
RESEARCH ARTICLE Open Access

Genome-wide association study on Fourier
transform infrared milk spectra for two
Danish dairy cattle breeds
R. M. Zaalberg* , L. Janss and A. J. Buitenhuis

Abstract

Background: Infrared spectral analysis of milk is cheap, fast, and accurate. Infrared light interacts with chemical
bonds present inside the milk, which means that Fourier transform infrared milk spectra are a reflection of the
chemical composition of milk. Heritability of Fourier transform infrared milk spectra has been analysed previously.
Further genetic analysis of Fourier transform infrared milk spectra could give us a better insight in the genes
underlying milk composition. Breed influences milk composition, yet not much is known about the effect of breed
on Fourier transform infrared milk spectra. Improved understanding of the effect of breed on Fourier transform
infrared milk spectra could enhance efficient application of Fourier transform infrared milk spectra. The aim of this
study is to perform a genome wide association study on a selection of wavenumbers for Danish Holstein and
Danish Jersey. This will improve our understanding of the genetics underlying milk composition in these two dairy
cattle breeds.

Results: For each breed separately, fifteen wavenumbers were analysed. Overall, more quantitative trait loci were
observed for Danish Jersey compared to Danish Holstein. For both breeds, the majority of the wavenumbers was
most strongly associated to a genomic region on BTA 14 harbouring DGAT1. Furthermore, for both breeds most
quantitative trait loci were observed for wavenumbers that interact with the chemical bond C-O. For Danish Jersey,
wavenumbers that interact with C-H were associated to genes that are involved in fatty acid synthesis, such as
AGPAT3, AGPAT6, PPARGC1A, SREBF1, and FADS1. For wavenumbers which interact with –OH, associations were
observed to genomic regions that have been linked to alpha-lactalbumin.

Conclusions: The current study identified many quantitative trait loci that underlie Fourier transform infrared milk
spectra, and thus milk composition. Differences were observed between groups of wavenumbers that interact with
different chemical bonds. Both overlapping and different QTL were observed for Danish Holstein and Danish Jersey.
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Background
There is a large number of applications for trait predictions
utilizing Fourier transform infrared (FT-IR) milk spectra
from the mid-infrared range. Fourier-transform infrared
spectroscopy determines light absorbance across the infra-
red spectrum. Light is absorbed when it interacts with
chemical bonds. Wavenumber 1690 cm− 1, for example, in-
teracts with C=O of amide I, and 1600 cm− 1 is involved in
N-H bending of amide II [1, 2]. These chemical bonds are

typical for protein molecules. Wavenumbers from the lower
energy region that ranges from 1150 to 1040 cm− 1 interact
with C-OH, which is abundantly present in sugar molecules
[1, 2]. This chemical bond, however, is also present in fat
and protein molecules, but more scarcely. Wavelengths
from the infrared region that ranges from 2950 to 2850
cm− 1 induce C-H stretching [1, 2]. Triglyceride molecules
are rich in C-H bonds, but C-H bonds are also present in
many other molecules.
Mid-infrared light is commonly used in combination

with the principal least square regression method to ana-
lyse chemical composition of milk [3]. The major milk
components fat, protein, and lactose have been
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successfully predicted with FT-IR milk spectra [3]. In
addition, minor milk components have been predicted
with FT-IR milk spectra, such as fatty acids [4–6], pro-
tein fractions [7, 8], and ketone bodies [9–11]. Concen-
tration of ketone bodies in milk can be used as an
indicator for subclinical ketosis [9–11], or energy bal-
ance [12, 13].
Associations to genomic regions have been observed for

both milk composition, and infrared milk spectra. Fatty acid
composition, for example, has been associated to many dif-
ferent genomic regions [14, 15]. FT-IR milk spectra have
been linked to genes that have been associated to milk
composition previously, such as Diacylglycerol O-
acyltransferase 1 (DGAT1) or beta-lactoglobulin (PAEP)
[16–18]. A genome wide association study (GWAS) on a
subset of wavenumbers revealed associations for individual
wavenumbers to a variety of genes [18]. Examples are the
gene for the growth hormone receptor, or the gene UMPS
[18]. FT-IR milk spectra are also moderately to strongly
heritable [17, 19–21]. To get a better understanding of the
genetic background of FT-IR milk spectra, it is necessary to
further study the association between milk spectra and the
genome.
Cattle breed influences milk composition [19, 22–24],

and the genetic architecture of milk composition [25–27].
These breed differences in milk composition are reflected
in the FT-IR milk spectra. Heritability of FT-IR milk spec-
tra varied across breeds [17, 19–21]. Not much is known
about the breed differences in the genes that indirectly
underlie FT-IR milk spectra. Enhanced knowledge on
breed differences in the genetic architecture of FT-IR milk
spectra could provide us with a better understanding of
differences in milk composition across breeds. Finally, it
could facilitate future application of FT-IR milk spectra in
across breed prediction of novel phenotypes.
The aim of this study is to perform a GWAS on a se-

lection of wavenumbers in two dairy cattle breeds, Da-
nish Holstein and Danish Jersey.

Results
Selection of wavenumbers
After removal of wavenumbers which interact with water
molecules, 530 waveunumbers were left. For these 530
wavenumbers, correlations were calculated. The correl-
ation matrices were nearly identical for Danish Holstein
and Danish Jersey. The heatmap of the correlation
matrix for Danish Holstein is presented in Fig. 1. For
both breeds 17 blocks of highly correlated neighbouring
wavenumbers were observed, where the correlation be-
tween wavenumbers was > 0.95. From each block, the
wavenumber with the highest correlation sum was se-
lected. For four blocks, the selected wavenumber was
different for Danish Holstein and Danish Jersey (Table 1).
For both Danish Holstein and Danish Jersey, 15 out of

the 17 selected wavenumbers had a heritability > 0.05.
For Danish Holstein and Danish Jersey separately,
Table 1 presents an overview of the selected wavenum-
ber per block, the chemical bond with which the wave-
number interacts, heritability of the selected
wavenumber, number of quantitative trait loci (QTL)
identified for the selected wavenumber, number of QTL
unique for the selected wavenumber, and chromosomes
on which QTL were located. A QTL was defined as one,
or several overlapping groups of 100 neighbouring SNPs
(SNP group), for which each individual SNP group ex-
plained > 0.35% of the total additive genetic variation. A
peak was defined as the SNP group within a QTL, which
explained most of the total additive genetic variation.

Peak regions
Table 2 shows an overview of genomic regions, which
were associated to groups of wavenumbers, which inter-
act with different chemical bonds. For each group of
wavenumbers, genomic regions of 100 consecutive SNPs
which explained > 0.35% of the total additive genetic
variation are listed. This genomic region is referred to as
the “peak region”. There can be more peak regions on
one chromosome. Table 2 gives an overview of the high-
est peak region for each chromosome, meaning that only
one peak region per chromosome is described. A peak
region is not necessarily associated to all wavenumbers
of a group. For each peak region, those wavenumbers
are presented for which the proportion of explained
additive genetic variation by the peak region > 0,35%.
Candidate genes located within the peak region are
named in the final column.
An overview of the number of QTL per chromosome,

for Danish Holstein and Danish Jersey separately, and
the number of overlapping QTL between the two breeds
are shown in Table 3. Results are presented for all wave-
numbers combined, and for groups of wavenumbers
based on the chemical bond with which they interact
(Table 1).

QTL and wavenumbers interacting with different chemical
bonds
Wavenumbers interacting with alkanes
For Danish Holstein, the three peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with alkanes were positioned on BTA 6 (0.54%)
harbouring the casein (CSN) cluster, on BTA 14 (2.04%),
and on BTA 29 (0.48%). For Danish Jersey, the three
peak regions were positioned on BTA 6 (2.25%) har-
bouring the CSN cluster, on BTA 14 (2.10%), and on
BTA 20 (0.67%) harbouring GHR, and MRPS30. The
CSN cluster is a genomic region on BTA 6 containing
genes, which code for the milk protein casein.
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Wavenumbers interacting with C=O
For Danish Holstein, the three peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with C=O were positioned on BTA 5 (0.43%) har-
bouring MGST1, on BTA 14 (9.76%), and on BTA 17
(0.39%). For Danish Jersey, the four peak regions were
positioned on BTA 12 (0.54%), on BTA 14 (5.11%), on
BTA 19 (0.54%) harbouring SREBF1, and on BTA 20
(0.60%) harbouring GHR, and MRPS30.

Wavenumbers interacting with C-H
For Danish Holstein, the two peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with C-H were positioned on BTA 5 (0.39%) har-
bouring MGST1, and on BTA 14 (7.88%). For Danish
Jersey, the three peak regions were positioned on BTA
12 (0.63%), on BTA 14 (5.38%), and on BTA 20 (0.64%)
harbouring GHR, and MRPS30.

Wavenumbers interacting with C-O
For Danish Holstein, the three peak regions explaining most
additive genetic variation for wavenumbers interacting with

C-O were positioned on BTA 14 (8.55%), on BTA 19
(0.52%), and on BTA 29 (0.54%). For Danish Jersey, the four
peak regions were positioned on BTA 1 (0.71%), and
AGPAT3, on BTA 6 (0.88) harbouring the CSN cluster, on
BTA 14 (5.27%), and on BTA 19 (0.68%) harbouring
SREBF1.

Wavenumbers interacting with CO-N
For Danish Holstein, the three peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with C-ON were positioned on BTA 5 (0.36%)
harbouring MGST1, on BTA 6 (0.35%) harbouring the
CSN cluster, and on BTA 14 (5.19%). For Danish Jersey,
the three peak regions were positioned on BTA 6
(1.04%) harbouring the CSN cluster, on BTA 14 (1.90%),
and on BTA 29 (0.49%) harbouring FADS1.

Wavenumbers interacting with N-H
For Danish Holstein, the three peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with N-H were positioned on BTA 6 (0.55%) har-
bouring the CSN cluster, on BTA 14 (9.73%), and on

Fig. 1 Heatmap of the phenotypic correlation matrix for wavenumbers in Danish Holstein. The upper and lower triangle are identical. Seventeen
blocks of strongly positively correlated neighbouring wavenumbers are indicated with black dashed square boxes. The upper left corner
represents wavenumber 3008 cm− 1 and wavenumber group 1, and the lower right represents wavenumber 925 cm− 1 and wavenumber
group 17
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BTA 20 (0.53%) harbouring ANKH. For Danish Jersey,
the three peak regions were positioned on BTA 3
(0.73%) harbouring GBA, on BTA 6 (2.32%) harbouring
the CSN cluster, and on BTA 14 (4.89%).

Wavenumbers interacting with –OH
For Danish Holstein, the three peak regions explaining
most additive genetic variation for wavenumbers inter-
acting with -OH were positioned on BTA 14 (1.12%), on

BTA 20 (0.40%) harbouring ANKH, and on BTA 29
(0.45%). For Danish Jersey, the three peak regions were
positioned on BTA 6 (1.09%) harbouring the CSN clus-
ter, on BTA 14 (0.52%), and BTA 16 (0.46%).

Breed differences
Breed differences are clearly visible in Tables 1, 2 and 3,
and the Manhattan plots in Additional files 1 and 2.
Overall, more QTL were observed for Danish Jersey

Table 1 Fifteen selected wavenumbers (wvn) from fifteen positively correlated wavenumber blocks (see Fig. 1), the chemical bond
(CB) with which the selected wavenumber interacts, heritability of the selected wavenumber, total number of QTL for the selected
wavenumber, number of QTL unique for the selected wavenumber, and chromosomes on which QTL were located

Danish Holstein

Block Wvn (cm− 1) CBa h2 # QTL # Unique QTL BTA

1 2988 C-H 0.14 5 – 5, 14, 17, 20, 21

2 2872 C-H 0.25 2 – 5, 14

5 1966 Unknown 0.16 3 – 5, 14, 21

6 1735 C=O 0.21 3 – 5, 14, 17

7 1696 C=O 0.18 2 – 5, 14

8 1604 N-H 0.20 4 – 5, 14, 17, 20

9 1557 N-H 0.18 3 – 6, 14, 20

10 1500 CO-N 0.12 3 – 5, 6, 14

11 1449 Alkanes 0.26 6 1 6, 11, 13, 14, 19, 29

12 1295 -OH 0.11 5 – 14, 19, 20, 21, 29

13 1226 C-O 0.26 5 – 3, 5, 11, 14, 29

14 1180 C-O 0.24 3 – 5, 14, 17

15 1114 C-O 0.28 7 – 3, 11, 14, 19, 25, 28, 29

16 1060 C-O 0.20 5 – 3, 14, 19, 21, 29

17 975 C-O 0.17 3 – 5, 14, 21

Danish Jersey

Block Wvn (cm−1) CB h2 # QTL # Unique QTL BTA

1 2988 C-H 0.12 10 1 1, 5, 6, 11, 14, 19, 20, 23, 27, 29

2 2872 C-H 0.22 16 – 1, 5, 6, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 24, 25

5 1966 Unknown 0.15 12 1 3, 5, 6, 9, 11, 12, 14, 16, 19, 20, 21, 22

6 1735 C=O 0.18 6 – 5, 11, 12, 14, 19, 20

7 1696 C=O 0.15 12 – 3, 5, 6, 9, 11, 12, 14, 16, 19, 20, 21, 22

8 1604 N-H 0.12 19 4 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 22, 23, 24

9 1557 N-H 0.15 12 4 1, 2, 3, 5, 6, 7, 11, 13, 16, 18, 20, 29

10 1500 CO-N 0.06 12 2 6, 10, 11, 12, 14, 16, 17, 20, 21, 23, 24, 29

11 1449 Alkanes 0.25 12 – 3, 5, 6, 11, 12, 14, 16, 18, 19, 20, 21, 25

12 1299 -OH 0.07 10 1 1, 5, 6, 14, 16, 18, 19, 23, 27, 28

13 1226 C-O 0.20 17 1 1, 5, 6, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 25, 28

14 1183 C-O 0.20 17 1 1, 5, 6, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 25

15 1114 C-O 0.20 14 4 1, 2, 4, 5, 6, 7, 10, 14, 16, 17, 18, 19, 25, 28

16 1056 C-O 0.19 4 – 1, 14, 16, 19

17 979 C-O 0.19 9 – 3, 5, 9, 11, 12, 14, 16, 19, 20

Boldface chromosomes are those where unique QTL were observed
aWilliams and Fleming, 1980 [2]
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Table 2 Top SNP groups explaining most total additive genetic variation for wavenumbers, which interact with different chemical
bonds

Danish Holstein

Chemical bond Peak region All associated wvn pVarA

Peak CHR LL UL Candidate genes

Alkanes 6_b 6 80394422 88006286 CSN-cluster 1449 0.54

11_a 11 69240871 75495975 1449 0.4

13_a 13 53205470 58871642 1449 0.37

14 14 1463676 5428037 DGAT1 1449 2.04

19_a 19 32148966 37552530 SREBF1 1449 0.39

29_a 29 6893054 12147907 1449 0.48

C=O 5_b 5 91118692 98515360 MGST1 1735, 1696 0.43

14 14 1463676 5428037 DGAT1 1735, 1696 9.76

17_a 17 12545331 18398611 1735 0.39

C-H 5_b 5 91118692 98515360 MGST1 2988, 2872 0.39

14 14 1463676 5428037 DGAT1 2988, 2872 7.88

17_a 17 12545331 18398611 2988 0.36

20_b 20 56721394 61566803 ANKH 2988 0.36

21_a 21 6241052 11219294 IGF1R 2988 0.36

C-O 3_c 3 49704834 58434544 1226, 1114, 1060 0.42

5_b 5 91118692 98515360 MGST1 1226, 1180, 975 0.47

11_a 11 69240871 75495975 1226, 1114 0.43

14 14 1463676 5428037 DGAT1 1226, 1180, 1114, 1060, 975 8.55

17_a 17 12545331 18398611 1180 0.37

19_c 19 57592897 62235799 1226, 1114, 1060 0.52

21_a 21 6241052 11219294 IGF1R 1226, 1114, 1060 0.35

21_c 21 62530384 67845758 975 0.35

25 25 47181 4689960 1226, 1180, 1114, 1060, 975 0.37

28_a 28 2313753 7557315 1226, 1180, 1114, 1060, 975 0.39

29_a 29 6893054 12147907 1226, 1114, 1060 0.54

CO-N 5_b 5 94381154 101721892 MGST1 1500 0.36

6_b 6 86819633 92465869 CSN-cluster 1500 0.35

14 14 1463676 5428037 DGAT1 1500 5.19

N-H 5_b 5 91118692 98515360 MGST1 1604 0.5

6_b 6 80394422 88006286 CSN-cluster 1557 0.55

14 14 1463676 5428037 DGAT1 1604, 1557 9.73

17_a 17 12545331 18398611 1604 0.37

20_b 20 54443531 59156949 ANKH 1604, 1557 0.53

-OH 14 14 1463676 5428037 DGAT1 1295 1.12

19_c 19 58318121 63354178 1295 0.38

20_b 20 56721394 61566803 ANKH 1295 0.4

21_a 21 6241052 11219294 IGF1R 1295 0.36

29_a 29 6893054 12147907 1295 0.45

Danish Jersey

Chemical bond Peak All associated wvn pVarA

Peak CHR LL UL Candidate gene(s)
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Table 2 Top SNP groups explaining most total additive genetic variation for wavenumbers, which interact with different chemical
bonds (Continued)

Alkanes 3_a 3 10619258 19193451 GBA 1449 0.57

5_a 5 69483211 76659850 1449 0.6

6_b 6 81119938 88592295 CSN-cluster 1449 2.25

11_b 11 101802657 106804258 PAEP 1449 0.48

12_b 12 67073994 78212571 1449 0.47

14 14 1463676 5601692 DGAT1 1449 2.1

16_a 16 37904090 46625869 1449 0.54

18_b 18 29414941 37188964 1449 0.41

19_a 19 31087581 36437188 SREBF1 1449 0.55

20_a 20 28803514 35940949 GHR, MRPS30 1449 0.67

21_b 21 53369113 61180711 PI 1449 0.4

25 25 1127441 5948405 1449 0.35

C=O 3_b 3 31035370 37101347 1735, 1696 0.35

5_a 5 72082602 79640097 1735, 1696 0.42

6_a 6 41496235 46788536 PPARGC1A 1696 0.4

9_a 9 123525 5981648 1735, 1696 0.39

11_b 11 100858404 105845271 PAEP 1735, 1696 0.44

12_b 12 67073994 78212571 1735, 1696 0.54

14 14 1463676 5601692 DGAT1 1735, 1696 5.11

16_a 16 40846801 48806575 1696 0.36

19_a 19 32148966 37582865 SREBF1 1735, 1696 0.54

20_a 20 28803514 35940949 GHR, MRPS30 1735, 1696 0.6

21_b 21 52091583 59665710 PI 1696 0.39

22_a 22 162018 5884558 1735, 1696 0.37

C-H 1_b 1 143831554 148893434 SLC37A1, AGPAT3 2988, 2872 0.62

5_a 5 70897603 77988054 2988, 2872 0.46

6_a 6 41496235 46788536 PPARGC1A 2988, 2872 0.47

8_a 8 50575791 55477297 2988, 2872 0.35

9_a 9 123525 5981648 2988, 2872 0.39

11_b 11 100858404 105845271 PAEP 2988, 2872 0.44

12_b 12 67073994 78212571 2988, 2872 0.63

14 14 1463676 5601692 DGAT1 2988, 2872 5.38

16_a 16 44176019 51011081 2988, 2872 0.37

17_c 17 66304866 71192864 2872 0.36

18_a 18 162653 6934625 2988, 2872 0.4

19_a 19 32148966 37582865 SREBF1 2988, 2872 0.62

20_a 20 28803514 35940949 GHR, MRPS30 2988, 2872 0.64

21_b 21 53369113 61180711 PI 2988, 2872 0.46

23 23 33645739 40993370 PRL 2988, 2872 0.37

24 24 31982958 37002274 2988, 2872 0.35

25 25 1127441 5948405 2988, 2872 0.38

27_b 27 32800374 38436906 AGPAT6 2988, 2872 0.37

29_b 29 40344120 45817015 FADS1 2988, 2872 0.35

C-O 1_b 1 141807977 146940031 SLC37A1, AGPAT3 1226, 1183 0.71
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Table 2 Top SNP groups explaining most total additive genetic variation for wavenumbers, which interact with different chemical
bonds (Continued)

2_a 2 1826336 8188132 1226, 1183, 1114, 1056, 979 0.41

3_a 3 15658202 24149985 GBA 1226, 1114, 979 0.38

4 4 116209319 120641946 1114 0.43

5_a 5 70897603 77988054 1226, 1183, 1114, 1056, 979 0.51

6_b 6 81119938 88592295 CSN-cluster 1226, 1183, 1114 0.88

7_a 7 244816 5027447 1226, 1183, 1114, 1056, 979 0.41

8_b 8 102776706 108556349 1226, 1183, 979 0.38

9_a 9 123525 5981648 1226, 1183, 1114, 1056, 979 0.37

9_b 9 23322608 29910981 1226, 1183, 1114, 979 0.37

10_a 10 26527257 32295516 1226, 1183, 1114, 979 0.37

11_b 11 100858404 105845271 PAEP 1226, 1183, 979 0.51

12_b 12 67073994 78212571 1226, 1183, 1114, 1056, 979 0.67

14 14 1463676 5601692 DGAT1 1226, 1183, 1114, 1056, 979 5.27

16_b 16 66365432 71735866 1226, 1183, 1114, 1056, 979 0.43

17_c 17 67193210 72005076 1226, 1183, 1114, 1056, 979 0.38

17_c 17 66304866 71192864 1226, 1183, 1114, 1056, 979 0.38

18_a 18 162653 6934625 1226, 1183, 1114, 1056, 979 0.41

18_b 18 32335701 38197798 1226, 1183, 1114, 979 0.41

19_a 19 31087581 36437188 SREBF1 1226, 1183, 1114, 979 0.68

19_b 19 48007453 53568928 GH, FASN, CCDC57 1056, 979 0.66

20_a 20 28803514 35940949 GHR, MRPS30 1226, 1183, 1114, 979 0.63

21_b 21 53369113 61180711 PI 1226, 1183, 1114, 1056, 979 0.46

22_b 22 47619247 54132903 LTF 1226, 1183, 1114, 1056, 979 0.43

25 25 47181 4952802 1226, 1183, 1114, 1056, 979 0.39

25 25 1127441 5948405 1226, 1183, 1114, 1056, 979 0.39

28_b 28 17171751 23666465 1226, 1114, 979 0.47

CO-N 6_b 6 81119938 88592295 CSN-cluster 1500 1.04

10_b 10 49435552 54012929 1500 0.37

11_b 11 101802657 106804258 PAEP 1500 0.41

12_a 12 15817583 23340411 1500 0.39

14 14 1463676 5601692 DGAT1 1500 1.9

16_a 16 40846801 48806575 1500 0.44

17_a 17 42892776 47808938 1500 0.42

20_a 20 27422842 34474873 GHR, MRPS30 1500 0.36

21_a 21 38947 8955497 IGF1R 1500 0.35

23 23 28021047 35406968 PRL 1500 0.43

24 24 33000605 37958693 1500 0.35

29_b 29 40344120 45817015 FADS1 1500 0.49

N-H 1_a 1 68997018 76331663 1604, 1557 0.4

2 2 108823285 114517270 1557 0.36

2 2 27374270 31731639 1604, 1557 0.36

3 3 10619258 19193451 GBA 1604, 1557 0.73

5_a 5 69483211 76659850 1604, 1557 0.65

6_b 6 81119938 88592295 CSN-cluster 1604, 1557 2.32
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compared to Danish Holstein (Tables 2 and 3). For Da-
nish Holstein, most QTL were located on BTA 19 and
BTA 20, and for Danish Jersey on BTA 5 and BTA 16.
For both breeds, most QTL were observed for wave-
numbers interacting with C-O. Heritability of wavenum-
bers was slightly lower for Danish Jersey than for Danish
Holstein (Table 1). The proportion of explained vari-
ation by the peak region of DGAT1 was higher in Danish
Holstein compared to Danish Jersey.

Overlapping QTL
Overlapping peak regions were observed on BTA 5 (91.1–
94.9 Mbp) harbouring MGST1, on BTA 6 (81.1–84.6
Mbp) harbouring the CSN cluster, on BTA 19 (32.1–37.6),
on BTA 20 (56.0–60.8 Mbp) harbouring ANKH, on BTA
21 (6.2–11.0 Mbp) harbouring IGFIR, and on BTA 25

(0.1–4.7 Mbp). Most overlapping QTL were observed for
wavenumbers interacting with C-O and N-H. No overlap-
ping QTL between the two breeds were observed for
wavenumbers interacting with C=O, C-H, or –OH.

Discussion
To get a better understanding of the genetics of milk
composition, this study aimed at performing a GWAS
on a selection of wavenumbers interacting with different
chemical bonds in two dairy cattle breeds, Danish Hol-
stein and Danish Jersey.
For each breed separately, fifteen wavenumbers were

selected from blocks of strongly positively correlated
neighbouring wavenumbers based on the maximum cor-
relation sum within block, and a minimum heritability
of 0.05. The correlation between wavenumbers within

Table 2 Top SNP groups explaining most total additive genetic variation for wavenumbers, which interact with different chemical
bonds (Continued)

7_a 7 5955666 16564424 1604, 1557 0.36

7_b 7 73511189 78936990 1604, 1557 0.36

8_a 8 50575791 55477297 1604 0.35

9_a 9 123525 5981648 1604 0.38

10_b 10 48475000 52884624 1604 0.36

11_b 11 101802657 106804258 PAEP 1604, 1557 0.45

12_a 12 15817583 23340411 1604, 1557 0.44

13_b 13 74795835 79730805 1604, 1557 0.35

14 14 1463676 5601692 DGAT1 1604 4.89

16_a 16 37003329 44151335 1604, 1557 0.49

18_a 18 8061697 14038121 1604, 1557 0.49

19_a 19 31087581 36437188 SREBF1 1604, 1557 0.38

20_a 20 27422842 34474873 GHR, MRPS30 1604, 1557 0.52

20_b 20 55992767 60817895 ANKH 1604 0.49

22_a 22 162018 5884558 1604 0.36

23 23 28021047 35406968 PRL 1604, 1557 0.4

24 24 29942533 34992601 1604, 1557 0.36

29_b 29 40344120 45817015 FADS1 1604, 1557 0.41

-OH 1_b 1 142832701 147841620 SLC37A1, AGPAT3 1299 0.39

5_b 5 87904220 94858411 MGST1 1299 0.38

6_b 6 81119938 88592295 CSN-cluster 1299 1.09

14 14 1463676 5601692 DGAT1 1299 0.52

16_a 16 40846801 48806575 1299 0.46

18_b 18 27578257 35583594 1299 0.36

19_b 19 49037959 54488129 FASN, CCDC57 1299 0.42

23 23 38521106 44428685 1299 0.36

27_a 27 20369666 25633356 1299 0.35

28_b 28 17171751 23666465 1299 0.39

The table shows wavenumbers for which the peak SNP-group explained > 0.35% of total additive genetic variation, the upper-, and lower limit of the peak SNP-
group, and candidate genes which have been previously associated to milk composition traits. Wavenumbers in boldface are those with the highest percentage
total additive genetic variation explained by the peak SNP-group
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one block were close to one, and analysis of all wave-
numbers within one block would most probably result
in similar findings. For four blocks, different wavenum-
bers were selected for Danish Holstein and Danish Jersey
(Table 1). The selected wavenumbers were within the
same infrared region. Therefore, we assumed that results
of e.g. 1295 cm− 1 for Danish Holstein are comparable to
results of 1299 cm− 1 for Danish Jersey.

BTA 14
A QTL on Bos Taurus autosome (BTA) 14 in the gen-
omic region of DGAT1 was associated to all

wavenumbers, with the exception of 1557 cm− 1 in Da-
nish Jersey. The QTL in DGAT1 explained most additive
genetic variation for 14 out of 15 wavenumbers in Da-
nish Holstein, and for 9 out of 15 wavenumbers in Da-
nish Jersey (Table 2). Because DGAT1 is a well-known
major milk gene, the genomic region of BTA 14 will not
be thoroughly discussed.

Wavenumbers interacting with alkanes
The wavenumber 1449 cm− 1 is known to interact with
alkanes [1, 2]. The chemical bonds present in alkanes re-
semble those of saturated fatty acids. For both breeds, a

Table 3 Number of QTL per chromosome observed for Danish Holstein (DH) and Danish Jersey (DJ), for wavenumbers which
interact with different chemical bonds. Overlap (ol) indicates number of overlapping QTL between the two breeds

Total Wavenumbers interacting witha

Alkanes C-O CO-N N-H C=O C-H -OH

CHR DH DJ ola DH DJ ol DH DJ ol DH DJ ol DH DJ ol DH DJ ol DH DJ ol DH DJ ol

1 – 5 – – – – – 2 – – – – – 2 – – – – – 2 – – 1 –

2 – 3 – – – – – 1 – – – – – 2 – – – – – – – – – –

3 1 4 – – 1 – 1 1 – – – – – 2 – – 1 – – – – – – –

4 – 1 – – – – – 1 – – – – – – – – – – – – – – – –

5 2 8 2 – 1 – 1 3 1 1 – – 1 2 – 1 2 – 1 2 – – 1 –

6 2 3 2 1 1 1 – 3 – 1 1 1 1 1 1 – 1 – – 2 – – 1 –

7 – 3 – – – – – 1 – – – – – 2 – – – – – – – – – –

8 – 2 – – – – – 2 – – – – – 1 – – – – – 1 – – – –

9 – 2 – – – – – 2 – – – – – 1 – – 1 – – 1 – – – –

10 – 3 – – – – – 1 – – 1 – – 1 – – – – – – – – – –

11 1 4 – 1 1 – 1 2 – – 1 – – 1 – – 2 – – 2 – – – –

12 – 4 – – 1 – – 2 – – 1 – – 1 – – 2 – – 1 – – – –

13 1 1 – 1 – – – – – – – – – 1 – – – – – – – – – –

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 – – – – – – – – – – – – – – – – – – – – – – – –

16 – 8 – – 1 – – 5 – – 1 – – 2 – – 1 – – 1 – – 1 –

17 1 4 – – – – 1 3 – – 1 – 1 – – 1 – – 1 1 – – – –

18 – 5 – – 1 – – 3 – – – – – 1 – – – – – 1 – – 1 –

19 3 6 1 1 1 1 1 3 – – – – – 1 – – 1 – – 2 – 1 1 –

20 3 4 3 – 1 – – 1 – – 1 – 2 3 2 – 1 – 1 1 – 1 – –

21 2 3 1 – 1 – 2 1 – – 1 – – – – – 1 – 1 1 – 1 – –

22 – 3 – – – – – 1 – – – – – 1 – – 1 – – – – – – –

23 – 3 – – – – – – – – 1 – – 1 – – – – – 1 – – 1 –

24 – 3 – – – – – – – – 1 – – 1 – – – – – 1 – – – –

25 1 3 2 – 1 – 1 2 2 – – – – – – – – – – 1 – – – –

26 – – – – – – – – – – – – – – – – – – – – – – – –

27 – 2 – – – – – – – – – – – – – – – – – 1 – – 1 –

28 1 2 – – – – 1 2 – – – – – – – – – – – – – – 1 –

29 1 1 – 1 – – 1 – – – 1 – – 1 – – – – – 1 – 1 – –

Total 20 91 11 6 12 3 11 43 4 3 12 2 6 29 4 3 15 1 5 24 1 5 10 1
aAlkanes 1449 cm−1; C-O 1226–975 cm−1; CO-N: 1500 cm−1; N-H: 1604–1557 cm−1; C=O: 1735–1696 cm−1; C-H: 2988–2872 cm−1; −OH: 1299–1295 cm−1
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QTL on BTA 19 (19_a) was identified. This genomic re-
gion harbours the gene SREBF1. The gene SREBF1 is
known as a key player in fatty acid synthesis [14]. In line
with this, Bouwman et al. [28] observed a QTL for satu-
rated fatty acids in milk in the same genomic region. For
both Danish Holstein and Danish Jersey, a QTL on BTA
6 (6_b) harbouring the CSN cluster was observed. This
QTL has previously been associated to protein percent-
age [27, 29–31], caseins, whey proteins [30], and cheese
yield [32]. In a GWAS on wavenumbers in Dutch Frie-
sian Holstein, Wang and Bovenhuis [18] also observed
an association between the QTL 6_b and wavenumber
1469 cm− 1.

Wavenumbers interacting with C=O
The chemical bond C=O typically appears in fat mole-
cules and protein molecules, and interacts with 1735
and 1696 cm− 1 [1, 2]. The QTL associated to wavenum-
bers interacting with C=O have been associated to a var-
iety of milk production traits. In Danish Holstein, a QTL
on BTA 5 (5_a) harbouring MGST1 has previously been
associated to milk composition [29, 30, 33], and fatty acid
composition [28, 34]. In Danish Jersey, the QTL on BTA
6 (6_a) harbouring PPARGC1A, and BTA 19 (19_a) har-
bouring SREBF1 have both been associated to fat percent-
age, and fatty acid composition in milk [14, 28, 34, 35].
Furthermore, for Danish Jersey, several QTL were identi-
fied that were linked to protein in milk previously. A QTL
on BTA 11 (11_b) harbouring PAEP has been strongly as-
sociated to beta-lactoglobulin in milk, and protein com-
position [27, 30].

Wavenumbers interacting with C-H
The chemical bond C-H is present in many molecules,
such as fat, protein, and lactose. The C-H bond strongly
interacts with 2988 and 2872 cm− 1 [1, 2]. The C-H bond
is most abundantly present in the fatty acid tails of fat
molecules. This is why wavenumbers in the region of
2988 and 2872 cm− 1 are used for prediction of fat per-
centage in milk [1, 36]. In Danish Holstein, the QTL on
BTA 5 (5_b) harbouring MGST1, and the QTL on BTA
17 (17_a) have been associated to fatty acid composition
in milk previously [28, 34]. For Danish Jersey, many
QTL were located in genomic regions of genes, which
have been associated to milk fatty acid synthesis [14, 37].
Examples of these genes are AGPAT3 on BTA 1 (1_b),
PPARGC1A on BTA 6 (6_a), SREBF1 on BTA 19 (19_a),
AGPAT6 on BTA 27 (27_b), and FADS1 on BTA 29
(29_b) [14, 37]. The gene AGPAT6 on BTA 27 is de-
scribed as one of the key links in milk fatty acid synthe-
sis [37]. Interestingly, the genomic region of AGPAT6
was only associated to wavenumbers that interact with
C-H (Table 2). An additional QTL on BTA 20 (20_b)
harbouring ANKH was observed for Danish Holstein.

This QTL has been strongly associated to alpha-
lactalbumin [27], and lactose percentage in milk [18]. For
Danish Jersey, two QTL (11_b and 21_b) were found.
Within this genomic region, two genes were located that
have been linked to proteins in milk [27, 30, 38].

Wavenumbers interacting with C-O
The chemical bond C-O is abundantly present in sugar
molecules, and it interacts with wavenumbers in the infra-
red region from 1250 to 950 cm− 1 [1, 2]. This infrared re-
gion and the infrared region that ranges from 1400 to
1250 cm− 1 (see next section) are used for prediction of
lactose in milk [1, 36]. For Danish Holstein, the observed
QTL did not reveal a strong link between this infrared re-
gion and lactose in milk. The QTL on BTA 5 (5_b) har-
bouring MGST1, however, has been associated to milk
composition, including lactose percentage [29]. Most of
the QTL observed for Danish Holstein, however, have
been associated to fatty acids or groups of fatty acids, such
as the QTL on BTA 17 (17_a), BTA 19 (19_c), BTA 21
(21_a and 21_c), and BTA 28 (28_a) [34, 39]. For Danish
Jersey, on the other hand, many of the currently observed
QTL have been linked to lactose in milk. Four QTL (19_a,
19_b, 22_b, and 28_b) have been associated to lactose per-
centage in milk [18, 38]. In addition, the QTL on BTA 1
(1_b) harbouring SLC37A1 and AGPAT3, and the QTL
on BTA 5 (5_a) were both associated to alpha-lactalbumin
in milk [27, 30]. Alpha-lactalbumin is a milk protein that
plays a critical role in converting glucose into lactose [40].
Finally, the QTL 22_b was associated to wavenumbers,
which interact with C-O exclusively. The QTL 22_b is
harbours the gene lactotransferrin (LTF). The protein lac-
totransferrin is a selective antibacterial milk protein that is
involved in the mucosal protection of the mammary
gland, and possibly protects against mastitis [41, 42].

Wavenumbers interacting with CO-N and N-H
The chemical bonds CO-N, and N-H are present in pro-
tein molecules. These chemical bonds interact with the in-
frared region that ranges from 1550 to 1500 cm− 1, and
infrared region around 1600 cm− 1, respectively [1, 2].
These infrared regions are used for prediction of protein
percentage in milk [1, 36]. The two groups of wavenum-
bers interacting with CO-N and N-H have many overlap-
ping QTL, and therefore will be discussed together.
Firstly, for both breeds, a strong association was observed
between CO-N and N-H interacting wavenumbers and
the CSN cluster on BTA 6 (6_b; Table 2). The CSN cluster
has been associated to many traits related to protein in
milk, such as protein percentage [18, 27, 30, 33], and pro-
tein composition [27, 30]. Secondly, a QTL on BTA 20
(20_b) was observed for both breeds. This QTL harbours
the gene ANKH, which is strongly associated to alpha-
lactalbumin, and it is expressed in mammary tissue [27].
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Finally, one more QTL was observed for both breeds,
which was located on BTA 17 (17_a). This QTL has been
associated to alpha-S2-casein in milk [30].
For Danish Jersey, additional QTL were identified that

have been associated to milk protein previously. Firstly,
three QTL on BTA 3 (3_a), BTA 10 (10_b), and BTA 20
(20_a) have been associated to protein percentage in
milk [30, 33]. Secondly, the QTL on BTA 11 (11_b) is
located within a genomic region, which harbours several
genes that control beta-lactoglobulin in milk [30, 43, 44].
Thirdly, the QTL no BTA 24 has been associated to
beta-lactoglobulin previously as well [30]. Finally, like
both the QTL on BTA 20 (20_b), and the QTL on BTA
5 (5_a) have been linked to alpha-lactalbumin [30].

Wavenumbers interacting with –OH
Like C-O, the chemical bond -OH is abundantly present
in sugar molecules. The chemical bond –OH interacts
with wavenumbers in the infrared region that ranges
from 1500 to 1250 cm− 1 [1, 2]. For Danish Holstein,
wavenumbers from this infrared region were associated
to the QTL on BTA 20 (20_b). This QTL harbours
ANKH, which has been strongly associated to alpha-
lactalbumin in milk [27]. Alpha-lactalbumin, as dis-
cussed earlier, has been described as a key player in lac-
tose synthesis [40]. In Danish Jersey, the QTL explaining
most variation was located on BTA 6 (6_b), which har-
bours the CSN cluster. Another QTL was located on
BTA 1 (1_b) harbouring SLC37A1 and AGPAT3, and
has been associated to alpha-lactalbumin [27]. Two
other QTL, which were positioned on BTA 19 (19_b)
harbouring FASN and CCDC57 and on BTA 28 (28_b),
have been linked to lactose percentage in milk [18].
These two QTL have also been associated to wavenum-
bers surrounding wavenumber 1299 cm− 1 [18].

Breed differences
Breed has an effect on milk composition [24, 45], FT-IR
milk spectra [5, 23], and the heritability of FT-IR milk
spectra [17, 20, 21, 46]. In the current study more QTL
were observed for Danish Jersey than for Danish Hol-
stein (Table 1). A reason for this observation could be
that DGAT1 explained more additive genetic variation in
Danish Holstein than in Danish Jersey. The less domin-
ant role of DGAT1 for Danish Jersey could have allowed
for smaller effects to be visible. This could have resulted
in the seemingly more polygenic character of milk spec-
tra in Danish Jersey. Differences in allele frequency for
the DGAT1 gene have been described before [20, 25].
The fact that not the same QTL were observed for both
breeds could have been caused by differences in allele
frequencies for SNPs between the two breeds, or even
the complete absence of SNPs in one breed [25, 47].
When applying milk spectra directly for estimating

breeding values of milk components, these breed differ-
ences in allele frequencies may cause reduced prediction
accuracy, when predicting across breeds.

Conclusion
The current study observed multiple QTL for FT-IR
milk spectra. Different QTL were observed for wave-
numbers interacting with different chemical bonds.
Wavenumbers that interact with the same chemical
bond were often associated to the same QTL, yet some
QTL were observed for small subsets of wavenumbers.
Different QTL were observed for Danish Holstein and
Danish Jersey.

Methods
Study population
The study population consisted of 3274 Danish Holstein
cows from 354 herds, and 3408 Danish Jersey cows from
175 herds. For Danish Holstein, 3001 cows were in their
first parity, and 273 in their second. For Danish Jersey,
3125 cows were in their first parity, and 283 in their sec-
ond. For Danish Holstein, 19,656 morning-milk records
were provided. For Danish Jersey, 20,228 morning milk
records were provided. Cows had between one and
twenty milk records with on average 32 days between re-
cords. Milk records were collected from October 1st
2015 to September 30th 2016. The year was split into
summer, from April 1st 2016 through September 30th
2016, and winter, from October 1st 2015 through March
31st 2016. Milk records were collected from 1 through
400 days in milk (DIM). Obvious outlying milk records
with a fat% > 8.0, or a protein% < 2.5 or > 5.0 in Danish
Holstein, and a protein% > 5.5 in Danish Jersey were re-
moved from the dataset.
Morning milk records were collected and provided by

RYK (Aarhus N, Denmark), the Danish milk recording
organization. Infrared spectral analysis was performed by
Eurofins-Steins laboratory (Vejen, Denmark) with the
MilkoScan FT+ (Foss, Hillerød, Denmark). Transmit-
tance values for 1060 wavenumbers in the infrared re-
gion of 5008–925 cm− 1 were provided.

Genotypes
The study population was genotyped with the EuroG10K
custom SNP chip. The EuroG10k SNP chip is composed
of two parts: (1) SNP from the BovineLD Genotyping
BeadChip v.2 [48], and (2) a custom part of selected
SNP from sequence data as part of 1000 Bull Genomes
Project Run 4 [49] based on their functional annotation
or based on GWAS results [50]. Genotypes were im-
puted from the EuroG10K custom SNP chip to the 50 K
using BEAGLE 4 [51]. Reference populations for imput-
ation consisted of 4000 cows for Danish Holstein, and
4576 cows for Danish Jersey. Reference cows were
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genotyped on the Illumina 50 K BovineSNP50 v.2 Bead-
Chip (Illumina Inc., San Diego, CA). Only autosomal
SNPs which were present in both the Danish Holstein
reference population and the Danish Jersey reference
population were selected. During quality control, SNPs
with more than 40% missing genotypes or with a minor
allele frequency (MAF) of < 0.01 were excluded. After
quality control, genotypes of Danish Holstein cows were
imputed from 10,353 to 43,807 SNPs, and genotypes of
Danish Jersey cows from 9749 to 39,235 SNPs. Median
distance between SNPs was 41 kb for Danish Holstein,
and 43 kb for Danish Jersey. All SNPs used for analysis
are present on the Illumina BovineSNP50 v.2 BeadChip
(Illumina Inc., San Diego, CA).

Phenotypes
FT-IR Milk spectra
Transmittance values were provided for 1060 wavenum-
bers in the mid-infrared region of 5008–925 cm− 1.
Wavenumbers in the infrared regions from 5008 to
3008 cm− 1, and from 1669 to 1623 cm− 1 interact with
water molecules, and were excluded from the analysis. A
total of 530 wavenumbers were left for further analysis.

Selection of wavenumbers
Selection of wavenumbers was done for each breed sep-
arately. Correlations between 530 wavenumbers cor-
rected for season, parity, days in milk, and herd were
calculated in R software [52]. The correlation matrix was
used to make a heatmap, where axes were sorted in
order of wavenumber from 3008 cm− 1 through 925 cm−

1 (Fig. 1). Blocks of strongly positively correlated neigh-
bouring wavenumbers were defined by visual inspection
of the heatmap. Within each block, correlation sums
were calculated for each wavenumber individually, and
the wavenumber with the highest correlation sum was
selected for further analysis.

Genetic analysis
Model description
Analysis of selected wavenumbers was done with the
Bayz software package (http://www.bayz.biz/) [53]. We
used the model:

yijkl ¼ μþ Parityi þ Season j þ β1DIMijkl

þβ2e
−0:05DIMijkl þ Herdk þ CowAl

þCowPEl þ Eijkl:

ð1Þ

Where yijkl is the transmittance value for one selected
wavenumber; μ is mean transmittance value; Parityi cor-
rects for the fixed effect of parity (i = 1 or 2); Seasonj
corrects for the fixed effect of season during which the

milk sample was collected (j = summer or winter);
β1DIMijkl and β2e

−0:05DIMijkl correct for lactation stage
(Wilmink function) [54], where DIMijkl is dimijkl /365
(dimijkl = 1…365). For all fixed effects and regressors, a
uniform prior distribution was assumed, where ~ UNI(0,
+∞); Herdk is a random herd effect, for which a normal
prior distribution was assumed, where Herd ~ N(0, σ2Herd

); CowPEl is a permanent environmental effect of cow l,

for which a normal prior distribution was assumed,
where CowPE ~ N(0, σ2PE ); and Eijkl is the residual vari-
ance, for which a normal prior distribution was assumed,
where E ~ N(0, σ2E ). CowAl is the additive genetic effect
of cow l, and was modeled using a hierarchical model to
depend on SNP effects:

CowAl ¼
X

m amglm ð2Þ

Where am is the additive effect of SNP m; glm is the al-
lele dosage for SNP m of cow l. Allele dosages were
centred. For the additive genetic value, a normal prior
distribution was assumed, where CowA ~ N(0, σ2A ), and
all SNP variance parameters had a uniform prior distri-
bution ~ UNI(0,+∞).
A Metropolis-Hastings sampler was used, with 70,000

iterations, including a burn-in of 30,000 iterations.
For all selected wavenumbers, heritability was calcu-

lated as:

h2 ¼ σ2A
σ2
Herd þ σ2A þ σ2PE þ σ2E

ð3Þ

Where σ2A is the additive genetic variance; σ2Herd is the
variance explained by herd; σ2PE is the permanent envir-
onmental variance; σ2

E is the residual variance. Wave-
numbers with a heritability < 0.05 were excluded from
further analyses.

Grouping SNPs
Within each chromosome, SNPs were divided into
groups of 100 consecutive SNPs [55]. The grouping pro-
cedure was repeated five times for each chromosome,
starting with counting at SNP 1, 21, 41, 61, or 81 on the
chromosome. Between the five repeated procedures,
SNP groups overlapped, yet SNP groups were never
identical. Groups with < 80 SNPs were excluded from
analysis.
For each group of 100 SNPs, variance of the genomic

estimated breeding value was calculated with the gbayz
function of Bayz software (http://www.bayz.biz/) [53].
Proportion of total additive genetic variance explained
per SNP group was calculated as:
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%σ2A;ij ¼
σ2gEBV ;ij

σ2A;i
�100% ð4Þ

Where %σ2A;ij is the percentage of total additive genetic

variance of selected wavenumber i explained by SNP
group j; σ2gEBV ;ij is the variance of the genomic estimated

breeding value for selected wavenumber i of SNP group
j; and σ2A;i is the total additive genetic variance for se-
lected wavenumber i.
Visual inspection was done on Manhattan plots of %

σ2A;ij , where %σ2
A;ij of a group was represented by the mid-

dle SNP as orientation point (Additional files 1 and 2). For
each selected wavenumber, QTL were collected.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-0810-4.

Additional file 1. Manhattan plots of % of explained additive genetic
variation for Danish Holstein. Scale of y-axis runs from 0 to 1%. The
horizontal line indicates the cut-off at 0.35%, which was used to define
and select QTL.

Additional file 2. Manhattan plots of % of explained additive genetic
variation for Danish Jersey. Scale of y-axis runs from 0 to 1%. The horizontal
line indicates the cut-off at 0.35%, which was used to define and select QTL.
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