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Abstract

Background: Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions,
that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD
development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation
changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus
and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight
OCD patients and eight matched controls.

Results: There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area,
nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene
modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a
predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were
common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were
different among all brain areas. The protein-protein interaction network based on methylation and gene expression
data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and
synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally,
OCD patients and controls did not present significant DNA methylation age differences.

Conclusions: DNA methylation changes in brain areas involved with OCD, especially those involved with genes
related to synaptic plasticity and the immune system could mediate the action of genetic and environmental
factors associated with OCD.
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Background

Obsessive-compulsive disorder (OCD) is a debilitating
neurodevelopmental condition that affects up to 3% of
the worldwide population according to the World
Health Organization [1]. OCD is characterized by intru-
sive thoughts and repetitive behaviors in a large time-
consuming manner [2, 3].

Cortical areas [anterior cingulate gyrus (ACC), dorso-
lateral prefrontal cortex (dIPFC) and orbitofrontal cortex
(OFC)] maintain the main projections to the ventral stri-
atum areas [nucleus accumbens (NAC), caudate nucleus
(CN) and putamen (PT)] [2, 4], both involved with OCD
symptoms, paradigms [5], and treatment response [6].
The cortico-striato-thalamo-cortical circuitry (CSTC) is
altered in the brain of OCD individuals, which includes
three relevant loopings of indirect pathways with the re-
spective cortical connection: the affective (ACC, NAC
and thalamus), dorsal cognitive (dIPFC, CN and thal-
amus) and ventral cognitive (OFC, PT and thalamus)
circuits, which are related to the affective and reward
processing, the working memory and executive function,
and the motor and inhibitory response, respectively [2].

Neuroimaging MRI studies using whole-brain voxel-
based morphometry (VMB) revealed that changes in
anatomical structures from both affective and cognitive
(executive) circuits are consistently described in OCD
cases and were related to variation in symptom severity
[7]. Diffusion-weighted magnetic resonance imaging was
associated with gene expression alterations confirming
the tripartite model of striatum organization and con-
nection model [8]. We explored this model by using the
differentially expressed (DEGs) and coexpressed genes
modules in CN, NAC and PT brain tissues from OCD
cases and controls, revealing the involvement of cell
communication, cell response, synaptic transmission and
plasticity for all striatum areas [9].

Different studies demonstrated that OCD etiology is a
multifactorial condition with both polygenic and envir-
onmental risk factors [3, 10]. The impact of environ-
mental factors may reflect changes in DNA methylation
(DNAm), an epigenetic modification that consists in the
addition of a methyl group (CH3) to carbon at the fifth
position of cytosine (C) [11]. DNA methylation interme-
diates the interaction between genetic and environmen-
tal factors involved with psychiatric disorders [12].
Specifically for OCD, DNAm has been investigated in
peripheral tissues, such as blood [13-15] including
mononuclear cells [16] and saliva [17]. Differentially
methylated CpG (cytosine-phosphate-guanine) sites be-
tween OCD patients and controls were only partially
able to group patients (67%) in an unsupervised cluster-
ing analysis. These CpG sites were located in genes
enriched for actin cytoskeleton, cell adhesion molecules
(CAMs), actin binding, transcription regulator activity,
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and other cellular pathways [13]. By evaluating methyla-
tion levels from selected CpG sites, no changes were ob-
served in 14 genes previously associated with OCD [14].
However, OXTR, the oxytocin receptor gene, presented
higher methylation in the OCD patients and correlated
with severity and oxytocin was associated with the regu-
lation of complex socio-cognitive processes [15]. DNAm
levels of a CpG site located in the first intron from
SLC6A4 were higher in the saliva of pediatric and adult
OCD patients compared to controls but no alteration
was observed for SLC6A4 expression [17]. The opposite
way, higher methylation of two CpG sites located at
BDNF exon 1 correlated with higher expression in OCD
patients [16].

These data, derived from surrogate tissues, point to
the necessity of exploring DNAm in the brain areas as-
sociated with OCD to verify its possible contribution for
the disease. Furthermore, the methylation clock [18] in
brain tissues from patients with OCD should be dis-
closed as it is a complement of tissue senescence. The
DNA methylation clock is associated with physiological
ageing but also is associated with changes according to
stress exposition along life [19] and age acceleration was
associated with other psychiatric disorders [20, 21].

Considering our small sample size to explore DNA
methylation comparing cases and controls, to avoid false
positive results, we performed gene network analysis of
DNAm integrated with transcriptomic data in the brain
areas associated with OCD.

Results

Characterization of OCD cases and controls

Individuals from both groups (OCD cases and controls)
presented similar socio-demographic characteristics and
were matched by sex and age. All individuals were older
than 50 years and did not have a history of clinical de-
mentia at the time of death (Table 1).

DNA methylation data comparing OCD cases and controls
For all brain areas, comparison between OCD cases and
controls did not point to differentially methylated CpG
sites (DMSs) after multiple correction tests (adjP<0.05).
Additional file 2: Table S1 presents CpG sites with a p-
value <0.0005 for each brain area. The EpiMod algo-
rithm, which is based only in methylation data and
protein-protein-interaction (PPI) networks, from Func-
tional Epigenetic Modules (FEM) analysis, infers differ-
ential methylation hotspots called modules. It showed
enriched gene modules for all brain areas between OCD
cases and controls: five modules for ACC, nine for OFC,
five for NAC, eight for CN and three for PT (Additional
file 2: Table S2). ACC and PT modules were predomin-
antly hypomethylated, NAC and CN were mostly
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Table 1 Demographic characteristics of obsessive-compulsive disorder (OCD) cases and controls

Variable Parameters OocCD Controls p-value
N=8 N=8

Age (years) Mean = SD 764+123 7414136 073"

Sex, n (%) Female 3(375) 3375 100"
Male 5(62.5) 5(62.5)

Education (years) Mean + SD 22+28 55+54 01977

Alcoholism, n (%) Yes 1(125) 1(12.5) 100"
Never/Stopped 7 (875) 7 (87.5)

Smoking, n (%) Yes 3(37.5) 3(37.5) 100"
Never/Stopped 5(62.5) 5(62.5)

Brain volume (ml) Mean + SD 10983+ 77.9 12834 +302.7 0.19™"

Brain weight (g) Mean £ SD 1151.7+£106.3 1182.1+£1232 065"

pH Mean + SD 71406 67+03 0.24111

Hemisphere, n (%) Right 3 (37.5) 4 (50) 100"
Left 5(62.5) 4 (50)

Post-mortem interval (min) Mean + SD 859.0+179.3 891.1+1720 0.74"

Tt-test; "Fisher’s Exact test; ""Mann-Whitney U test (Confidence Interval — 95)

hypermethylated and OFC had both hypermethylated
and hypomethylated modules (Additional file 1: Fig. S1).

Considering differentially methylated regions (DMRs),
four out of five brain areas presented mostly a hypome-
thylation pattern: 70 DMRs for ACC (22 hypermethy-
lated and 48 hypomethylated), 356 for OFC (140
hypermethylated and 216 hypomethylated), 75 for CN
(26 hypermethylated and 49 hypomethylated), 106 for
PT (11 hypermethylated and 95 hypomethylated). Only
NAC had more hypermethylated than hypomethylated
DMRs (n =174, 138 hypermethylated and 36 hypo-
methylated) (Additional file 2: Table S3). Some genes
located in DMRs were also identified by EpiMod-FEM
analyses, such as HLA-DQBI and HLA-DQAI. DMRs lo-
cated at ADARB2 and UGT2B15 were hypermethylated
in OFC DMSs, but do not survive after the multiple test
correction (p-value: 1.33E-05/ AB: 0.186; p-value: 3.60E-
04/ AP: 0.208, respectively).

DNA methylation and gene expression integration data

As we have a small sample size, methylation and tran-
scriptomic data integration from the same brain areas
from OCD cases and controls resulted in a more robust
approach. The list of differentially expressed genes
(DEGSs) comparing OCD cases and controls from NAC,
CN and PT was retrieved from a previously published
study by our group [9]. To search DEGs for ACC and
OFC, RNASeq data were preprocessed using the same
parameters as described in the methods section. First,
data were integrated by using genes from DMRs associ-
ated with genes, FEM enriched modules from methyla-
tion and DEGs from the RNASeq data (p<0.01)
(Additional file 2: Table S4) to construct a PPI network

for each brain area. To achieve a more accurate analysis
regarding connected transcriptomic and methylation
data, we selected only edges that connected nodes from
different lists, e.g. one node from the DEG list and an-
other from the DMR or FEM lists. All nodes were classi-
fied by network centrality measures (Additional file 2:
Table S5) and by using a 95 percentile as threshold for
each topological measure ranked list, we observed that
genes from DEGs, DMRs and FEM are represented. For
OFC PP, 40 (23%), 51 (29%), 86 (48%); from NAC PPI,
44 (29%), 41 (27%), 69 (45%); from CN PPI, 186 (66%),
51 (18%) and 46 (16%); and for PT PPI, 44 (53%), 11
(13%) and 28 (34%) (Fig. 1). Interestingly, HLA-DQAI,
reported as differentially methylated in CN DMR and
FEM analyses, had a high classification in the rank ac-
cording to its degree and closeness measures in the net-
work. Searching for genes previously associated with
OCD in the networks, all brain areas have specific genes
as well as genes represented in more than one brain area
(Table 2).

For each network, we searched for functional module
enrichment analysis as described in the methods section,
considering non-redundant ontologies/pathways with a
minimum of 5 genes. PPI networks from all brain areas
were enriched for G-protein signaling pathway, immune
response, apoptosis and synapse biological processes.
Also, all areas but CN were enriched for different behav-
iors, including feeding, learning and memory. ACC,
OFC, NAC and CN were also enriched for axon, den-
drite, purine process, response to stress, GTPase and
MAPK activity. Regarding exclusive processes, ACC PPI
network was enriched for cAMP signaling, OFC for in-
flammatory response and interferon-gamma signaling
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created using the igraph (v.1.24.2) library

Fig. 1 PPl networks from STRING [86] for the five brain areas using DEG, genes with DMRs and genes from FEM modules. Network plots were

® DEG
® DMR

FEM
STRING

pathway, NAC for acetylcholine receptor activity and
cholinergic synaptic transmission, and PT for transcrip-
tional regulation. CN PPI network had the higher num-
ber of enriched processes, such as myelination, glial cell
development, peripheral nervous system development,
regulation of I-kappaB kinase/NF-kappaB signaling,
PI3K signaling, Ras and Rho proteins signal transduc-
tion, type I interferon and JAK-STAT signaling path-
ways, JUN kinase activity, MHC class II receptor activity
and regulation of transcription in response to stress.
Considering the REACTOME, GPCR signaling was
enriched in all areas. NAC, CN and PT were also
enriched for MAP kinase activity. Some areas have more
specific pathways such as neurotransmitter receptors
and postsynaptic signal transmission in ACC, interferon
gamma signaling and MHC class II antigen in OFC, Rho
GTPase cycle, interferon signaling, neddylation and
pyruvate metabolism in NAC, interleukin-17 signaling,
class I MHC processing, neddylation and cellular senes-
cence in PT. CN was enriched for interferons gamma,
alpha/beta signaling, interleukins 3, 4, 5, 10 and 13

signaling, Rho GTPases signaling, MHC class I and II
antigen presentation, transcriptional regulation by
RUNX family genes, NMDA and GABAB receptors
(Additional file 2: Table S6).

DNA methylation and gene expression integration data
from DMRs not located at genes
To present a comprehensive assessment of DMRs, in-
cluding those not located at genes, they were submitted
to ENCODE [22] to be annotated to TFs. We identified
seven TFs for ACC, 15 for OFC, 20 for NAC, 21 and 20
for CN and PT, respectively. Genes targeted by the TFs
were searched within DEGs (Additional file 2: Table S7).
In relation to TFs targeted DEGs, we identified eight for
ACC, 19 for OFC, 13 for NAC, 68 for CN and 22 PT.
TFs and their targeted DEGs as well as its activation/re-
pression relation were used as connections to construct
a network (Fig. 2).

Some TFs but not their targets were shared between
areas and some TFs-DEGs pairs were shared between
areas, although sometimes the target could be up or
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Table 2 Genes (nodes) belonging to the final networks that were already associated with OCD

Brain Code Gene Function *
area
ACC CNVs [91]  NPYIR Belongs to the G-protein-coupled receptor superfamily; Nervous system and immune system phenotype; Behav-
ior/neurological phenotype; Mortality/aging.
NPY5R Belongs to the G-protein-coupled receptor superfamily; Behavior/neurological phenotype.
GRINT Related to neurodevelopmental disorder; Relation with schizophrenia; Polymicrogyria.
RASGRF2  T-cell signaling response; Related to Alchoolism.
GWAs [45]  HLA- Binds peptides derived from antigens that access the endocytic route of antigen presenting cells and
DPB1 ' presents them on the cell surface for recognition.
ADCY8 ' Catalyses the formation of cyclic AMP from ATP; Increase cyclic adenosine monophosphate (cAMP)
levels, resulting in the transcriptional activation of target genes; Related to mood disorder.
CNVs/ TGFBR1 Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a
plethora of physiological and pathological processes including cell cycle arrest.
Exome [92] UBE2Z Encodes an enzyme which ubiquitinates proteins which participate in signaling pathways and apoptosis; Innate
Immune System.
RABEP1 Vesicle-mediated transport.
OFC CNVs CDH10 Among its related pathways are ERK Signaling and Cell junction organization; GO annotations related to this
gene include calcium ion binding; Mediate calcium-dependent cell-cell adhesion.
ASAH1 ASAH1 silencing increased basal and cAMP-dependent cortisol, establishing ASAH1 as a pivotal regulator of ste-
roidogenic capacity in the human adrenal cortex.
ENTPD2 ~ Among its related pathways are ATP/ITP metabolism and metabolism of nucleotides.
YEST Encoded protein has tyrosine kinase activity and belongs to the src family of proteins.
IL17RD Encodes a membrane protein belonging to the interleukin-17 receptor (IL-17R) protein family, a component of
the interleukin-17 receptor signaling complex.
TACR3 Belongs to a family of genes that function as receptors for tachykinins, characterized by interactions with G
proteins.
VTI1B SNARE protein.
GWAs CHMP2B  Expressed in neurons of all major regions of the brain; Mutations in this gene result in one form of familial
frontotemporal lobar degeneration.
PDE4D Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.
PPP1R9B  Modulates excitatory synaptic transmission and dendritic spine morphology; Binds to actin filaments and shows
cross-linking activity; Play an important role in linking the actin cytoskeleton to the plasma membrane at the
synaptic junction; Plays a role in regulation of G-protein coupled receptor signaling; Related to schizophrenia.
SCARB2 Acts as a lysosomal receptor for glucosylceramidase (GBA) targeting.
Exome COL4A1 Mutations in this gene cause porencephaly, cerebrovascular disease, and renal and muscular defects.
mMRNA [93] CACNB4  Encodes a member of the beta subunit family of voltage-dependent calcium channel complex proteins. Related
to epilepsy.
NAC CNVs NAPB ™ Associated with obsessive-compulsive personality disorder, amyotrophy, hereditary neuralgic and neu-
rodegeneration with brain iron accumulation.
PDK4 Plays a role in cell proliferation via its role in regulating carbohydrate and fatty acid metabolism.
SLC5A7  Transmembrane transporter that imports choline from the extracellular space into the neuron with
+t . . .
high affinity.
SLC2AT13  Transport related stereoisomers.
EPRS Multifunctional protein that catalyzes the attachment of the cognate amino acid to the corresponding tRNA;
Microcephaly, progressive, with seizures and cerebral and cerebellar atrophy.
UBE2D1 Mediates the selective degradation of short-lived and abnormal proteins.
SCG5 Plays a role in regulating pituitary hormone secretion.
GWAs KIT Encodes a receptor tyrosine kinase; Related with multiple intracellular proteins that play a role in in the
proliferation, differentiation, migration and apoptosis of many cell types.
Exome RAB25 Member of the RAS superfamily of small GTPases; Involved in membrane trafficking and cell survival;
Cytoskeletal Signaling; Metabolism of proteins.
RHOD Involved in endosome dynamics and reorganization of the actin cytoskeleton; Rho proteins interact with protein
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Table 2 Genes (nodes) belonging to the final networks that were already associated with OCD (Continued)

Brain Code Gene Function '
area
kinases and may serve as targets for activated GTPase.
RPL28 Encodes one of the small GTP-binding proteins in the Rho family shown to be associated with focal adhesions
in endothelial cells.
RHOJ Encodes one of the small GTP-binding proteins in the Rho family shown to be associated with focal adhesions
in endothelial cells.
HERCS Pro-inflammatory cytokines upregulate expression of this gene in endothelial cells; Functions as an interferon-
induced E3 protein ligase that mediates ISGylation of protein targets.
PRKAA2  Catalytic subunit of the AMP-activated protein kinase (AMPK), a heterotrimer consisting of an alpha catalytic sub-
unit, and non-catalytic beta and gamma subunits.
RAB13 Member of the Rab family of small G proteins; Plays a role in neuronal regeneration and regulation of neurite
outgrowth.
mMRNA RPL35 Catalyze ribosomes, which consist of a small 40S subunit and a large 60S subunit and together are composed
of 4 RNA species; rRNA processing in the nucleus and cytosol.
RPL6 Encodes a protein component of the 60S ribosomal subunit; rRNA processing in the nucleus and cytosol.
CN CNVs CSPG4 May also inhibit neurite outgrowth and growth cone collapse during axon regeneration.
GPSM?2 Belongs to a family that modulate activation of G proteins; Required for cortical dynein-dynactin complex re-
cruitment during metaphase.
PON3 ™" Childhood aggressive behaviour measurement; Immune system phenotype.
LTBP1 ' Key regulator of TGFB1, TGFB2 and TGFB3 that controls TGF-beta activation by maintaining it in a la-
tent state during storage in extracellular space.
WWOX Putative oxidoreductase; Acts as a tumor suppressor and plays a role in apoptosis; Multiple sclerosis.
ABCA2 ™ May have a role in macrophage lipid metabolism and neural development.
CYFIP1 ™ Regulates formation of membrane ruffles and lamellipodia; Plays a role in axon outgrowth.
CADM2  Important for synapse organization, providing regulated trans-synaptic adhesion; Preferentially binds
i to oligodendrocytes.
ELN Encodes a protein of elastic fibers, which comprise part of the extracellular matrix and confer elasticity to organs
and tissues.
MLXIPL Encodes a basic helix-loop-helix leucine zipper transcription factor of the Myc/Max/Mad superfamily.
GWAs SH3RF1 Has E3 ubiquitin-protein ligase activity; Innate Immune System.
HLA- It plays a central role in the immune system by presenting peptides derived from extracellular proteins.
DPAT M
Exome 4B Encodes the basic form of complement factor 4, and together with the C4A gene, is part of the classical
activation pathway; Innate Immune System.
NROB2 An unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-
binding domain.
CALMT Encodes calmodulin proteins, members of calcium-binding protein family. Calcium-induced activation of cal-
modulin regulates and modulates the function of cardiac ion channels.
NFE2 GO annotations related to this gene include DNA-binding transcription factor activity and transcription coactiva-
tor activity.
RNASE2 Is a non-secretory ribonuclease that belongs to the pancreatic ribonuclease family, a subset of the ribonuclease
A superfamily; Innate Immune System.
SERPINAT  Inhibitor of serine proteases; Innate Immune System; Related to mental retardation, x-linked, associated with fra-
gile site fraxe.
FBLNT Is a secreted glycoprotein that becomes incorporated into a fibrillar extracellular matrix; Cell adhesion;
Degradation of the extracellular matrix.
DLG4 Is recruited into NMDA receptor and potassium channel clusters; Intellectual developmental disorder;
Presynaptic function of Kainate receptors.
DLG2 Encodes a member of the membrane-associated guanylate kinase family; Protein-protein interactions at synap-
ses; Tight junction; Related to autism disorder.
LYN Encodes a tyrosine protein kinase; B cell receptor signaling pathway (KEGG); Immune response Fc epsilon Rl

pathway.
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Table 2 Genes (nodes) belonging to the final networks that were already associated with OCD (Continued)

Brain Code Gene Function '

area

PT CNVs PRND Mutations in this gene may lead to neurological disorders; Association with sporadic Creutzfeldt-Jakob disease;
Immune system phenotype.

MUC4 May play a role in tumor progression.

GWAs DTNBP1 Plays a role in synaptic vesicle trafficking and in neurotransmitter release; May play a role in actin cytoskeleton
reorganization and neurite outgrowth; May modulate MAPK8 phosphorylation; Appears to promote neuronal
transmission and viability, modulating PI3K signaling and influencing glutamatergic release; Modulates prefrontal
cortical activity via the dopamine/D2 pathway.

Exome JUND Has been proposed to protect cells from p53-dependent senescence and apoptosis; MAPK signaling pathway.

AP1S1 Protein encoded by this gene is part of the clathrin coat assembly complex which links clathrin to receptors in
coated vesicles, involved in endocytosis and Golgi processing.
JUN Cognitive function measurement.
ACC/ CNVs ﬁDCYAPI Related pathways are Signaling by GPCR and presynaptic function of Kainate receptors.
OFC
CACN Encodes a protein in the voltage-dependent calcium channel complex; Related to bipolar disorder.
A2D4

OFC/CN  CNVs PON1 Protein Coding gene; Diseases associated include microvascular complications of diabetes and amyotrophic
lateral scclerosis.

Exome 3 Plays a central role in the activation of complement system. Adaptive Immune System

OFC/PT  Exome / GBP4™  Are induced by interferon and hydrolyze GTP to both GDP and GMP; Cytokine Signaling in Inmune

mMRNA system.

NAC/CN Exome RASD2 Belongs to the Ras superfamily of small GTPases and is enriched in the striatum. Encoded protein binds to
mutant huntingtin (mHtt), mutated in Huntington disease (HD). Sumoylation of mHTT by this protein may cause
degeneration of the striatum.

AKT1 Protein kinase family; AKT/PI3K forms a key component of many signalling pathways; Regulate many processes
including metabolism, proliferation, cell survival, growth and angiogenesis.

FAIM2 Protein Coding gene; Regulates Fas-mediated apoptosis in neurons by interfering with caspase-8 activation; Dis-
ease associated includes Ventilation Pneumonitis and OCD.

NAC/ CN/ CNVs CHRMS5 Belong to a larger family of G protein-coupled receptors and influence many effects of acetylcholine in the cen-

PT tral and peripheral nervous system; Important for prolonged dopamine release; Related to schizophrenia.

TResumed from entrez gene cards (https://www.genecards.org/) and NCBI gene database (https://www.ncbi.nim.nih.gov/gene/); ™ Genes in the 95 percentile are

indicated in bold

downregulated for the different areas. Mostly, they were
involved with cellular processes such as cell growth, cell
survival, cell proliferation and/or differentiation, cell
death, immune and inflammatory response and apop-
tosis (Table 3). Different DMRs from CN and PT are lo-
calized in a binding site of the TF REST, with its target
CACNAIH being down-regulated in both areas. CACN
AIH was also targeted by EGRI, another TF that had a
binding site in DMRs from both areas. In other cases,
different DMRs in two brain areas, ie. CN and OFC,
were located in the binding site of the same TF, includ-
ing SP1, that target CD44 which was downregulated in
OFC but upregulated in CN. There were also exclusive
TFs for all brain areas (Additional file 2: Table S7).
Targeted DEGs were submitted to WebGestalt [23] re-
vealing enrichment for immune response processes for
all areas (Fig. 3). Regarding specific enrichments, we
highlight interferon gamma signaling for ACC, ERK cas-
cade for OFC, acetylcholine process for NAC,

interleukin signaling for CN and regulation of DNA-
templated transcription in response to stress for PT.

DNA methylation age

We investigated the methylation age variations accord-
ing to Horvath’s method [18]. In agreement with the
chronological age, OFC, NAC, CN and PT from OCD
had the DNAm age older than the respective areas of
the control group. Only ACC presented DNAm age
slightly younger than the chronological age for the OCD
group. Although both AA difference and AA residuals
presented a higher aging trend for the OCD group for
almost all areas, the comparisons between OCD and
control groups were not significant (Fig. 4).

Discussion

We explored DNA methylation and transcriptome data
in post-mortem brain tissue associated with obsessive-
compulsive disorder, searching for differences in the
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NAC

Fig. 2 Regulatory Networks for TFs from DMRs and targeted DEGs for the five brain areas. Network plots were created using the igraph
(v.1.2.4.2) library
A
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Table 3 Transcription factors (TFs) and targeted differentially expressed genes (DEGs) shared between the five brain areas

Brain Targeted TF binding to DMR Function T

areas DEG

ACC/ HLA-DPBT ~ RFX5 Activates transcription from class Il MHC promoters; Mediates cooperative binding between

OFC (DNA-binding protein RFX5) RFX and NF-Y.

NAC/ HLA-DQAT

cN HLA-DQB1

CN/ PT  HLA-DRA

OFC/ CD44 SP1 Activate/repress transcription in response to physiological and pathological stimuli; Binds with

CN (Transcription factor Sp1) high affinity to GC-rich motifs and regulates the expression of a large number of genes in-

OFC/ EGRI volved in a variety of processes such as cell growth, apoptosis, differentiation and immune re-

CN/ PT sponses; Highly regulated by post-translational modifications; May have a role in modulating
the cellular response to DNA damage; Implicated in chromatin remodeling.

NAC/  ABCC3

N IGFBP3

CN/ PT  HMGAT

KCNH?2

OFC/ EGRI1 RELA Part of the NF-kappa-B; NF-kappa-B is a pleiotropic transcription factor present in almost all cell

PT HEST (Transcription factor p65) types and is the endpoint of a series of signal transduction events that are initiated by a vast
array of stimuli related to many biological processes such as inflammation, immunity, differen-
tiation, cell growth, tumorigenesis and apoptosis; NF-kappa-B homodimeric RELA-RELA com-
plex appears to be involved in invasin-mediated activation of IL-8 expression.

HEST RUNX3 Bind to the core site of a number of enhancers and promoters, including murine leukemia
(Runt-related transcription virus, polyomavirus enhancer, T-cell receptor enhancers, LCK;, IL3 and GM-CSF promoters; May
factor 3) be involved in the control of cellular proliferation and/or differentiation.

NAC/ HBB CEBPB Regulate the expression of genes involved in immune and inflammatory responses; Its
PT CCAAT/enhancer-binding functional capacity is governed by protein interactions and post-translational protein modifica-
protein beta) tions; Binds to regulatory regions of several acute-phase and cytokines genes and plays a role
in the regulation of acute-phase reaction and inflammation.
NFYA Component of the sequence-specific heterotrimeric transcription factor (NF-Y) which specific-
(Nuclear transcription factor Y ally recognizes a 5-CCAAT-3" box motif found in the promoters of its target genes; NF-Y can
subunit alpha) function as both an activator and a repressor, depending on its interacting cofactors.
NFYB Component of the sequence-specific heterotrimeric transcription factor (NF-Y) which specific-
(Nuclear transcription factor Y ally recognizes a 5-CCAAT-3' box motif found in the promoters of its target genes; NF-Y can
subunit beta) function as both an activator and a repressor, depending on its interacting cofactors.
CN/ PT  HMGAT E2F1 Binds DNA cooperatively with DP proteins through the E2 recognition site; Function in the
(Transcription factor E2F1 control of cell-cycle progression from G1 to S phase; It can mediate both cell proliferation and
TP53/p53-dependent apoptosis.

CACNATH  EGR1 Transcriptional regulator; Binds double-stranded target DNA, irrespective of the cytosine
(Early growth response protein methylation status; Plays a role in regulating the response to growth factors, DNA damage, is-
1) chemia, regulation of cell survival, proliferation and cell death

CACNATH  REST Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses
(RET-silencing transcription neuronal gene transcription in non-neuronal cells; Maintains repression of neuronal genes in
factor) neural stem cells, and allows transcription and differentiation into neurons by dissociation

from RE1/NRSE sites of target genes; Involved in maintaining the quiescent state of adult
neural stem cells and preventing premature differentiation into mature neurons; Function in
stress resistance in the brain during aging; possibly by regulating expression of genes involved
in cell death and in the stress response.

GFAP STAT3 Signal transducer and transcription activator that mediates cellular responses to interleukins,
(Signal transducer and KITLG/SCF, LEP and other growth factors; Acts as a regulator of inflammatory response by
activator of transcription 3) regulating differentiation of naive CD4+ T-cells into T-helper Th17 or regulatory T-cells.

HLA-DRA YY1 Multifunctional transcription factor that exhibits positive and negative control on a large

(Transcriptional repressor
protein YY1)

number of cellular and viral genes by binding to sites overlapping the transcription start site;
Its activity is regulated by transcription factors and cytoplasmic proteins that have been
shown to abrogate or completely inhibit YY1-mediated activation or repression.

TResumed from UniProt Knowledgebase (https://www.uniprot.org/)
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molecular mechanisms comparing OCD patients and
controls. Regarding transcriptome analysis, there are
some studies using blood and brain tissues, although for
methylome analysis previous evidence comes from only
peripheral assessment as blood [13, 14]. Due to the small
sample size in our study, we searched DNA methylation
differences using three approaches based on the assump-
tions that underlie DNA methylation studies: DMS,
DMRs and gene modules as well as an integrative ana-
lysis of methylome and transcriptome data (Additional
file 1: Fig. S2).

We did not find DMSs with a corrected p-value for
any brain area, not an unexpected result considering our
sample size. CpG sites with p-value < 0.0005 and methy-
lation differences >20% between OCD and controls,
ADARB2, UGT2B15, HLA-DQB1 and HLA-DQAI were
recurrently identified by the different DNA methylation
approaches suggesting that these genes have a role in
OCD. A DNA methylation study in saliva of OCD pa-
tients reported that differentially CpG sites were only
evident when more symptomatic cases were used [24].

Gene networks from methylation and gene expression
integrated data pointed to the involvement of the G-
protein signaling pathway and small GTPase signal
transduction. Components from the GPCR pathway are
expressed at different levels in all physiological systems,
including the nervous and immune systems [25]. GPCRs
signaling regulate, among others, the actin—cytoskeleton
dynamic by activating small GTPases [26]. Several genes
from the actin binding processes that are modulated by
epigenetic regulation [27] were associated with OCD in
peripheral blood of patients [13]. Actin binding main-
tains and modulates dendritic spines, growth cone and
axon guidance [28, 29]. Axons and dendrites contain a
specialized transcriptome capable of producing synaptic
proteins independently of the cell soma [30]. In our
study, we observed enriched processes for neuronal and
glial structure, synapse compounds or signal transduc-
tion. Usually, synaptic inputs reach neurons via den-
drites, in a postsynaptic position. This information is
processed by cellular machinery and the output goes to
the axon, arriving at the presynaptic area [31]. In all
brain areas, we identified enriched processes for pre-
synaptic and postsynaptic alteration, and related to parts
of these both mechanisms suggesting again that the
quality of synapses, gap junctions and consequently re-
ceptors and information transmission could be altered as
a consequence of the disruption of DNAm in the indi-
viduals with OCD.

A member of the GPCRs family, the GABAB receptor,
was identified in CN. GABAB receptors produce slow and
prolonged inhibitory signals via G proteins, interact with
several neurotransmitter receptors and regulate receptor
activity. These receptors are broadly expressed in the
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nervous system and both GABAB pre and postsynaptic re-
duce neurotransmitter release and hyperpolarizing neu-
rons, respectively. Altered GABAB receptor function has
been related with neurological and psychiatric disorders
[32, 33]. Also, GABAB has a functional crosstalk with N-
methyl-D-aspartate (NMDA), an ionotropic glutamate re-
ceptor enriched for CN. NMDA has a role in activity-
dependent changes in synaptic plasticity [32]. Glutamate
receptors are involved with physiological and pathological
processes in the central nervous system as well as the effi-
ciency of synaptic transmission [34, 35] and are associated
with OCD [36], with direct and indirect pathways operat-
ing on CSTC circuitry [37]. Moreover, individuals with
OCD have higher GABA levels as well as GABA/glutam-
ate ratio compared to health controls [38].

Enriched processes identified in NAC not found in the
other brain areas were related to acetylcholine receptor

activity and cholinergic synaptic transmission. An animal
model showed that cholinergic interneurons’ activity in
NAC were associated with adaptive cue-motivated be-
havior, present in many psychiatric conditions [39].
Acetylcholine seems to not interfere with signal attenu-
ation in the cholinergic system of compulsive behavior
in a rat model of OCD [40]. Nevertheless, in pediatric
obsessive-compulsive disorder, specifically in children
with PANDAS (Pediatric autoimmune neuropsychiatric
disorders associated with streptococcal infections), cho-
linergic interneurons activity in the striatum may con-
tribute to pathophysiology in children with rapid-onset
OCD symptoms [41].

Additionally, we explored the potential involvement of
transcription factors that corroborated the previous find-
ings, such as the involvement of the immune system, rep-
licated in all enrichment analysis for all brain areas.
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Immunological and neuroinflammatory alterations have
been associated with psychiatric disorders, such as OCD.
The role of the immune system in the pathophysiology of
OCD is mediated by different processes, i.e. interleukin
signaling, interferon gamma and MHC receptor activity
[42, 43], also replicated in our analysis. Regarding the in-
volvement of cytokines in OCD, they affect the central
nervous system by altering neurotransmitter systems. We
observed enriched pathways for the anti-inflammatory cy-
tokines IL-17 for PT and IL-4, IL-5, IL-10, IL-13 for CN,
reinforcing the role of cytokines in the pathogenesis of
OCD [44]. The proinflammatory cytokine interferon
gamma (IFN-y) was also altered in CN and OFC. MHC
receptor activity involves genes that control polymorphic
proteins from the immune system [55], including HLA-
DPB1 that was associated with OCD in a GWAS study
comparing OCD cases, healthy controls and combined
parents-child trios [45]. Here, HLA-DPB1 appears as
down-regulated in ACC and OFC.

Some cognitive functions, such as learning and mem-
ory, and behaviors, such as feeding and locomotory,
were enriched in our analysis for ACC, OFC, NAC and
PT. Also, for OFC, synaptic assembling included BDNF
among the genes, whose role was related to brain vol-
ume by neuroimaging as well as cognition outcomes, in-
cluding social behavioral changes in OFC-amygdala
circuit [46, 47]. There is an increasing amount of evi-
dence supporting the association between BDNF and
OCD phenotype and neurobiology [16, 48, 49]. Although
it is still unclear how OCD symptoms/dimensions might
be related to the immune alterations, some inflammatory
processes were associated with the psychopathology of
OCD by compromising cognitive functions.

We also identified an enrichment for the MAPK cas-
cade, which is related to innate and adaptive immune re-
sponse [50]. This pathway is involved in the regulation of
conservative mechanisms in eukaryotic cells, including
apoptosis and cell differentiation [51], and can coordinate
and respond differently to stimuli including hormones
and receptors [52]. ERK-MAPK pathway mediates several
mechanisms involved in the pathogenesis of OCD. Specif-
ically, the TrkB/ERK-MAPK pathway overactivation con-
tributes to restoring normal behavior in an animal model
of OCD. Moreover, up-regulation of the Ras/ERK-MAPK
pathway was involved in the development of OCD-related
disorders [53]. ERK and RAS cascade reactions signal to
MAPKSs, activating signal transduction, transcription fac-
tors and regulating gene expression. ERK cascade, which
was enriched in our integration analysis for OFC, CN and
PT, is activated by different stimuli, such as G protein-
coupled receptors. RAS, the most prominent member of
the small GTPase family, is activated after receptor phos-
phorylation, propagating signals that result in the
activation of sequential kinases, including ERK [33, 54].
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Along with RAS, other small GTPase presented enrich-
ment in our results in CN, the Rho protein signal trans-
duction was enriched in NAC. RHO regulates
cytoskeleton reorganization, cell cycle progression and
MAP kinase signal transduction. Proteins from the Rho
GTPase family are expressed in the central nervous system
and involved in cytoskeletal plasticity, especially in the
actin cytoskeleton, modulating cell and axon migration
[33]. Other pathways involved with Ras/MAPK, such as
PI3K and cAMP signaling pathways. PI3K interacts with
RAS as one of its main effector pathways and cooperates
with MAPK pathways inducing DNA synthesis [54]. The
regulation of PI3K activity through insulin-related signal-
ing was described as a key player in OCD etiology, affect-
ing dendritic spine and synapse formation [55]. cCAMP
signaling, also enriched in ACC, OFC, CN and PT, regu-
lates the activation of MAPKs and also plays the opposite
role, blocking the MAPK pathway through the binding of
Raf-1 to Ras [54]. cAMP levels and activity was altered in
patients with OCD compared to controls [56]. cAMP also
plays a structural role in dendritic spines and in the struc-
tural enlargement of spines. Additionally, postsynaptic
cAMP mechanism enhances structural potentiation of
spines playing a key role in the regulation of structural
synaptic plasticity [29].

Finally, the immune response has a close relation with
stress response [57], biological processes that were
enriched in all brain areas except for PT. Stress conditions
play an important role in disrupting neurotransmission,
synaptic plasticity, and cognitive functions such as mem-
ory and learning [57, 58]. An increasing amount of evi-
dence of accelerated epigenetic age in some patients with
neurodegenerative, psychiatric and cardiovascular diseases
has been previously described [18, 19, 59]. In agreement
to the chronological age, we observed older DNAm age
for OCD group, as well as a higher aging trend regarding
AA difference and AA residuals, which also agrees with
the enrichment finding of apoptotic processes for all areas,
aging enriched for OFC, CN and PT, and cellular senes-
cence enriched for PT. Although not significant, it was
noteworthy that in disagreement with other areas, ACC
was the only region that showed negative age acceleration
(AA) residual and presented a younger DNAm age for
OCD group. A positron emission tomography study re-
ported inflammation at OCD’s neurocircuitry in several
brain areas, including OFC, CN, PT, thalamus and ventral
striatum, but not ACC [60]. In ACC, reduced glutathione
levels were found with aging and brain atrophy in mice
with EAACI mutation. EAACI is a transporter of cysteine,
which is a precursor for neuronal glutathione synthesis
[61]. In addition, glutamatergic system gene variants were
associated with lower concentrations of glutamate in the
CSTC circuitry, particularly ACC, of patients with OCD
[62, 63].
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It is important to note that as a case-control study,
our findings could be a result of the disease rather than
a cause. As psychiatric disorders present high comorbid
and genetic correlations [64], possibly our findings are
not exclusive for OCD, although we identified genes pre-
viously associated with OCD and used strict inclusion
and exclusion criteria for patients selection, seeking to
ensure high quality and reduce biases as best as possible
[65]. Also, considering limitations associated with small
sample size and post-mortem collection of clinical infor-
mation, our results must be viewed as a preliminary con-
tribution regarding brain methylation patterns in OCD.

Conclusions

Our findings confirm the involvement of previously as-
sociated genes and biological processes in OCD as well
as report differences related to specific brain areas.
These findings point to a role of cellular communication,
inflammatory processes and behavior mediated by DNA
methylation in OCD brain tissues. The main findings
were related to the immune system, reaffirming the
current literature findings about its involvement with
OCD. We conclude that changes in DNA methylation
are involved with OCD and further studies are needed
to characterize alterations in different paths in each
brain area.

Methods

Participants and OCD clinical assessment

Brain samples were retrieved from the Sao Paulo Aut-
opsy Service from the University of Sdo Paulo as part of
the psychiatric disorders collection of the Biobank for
Aging Studies. Three psychiatrists performed a screening
interview encompassing clinical, functional, cognitive
and psychiatric parameters (detailed in [66]) to a family
member or close caregiver who had at least weekly con-
tact with the deceased. For individuals with a presum-
ably diagnosis of OCD, a second clinical evaluation with
the same informant was done for the confirmation of
the diagnosis. The complete evaluation comprised the
Structured Clinical Interview for DSM IV Axis I disorder
(SCID) [67], the Yale- Brown Obsessive-compulsive scale
(Y-BOCS) [68] and a short version of DY-BOCS [69].
The questionnaire was modified to ask the questions
about the deceased case. As standard procedure in the
second evaluation, informants showed the medication
(or medication boxes) that were used. After the second
assessment, a best estimated diagnosis procedure was
done by two psychiatrists [9, 65]. Briefly, from 109 indi-
viduals, 72 were assigned to the psychiatric group, being
22 diagnosed with OCD by clinical parameters and 50
diagnosed with other psychiatric disorders (i.e. bipolar
disorder, major depression, Tourette syndrome, schizo-
phrenia and others). Most individuals were unmedicated
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to psychiatric medications. Thirty-seven individuals did
not fulfill psychiatric diagnosis criteria. Of the 22 OCD
cases, eight had the best estimated diagnosis and were
included in this study (Additional file 1: Table S8). Eight
controls without any psychiatry diagnosis, matched by
age, sex and brain’s hemisphere were selected from the
same Biobank. All individuals were 50 years of age or
older, without a history of clinical dementia and no
other clinical comorbidity which could result in hypoxia
or brain autolysis (as high postmortem hour,
hospitalization with mechanical breathing, chronic ob-
structive pulmonary disease, kidney failure and previous
cerebrovascular accident). These individuals were con-
sidered as healthy controls in the study. Brain tissues
from both OCD cases and healthy controls were col-
lected from cortico-striatal areas ACC, OFC, NAC, CN
and PT (Additional file 1: Fig. S3). More detailed infor-
mation concerning sample collection and the complete
evaluation can be found elsewhere [9, 65, 70].

DNA methylation data

DNAm profiling and data quality control

Brain samples were dissected to isolate the cortico-
striatal areas and preserved in cryotubes at — 80 °C. DNA
was extracted using QIAsymphony DNA Kit (Qiagen,
Hilden, Mettmann, Germany) on QIAsymphony plat-
form, according to the manufacturer’s instructions. DNA
was bisulfite-converted using the EZ DNA Methylation
kit (Zymo Research, Irvine, California, USA), according
to manufacturer’s instructions and hybridized in the Illu-
mina Infinjum HumanMethylation450 BeadChip array
(Illumina Inc., San Diego, California, USA). Raw data
were extracted by the iScan SQ scanner (Illumina) using
GenomeStudio software (v.2011.1), with the methylation
module v.1.9.0 (Illumina), into IDAT files, which were
imported to R statistical environment using minfi pack-
age [71]. Quality control steps removed 16,217 probes
associated with SNPs (Single nucleotide polymorphism)
(that contained SNPs at the CpG interrogation site or at
the single nucleotide extension), 10,007 probes with un-
reliable measurements (p > 0.05), 26,357 probes located
in specific contexts (non-CpG sites) and 10,871 probes
located in the sexual chromosomes. All samples passed
quality control parameters resulting in 422,060 probes to
be analyzed. Background was corrected using the noob
method [72] and cell composition was estimated using
FlowSorted. DLPFC.450 k function [73] as implemented
in the minfi package [71]. Cell composition was evalu-
ated for each brain region considering the groups to be
compared. We used the compareGroups package [74]
that pointed to OFC as presenting differences in cell
composition. Thus, cell composition was considered as a
variable to be corrected only when OCD cases and
health controls were compared for the OFC region.
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ChAMP package was used to identify and correct batch
effects and biological variables (sex) [75, 76]. Distribu-
tion of Infinium I and II probes fluorescence measure-
ments was normalized by functional normalization
(FunNorm) method [77].

Identification of DNAm changes related to OCD and
methylation clock

For each brain region, we applied the linear model func-
tion from limma [78] to M-values (loggit of B-values) to
identify differentially methylated CpG sites (DMSs) [79].
As parameters, we considered adjusted p-value (adjP)
<0.05 after multiple testing corrections using the Benja-
mini and Hochberg method. Age was included as a vari-
able for all brain areas and cellular composition was
included only for OFC. As multiple CpG sites may map
to the same gene, and the effect of DNAm can be
dependent on its location in relation to the gene (pro-
moter, body), we used Functional Epigenetic Modules
(FEM) analysis. The FEM package [80], as implemented
in ChAMP, identifies subnetworks (protein interaction
modules - PPI) where a significant number of members
exhibit differential DNAm in relation to the phenotype
of interest. To identify differentially methylated regions
(DMRs), DMRcate was applied to the methylation values
[81], considered significant those with FDR (False Dis-
covery Rate) <0.05 and methylation differences (delta
beta, AB) =10%. DNAm age was calculated with the beta
values using Horvath’s method [18]. The algorithm also
calculated de age acceleration (AA), which can be used
to determine how fast tissues are aging, i.e., whether the
DNAm age of a given tissue is consistently higher (or
lower) than expected [18, 82].

Transcriptome data

The list of differentially expressed genes (DEG) comparing
OCD cases and controls from NAC, CN and PT was re-
trieved from a previously published study by our group
[9]. For ACC and OFC, RNASeq data were preprocessed
using the same parameters [9]. ACC dataset was com-
posed of 8 controls and 8 OCD samples and OFC for 5
and 6 controls and OCD samples, respectively. Any ribo-
somal RNA that bypassed the depletion process from the
read counts of both the ACC and OFC regions was re-
moved. To filter genes that were lowly expressed, we con-
verted the read counts to counts per million (CPM) values
using the edgeR library (v.3.28.1) [83], choosing only tran-
scripts that had at least 0.3 CPM in 50% for a group (con-
trols or OCD). For both datasets, we used the DESeq2
library (v.1.26) [84] to normalize the raw counts with the
rlog function and the surrogate variable analysis (SVA) li-
brary (v.3.34) [85] to estimate any hidden covariates, using
sex, age, laboratory batch and OCD diagnostic as our vari-
ables of interest. The DESeq2 were also used to perform
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the differential expression analysis, using as covariates in
the linear model the same variables of interest with the
addition of surrogate variables estimated by the SVA for
each brain region (3 surrogate variables for the ACC and
2 surrogate variables for the OFC).

Bioinformatic integrative analysis

Integrative analysis considering DEGs and methylation
differences (CpG sites mapped to genes)

For the five brain areas, we merged the three datasets
(DMR and FEM genes list from methylation analysis and
DEGs from the RNASeq analysis) and use the STRING
Database [86] to construct a PPI network for each brain
area, where, we used all active interaction sources with
our list of genes, selecting only the edges with a high
confidence score (=0.7). From this PPI network, we se-
lected edges that connected nodes from 2 different
sources (DMR, DEG or FEM lists), to remove nodes that
were exclusively connected with its own DMR, DEG or
FEM dataset and to guarantee that for each PPI network,
we had the major connected component integrating
both transcriptomic and methylation data. To calculate
network centralities metrics, we used the NetworkX li-
brary (v.1.9.1), choosing the metrics: Degree - evaluate
the number of connections from each node; Neighbor
degree - the number of the degrees from each node’s im-
mediate neighbor; Closeness - also a measure of the in-
fluence of a node in the network, but based on its node’s
positioning; Eigenvector - measure the global influence
from a node [87]; KATZ centrality - a variation from the
Eigenvector centrality used on social networks, capable
to measure both the local and the global influence of a
node; Betweenness - measures the number of paths be-
tween a pair nodes that cross a given node. A gene high
betweenness might be capable to connect isolated ele-
ments from a network; Clustering Coefficient - measure
the number of triangles in the network, in other words,
the number of immediate neighbors that are also con-
nected between each other [88]. The selected nodes were
re-submitted to STRING [86] (using the same parame-
ters) and PPI enrichment analysis was applied to evalu-
ate if the brain region networks have more interactions,
considering both GO and REACTOME, non-redundant
ontologies/pathways with a minimum of 5 genes.

Integrative analysis considering combination between
transcription factors annotated from DMRs (not mapped to
genes) and DEGs

After identifying the DMRs, they were annotated for tran-
scription factors (TFs) using ENCODE (Encyclopedia of
DNA Elements) [22], wgEncodeRegTfbsClusteredV3 track
available from Genome Browser’s Data Integrator [89]. To
match the TFs associated with the DMRs to the DEGs
previously identified for our dataset [9], we used the
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TRRUST v2 database [90]. Additionally, annotated TFs
and its targets were used to construct regulatory networks,
indicating the type of connection (activation, repression or
unknown interaction). Targeted DEGs were submitted to
WebGestalt [23] for GO and REACTOME enrichment
analysis, considering only non-redundant ontologies with
a minimum of 5 genes related and FDR < 0.05.
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Additional file 1: Fig. S1. Functional modules of subnetworks of
connected genes identified with FEM analysis. A: Cortical areas —
Modules 1-5 from anterior cingulate gyrus (ACC) and modules 1-9 from
orbitofrontal cortex (OFC); B: Striatal areas — Modules 1-5 from nucleus
accumbens (NAC), modules 1-3 from putamen (PT) and modules 1-8
from caudate nucleus (CN). DNA methylation level is represented by
color intensity. Fig. $2. Summary of designed experiments. A: Evaluation
of DNA methylation (DNAm) and transcriptome in post-mortem brain tis-
sues of the anterior cingulate gyrus (ACC), orbitofrontal cortex (OFC), nu-
cleus accumbens (NAC), caudate nucleus (CN) and putamen (PT) from
OCD patients and matched controls; B: DNAm characterization resulting
in DNA methylation age (DNAm), Functional Epigenetic Modules (FEM)
and differentially methylated regions (DMRs). Differentially expressed
genes (DEGs) generated by transcriptome analysis: NAC, CN and PT were
retrieved from a previously published study by our group [10] and ACC/
OFC were processed for the present study; C: Methylation and gene ex-
pression integration data using genes from DMRs, FEM modules and
DEGs with supplemental enrichment analysis considering both Gene
ontology (GO) and REACTOME pathways; D: Integration analysis consider-
ing combination between transcription factors annotated from DMRs
(not mapped to genes) and DEGs with supplemental enrichment analysis
considering both GO and REACTOME pathways. Table S$8. Description of
obsessive—compulsive symptoms of the OCD patients. Fig. $3. Relation
between individuals and related brain areas.
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between OCD cases and controls. Table S2. Functional modules
identified by FEM (Functional Epigenetic Modules) analysis. Table S3.
Differentially methylated regions (DMRs) and related cgs. Table S4.
Differential expression analysis between OCD cases and controls. Table
S5. Nodes (genes) from STRING final networks classified according to
network centrality measures. Table S6: Enrichment results from STRING
for the final networks using differentially expressed genes (DEG), genes
located on differentially methylated regions. Table S7. Transcription
factors (TF) annotated from differentially methylated regions (DMRs)
matched on differentially expressed genes (DEGs).
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