently, 
researchers resort to sequencing samples in a series of 
independent runs. This practice, unfortunately, paves the 
way for the accumulation of batch effects, which are sys-
tematic errors arising during sequencing and capable of 
inducing spurious correlations between biological sam-
ples. These batch effects primarily stem from variations 
in sample preparation, reagent batches, and sequencing 
runs, all of which contribute to the emergence of these 
unwanted artifacts [8].

In an endeavor to mitigate the impact of batch effects, 
our study has undertaken a pioneering approach. We 
have synthesized a set of 10-base pair dual indices and 
developed a sequencing method capable of spanning 
600 cycles on the HiSeq platform. This innovative meth-
odology allows for the continuous analysis of the V3-V4 
regions of the 16S rRNA gene within 1,711 samples col-
lected from human oropharyngeal, mouth cavity, dental, 
and fecal sources. These samples are sequenced on the 
Illumina HiSeq 2500 platform, marking a substantial step 
toward minimizing the influence of batch effects on our 
results.

Results
Indices
The distinctive 10-base pair indices, subject to error cor-
rection and detection capabilities, were created using 
the R language function ‘create.dnabarcodes’ from the 
DNABarcodes package [9]. The creation of these indices 
adhered to the following parameters: ‘n’ set to 10 (rep-
resenting the desired length in base pairs), ‘dist’ defined 
as 6 (ensuring a minimal distance between the indices), 
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and the employment of the ‘heuristic’ option with the 
‘ashlock’ setting (utilizing an evolutionary heuristic algo-
rithm to generate the sequence set). Subsequently, 88 
sequences were randomly selected using the ‘sample’ 
function (for more details, refer to Supplementary Table 
S1).

Validation of samples
In the initial phase, we sequenced the prepared 1,711 16S 
libraries on the Illumina MiSeq instrument (Illumina, 
USA) to assess the distribution of reads per sample. The 
number of reads per sample exhibited a range spanning 
from 104 to 31,592, with a mean value of 4,003 reads per 
sample. This mean value, however, may pose limitations 
for the comprehensive reconstruction of complex and 
diverse microbial communities. To evaluate the effect 
of index-hopping on our results, we employed the Esch-
erichia coli strain as a positive control. In total, 48,445 
reads were obtained for this control sample, and only 94 
reads (constituting 0.00194% of the total) did not belong 
to the E. coli amplicon sequence variant (ASV). This indi-
cates a potential index hopping rate of 0.2%, which is 
essentially negligible.

Subsequently, the same set of samples was processed on 
the HiSeq instrument. In total, we generated 125,392,900 
reads with an average length of 600 base pairs, result-
ing in an average of 73,286 reads per sample. Following 
quality filtering, approximately 16% of the raw reads were 
removed. Of the remaining paired reads, 93% were suc-
cessfully merged, with an additional 8% eliminated as 
chimeras. The final dataset comprised 89,758,460 reads, 
equivalent to 72% of the raw reads, and resulted in an 
average of 52,459 reads per sample (± 26,104, as illus-
trated in Fig. 1).

The read counts at each stage of the DADA2 pipe-
line revealed notable disparities, as depicted in Fig.  2. 
It is evident that the depth and quality of the sequenc-
ing play pivotal roles in dictating the quantity of reads 
subjected to removal during the quality filtering phase. 
Significantly, owing to the substantially higher through-
put of the HiSeq platform in comparison to the MiSeq, 
the HiSeq data exhibited a more pronounced count of 
reads eliminated during quality filtering than its MiSeq 
counterpart.

Furthermore, it is pertinent to highlight that the sam-
ples sequenced on the HiSeq platform demonstrated 
considerably superior mean quality scores for both the 
forward and reverse reads.

Dereplication, the process of reducing identical 
sequences to a single representative sequence, plays 
a crucial role in data analysis. The number of unique 
sequences remaining after dereplication is influenced 
by the depth of sequencing and the complexity of the 
bacterial community. A comparative analysis of the two 
datasets following dereplication revealed a notewor-
thy distinction: the HiSeq data exhibited a higher count 
of unique sequences in contrast to the MiSeq data, as 
depicted in Fig. 2.

In the HiSeq dataset, we identified 3,960 unique Ampli-
con Sequence Variants (ASVs) present in at least 1% of 
the samples, in contrast to the MiSeq dataset, which 
contained 1,732 ASVs meeting this criterion. A mere 78 
sequences were unique to the MiSeq run, whereas the 
HiSeq run yielded 2,306 unique sequences. Interestingly, 
1,654 sequences were common to both datasets, as illus-
trated in Fig. 3.

Fig. 1  Quality profiles of raw reads and filtered reads obtained on HiSeq instrument
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Fig. 3  Amplicon sequence variants identified in HiSeq and MiSeq runs

 

Fig. 2  Read counts at various stages of the DADA2 pipeline for samples sequenced on both the HiSeq and MiSeq platforms. The data processing was 
conducted using the DADA2 pipeline
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Discussion
A 10-nucleotide index size was chosen as a judicious 
compromise, balancing the need for sufficient length 
to avoid misinterpretation of the index due to random 
errors while preserving the informative portion of the 
sequence. The selection of 10-base indices offers a sig-
nificantly larger pool of unique index combinations 
compared to alternative index systems, such as 6-base 
or 8-base indices. This becomes especially pivotal in 
large-scale studies, where a multitude of samples must 
be processed. Utilizing 10-base indices diminishes the 
risk of index collisions, thus ensuring accurate sample 
identification.

In terms of read length, the MiSeq platform held an 
advantage over the HiSeq platform due to its capacity 
to produce up to 300 bp reads, compared to the 250 bp 
reads achievable with the HiSeq platform [10]. Further-
more, the HiSeq platform excelled by generating up 
to 1  billion reads, contrasting with the 25  million reads 
attainable with the MiSeq platform. Increased through-
put translates to augmented sequencing coverage and 
heightened statistical power for the identification of vari-
ations within bacterial communities, providing another 
edge to the HiSeq platform [11].

Additionally, the HiSeq platform consistently delivered 
a higher average number of quality-filtered sequences per 
sample. This increased data yield and enhanced sequenc-
ing depth translate to a greater capacity for sequencing 
multiple samples in a single run, further solidifying the 
HiSeq’s suitability for large-scale experiments. In con-
trast, the MiSeq platform is better suited for smaller-
scale experiments necessitating swift turnaround times.

It’s worth noting that 16S rRNA sequencing results 
may vary across experiments due to the ‘batch effect’, a 
potential source of bias introduced at various stages of 
the experimental workflow, including DNA extraction, 
amplification, and sequencing. Sequencing a larger num-
ber of 16S rRNA samples often presents challenges, as 
it necessitates conducting a series of independent runs, 
elevating the risk of batch effects that can lead to incon-
sistent results and skewed data. Importantly, in addition 
to biases introduced during DNA extraction and library 
preparation, batch effects can also emerge during the 
sequencing process due to variations in instrument per-
formance, reagent lots, and environmental conditions.

To address and mitigate these issues arising from 
batch effects, computational methods have been devel-
oped. These methods are designed to identify and rectify 
batch effects while preserving the underlying biologi-
cal variability in the data. One widely adopted approach 
for batch effect correction is the ComBat algorithm, ini-
tially developed for microarray data analysis [12]. Over 
time, this algorithm has been adapted for 16S rRNA 

sequencing studies, where it has demonstrated efficacy in 
addressing and correcting batch effects [13].

In the realm of 16S rRNA sequencing studies, another 
computational method employed for batch effect cor-
rection is RUVSeq, which expands to ‘remove unwanted 
variation using negative controls’. RUVSeq leverages a 
set of negative control taxa, which are not expected to 
exhibit differential expression, to make adjustments for 
batch effects [14, 15]. This approach has proven effective 
in the context of microbiome data; however, it necessi-
tates the presence of a predefined set of negative control 
taxa, either as spike-ins or as empirical negative control 
taxa [16].

To mitigate the impact of batch effects in 16S rRNA 
sequencing studies, several strategies are available. One 
tactic involves incorporating replicate samples or techni-
cal controls in each sequencing run, facilitating an assess-
ment of data variability and reproducibility. Another 
strategy revolves around normalization methods 
designed to counteract batch effects by scaling the data 
based on the distribution of control samples.

It is essential to acknowledge that while multiple strat-
egies and computational methods can help alleviate 
batch effects, complete elimination remains challenging. 
The effectiveness of these methods may vary depend-
ing on the specifics of a 16S rRNA sequencing study and 
its design. Thoughtful experimental design, including 
the inclusion of cross-batch controls, can significantly 
reduce the influence of batch effects and simplify their 
correction.

Furthermore, it is crucial to exercise caution when rely-
ing solely on computational methods, as they may instill 
unwarranted confidence in downstream analyses. One 
surefire way to circumvent batch effects is to sequence 
all samples in a single sequencing run, obviating the need 
for correction methods.

For this purpose, we have devised a comprehensive 
list of 10-base indices. This approach empowers us to 
sequence and analyze a large number of samples within 
a single run. The utilization of these 10-base dual indices 
has demonstrated its effectiveness in ensuring accurate 
sample identification and minimizing the occurrence of 
false positives.

Conclusions
Amplicon sequencing continues to be a widely embraced 
method for the examination of microbial communities 
in both clinical and scientific domains. Its cost-effective-
ness renders amplicon sequencing conducive for large-
scale comparative analysis across numerous samples. 
We firmly believe that our custom list of 10-base pair 
indices, alongside our adapted demultiplexing protocol, 
holds substantial value for laboratories utilizing Illumina 
sequencing instruments such as NextSeq, HiSeq, MiSeq, 
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and others. Furthermore, our approach is adaptable to 
any DNA sequencing platform compatible with Illumina 
technology, extending its utility to platforms like Geno-
Lab M from GeneMind Biosciences Company.

As evident from the results presented in Fig. 2, the read 
counts at various stages of the DADA2 pipeline exhibit 
marked disparities. This discrepancy is heavily influenced 
by both the sequencing depth and quality. Notably, due 
to the higher throughput typically associated with HiSeq 
sequencing, a larger number of reads are subjected to 
removal during quality filtering, compared to MiSeq 
data. Moreover, it is worth highlighting that data derived 
from samples sequenced on the HiSeq platform consis-
tently display significantly higher mean quality scores for 
both forward and reverse reads.

Methods
Oligos
We employed the DNABarcodes package [9] to create a 
distinctive set of 10-nucleotide indices (please refer to 
Supplementary Table S1 for details). The oligos designed 
for amplification were synthesized by Evrogen, a reputa-
ble company in this domain (evrogen.com).

Samples
We utilized genomic DNA sourced from 1,711 distinct 
clinical specimens, categorized as follows: 205 nasopha-
ryngeal swabs, 474 mouth swabs, 359 mouth washes, 407 
dental plaques, and 265 fecal samples. These DNA sam-
ples were generously provided by Moscow State Univer-
sity of Medicine and Dentistry (MSUMD).

DNA was extracted by employing the MagMAX™ DNA 
Multi-Sample Ultra 2.0 Kit (Thermo Fisher Scientific, 
USA) in conjunction with the King Fisher Flex Purifica-
tion System (Thermo Fisher Scientific, USA), according 
to the manufacturer’s protocol. Subsequently, the quan-
tification of DNA was carried out using the Qubit 4 flu-
orometer, utilizing the Quant-iT dsDNA BR Assay Kit 
(Thermo Fisher Scientific, USA).

Library preparation
In this protocol, gene-specific sequences targeting the 
16S V3 and V4 region were selected from the publication 
by Klindworth et al. [17]. The 16S library preparation and 
sequencing adhered to the Illumina protocol [18].

For the amplification of the extracted DNA (rang-
ing from 1 to 5 ng), standard 16S rRNA gene primers, 
designed to complement the V3-V4 region and incor-
porating 5’-Illumina adapter sequences (16S Amplicon 
PCR Forward Primer = 5’ TCGTCGGCAGCGTCAGAT-
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG 
and 16S Amplicon PCR Reverse Primer = 5’ GTCTC-
GTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC), were employed. These 

primers were sourced from Evrogen, Russia. The ampli-
fication was conducted using the Tersus Plus PCR kit 
(Evrogen, Russia) in a total volume of 25 µl.

The first amplification step involved the following PCR 
conditions: an initial denaturation at 95°C for 2  min, 
followed by 27 cycles of denaturation at 95°C for 30  s, 
annealing at 60°C for 30 s, extension at 72°C for 30 s, and 
concluded with a final extension at 72°C for 2 min. Subse-
quently, the reaction was cooled to 4°C.

The second amplification step, responsible for attaching 
dual indices and Illumina sequencing adapters, followed 
a similar protocol. It initiated with an initial denaturation 
at 95°C for 2  min and proceeded with 8 cycles, which 
involved denaturation at 95°C for 30 s, annealing at 60°C 
for 30 s, extension at 72°C for 30 s, and a final extension 
at 72°C for 2 min, ending with cooling to 4°C.

Subsequently, individual amplicons underwent PCR 
indexing and were subsequently pooled. The size distri-
bution and quality of the libraries were assessed utilizing 
a high-sensitivity DNA chip (Agilent Technologies), and 
the libraries were quantified using the Quant-iT DNA 
Assay Kit, High Sensitivity (Thermo Scientific, USA).

Sequencing on illumina platforms
The DNA libraries underwent sequencing using the 
MiSeq instrument (Illumina, USA) with the MiSeq 
reagent kit v3 (Illumina, USA).

Sequencing of the DNA libraries was also conducted 
on the HiSeq 2500 platform (Illumina, USA), in accor-
dance with the manufacturer’s recommendations. For 
this purpose, we employed the following reagent kits: 
HiSeq Rapid PE Cluster Kit v2, HiSeq Rapid SBS Kit v2 
(500 cycles), HiSeq Rapid SBS Kit v2 (200 cycles), and 
HiSeq Rapid PE FlowCell v2. Additionally, a 2% PhiX 
spike-in control was included in the process.

As we were sequencing a 16S rRNA library, necessitat-
ing 600 cycles (300 + 300 paired-end reads), we followed 
Illumina’s guidelines. The sequencing run was initiated by 
configuring the run recipe as PE 300 on the HiSeq 2500, 
using the HiSeq Rapid PE FlowCell v2, HiSeq Rapid PE 
Cluster Kit v2, and HiSeq Rapid SBS Kit v2 (500 cycles). 
Upon depletion of the 500-cycle reagent kit, the HiSeq 
Control Software automatically paused the run. Subse-
quently, we replaced the empty cartridge with reagents 
from the HiSeq Rapid SBS Kit v2 (200 cycles), following 
the software instructions for the HiSeq 2500, and then 
resumed the run.

Primary analysis
We processed the sequencing data using several bioin-
formatics tools and packages. Firstly, Illumina adapt-
ers were removed from the reads using Trimmomatic 
[19], and the primers were eliminated using cutadapt 
[20]. Subsequently, we filtered the reads employing the 
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filterAndTrim function from the DADA2 package [21] 
with the following parameter settings: truncLen_f: 225, 
truncLen_r: 220, trimLeft_l: 0, trimLeft_r: 0, maxN: 0, 
maxEE_f: 2, maxEE_r: 2, truncQ: 2, and rm_phix: ‘TRUE’.

ASV (Amplicon Sequence Variant) inference was 
carried out utilizing DADA2, and the read pairs were 
merged with a minimum overlap of 18 base pairs. Lastly, 
chimeric sequences were removed through the remove-
BimeraDenovo function, employing the consensus 
method.
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