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Abstract

Background: As obesity is becoming pandemic, morbid obesity (MO), an extreme type of obesity, is an emerging
issue worldwide. It is imperative to understand the factors responsible for huge weight gain in certain populations
in the modern society. Very few genome-wide association studies (GWAS) have been conducted on MO patients.
This study is the first MO-GWAS study in the Han-Chinese population in Asia.

Methods: We conducted a two-stage GWAS with 1110 MO bariatric patients (body mass index [BMI] ≥ 35 kg/m2)
from Min-Sheng General Hospital, Taiwan. The first stage involved 575 patients, and 1729 sex- and age-matched
controls from the Taiwan Han Chinese Cell and Genome Bank. In the second stage, another 535 patients from the
same hospital were genotyped for 52 single nucleotide polymorphisms (SNPs) discovered in the first stage, and
9145 matched controls from Taiwan Biobank were matched for confirmation analysis.

Results: The results of the joint analysis for the second stage revealed six top ranking SNPs, including rs8050136 (p-
value = 7.80 × 10− 10), rs9939609 (p-value = 1.32 × 10− 9), rs1421085 (p-value = 1.54 × 10− 8), rs9941349 (p-value =
9.05 × 10− 8), rs1121980 (p-value = 7.27 × 10− 7), and rs9937354 (p-value = 6.65 × 10− 7), which were all located in FTO
gene. Significant associations were also observed between MO and RBFOX1, RP11-638 L3.1, TMTC1, CBLN4, CSMD3,
and ERBB4, respectively, using the Bonferroni correction criteria for 52 SNPs (p < 9.6 × 10− 4).

Conclusion: The most significantly associated locus of MO in the Han-Chinese population was the well-known FTO
gene. These SNPs located in intron 1, may include the leptin receptor modulator. Other significant loci, showing
weak associations with MO, also suggested the potential mechanism underlying the disorders with eating
behaviors or brain/neural development.
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Background
Obesity is a chronic phenomenon of positive energy bal-
ance, leading to the long-term and excessive accumula-
tion of body fat. Epidemiological studies have revealed
the substantial increase in the risk of Non-
Communicable Diseases (NCD) in people with morbid
obesity (MO) [1].
The latest evidence indicates the sharp rise in the

prevalence of MO worldwide in both men and women

[2]. In the US, the prevalence MO has increased by more
than four-fold (1.4 to 6.3%) within the last three decades
[3]. Notably, the prevalence of MO (body mass index
[BMI] ≥ 35 kg/m2) [4, 5] in Taiwan has also increased
from almost null to 1.3% during the past two decades, as
per the data collected by the Nutrition and Health Sur-
vey in Taiwan (NAHSIT) from 1993 to 1996 to 2013–
2016 [4]. As MO is accompanied with multiple comor-
bidity [6, 7], including shorter life expectancy and higher
all-cause mortality rate [7, 8] than that in general public,
the associated medical cost and social economic burden
are tremendous [9]. Lifestyle intervention measures are
less efficient for MO cases, and bariatric surgery is ex-
pensive and could induce complications [10].
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The Global Burden of Disease study has pointed
out poor diet (western or super-processed) in com-
bination with physical inactivity/sedentary lifestyles as
the main risk factors of non-communicable diseases,
including obesity, diabetes [11–14], and associated
cardio-metabolic diseases. However, BMI distribution
is very wide, indicative of the differences in individual
responses to the same obesogenic environment. It is
worthy to investigate the genetic mechanisms under-
lying the development of extreme cases of obesity
[15–18].
According to twin, family, and adoption studies, the

heritability of BMI is estimated to be around 40–70%
[19–22], and approximately 27% of BMI heritability may
be attributed to common single nucleotide polymorph-
ism (SNP) in adults [23]. A review on genome-wide as-
sociation studies (GWAS) has documented at least 741
BMI- or obesity-related SNPs and numerous biological
pathways [24]. MO, as the extreme type of obesity, may
be highly associated with the common BMI-raising vari-
ants [25, 26].
Several GWAS have been performed on severe obesity

and MO [27–33]. However, some of these MO-GWAS
involved children or adolescents with high BMI percent-
ile values, and all included European populations. Our
study is the first MO-GWAS conducted in Chinese
population in the Asian region.

Results
Additional file 1: Table S1 shows the comparison of the
sample characteristics between MO patients at stage 1
and stage 2. No significant differences were observed be-
tween the two groups. Although some differences between
the two control groups were noted, these differences (sex
and age) were adjusted in the regression models.

Two-stage GWAS
Figure 1 is the Manhattan plots of the 1st stage MO-
GWAS. Additional file 1: Table S2 shows the 80 SNPs,
with p-value < 10− 4 considered for 2nd stage confirm-
ation. The SNP rs116917414 is the most significant SNP
in the first stage GWAS (p-value = 1.15 × 10− 12). Sixteen
SNPs were not used for further analysis due to differ-
ences in probe design between CHB-1 Array and TWB
Array. Twelve SNPs, which showed poor genotyping
quality (CR < 97%, MAF < 1%, or HWE < 0.001), were
further removed. Finally, 52 SNPs were included in the
2nd stage. In the 2nd stage (Table 1), only one SNP,
rs8050136 (p-value = 9.3 × 10− 4), was significant follow-
ing the Bonferroni correction (p-value < 9.6 × 10− 4

[0.05/52]).

Joint analyses
Table 1 shows the results of the joint analyses for the 52
SNPs in 1110 MO patients and 10,852 matched controls.
Among these 52 SNPs, rs8050136 (p-value = 7.80 × 10−
10), rs9939609 (p-value = 1.32 × 10− 9), rs1421085 (p-
value = 1.54 × 10− 8), rs9941349 (p-value = 9.05 × 10− 8),
rs1121980 (p-value = 7.27 × 10− 7), and rs9937354 (p-
value = 6.65 × 10− 7) were the top ranking SNPs, and all
located in the same linkage disequilibrium (LD) block
(Additional file 1: Figure S1) in the intron 1 of FTO
gene. Nine additional SNPs showed statistical signifi-
cance using the Bonferroni correction criteria (p-value <
9.6 × 10− 4 [0.05/52]). Seven SNPs flanked six loci as fol-
lows: RBFOX1 (rs12925846 [p-value = 6.21 × 10− 6], and
rs17235335 [p-value = 1.26 × 10− 5]), RP11-638 L3.1
(rs2126015, p-value = 1.26 × 10− 5), TMTC1 (rs159702, p-
value = 1.26 × 10− 5), CBLN4 (rs6069477, p-value = 1.26 ×
10− 5), CSMD3 (rs16883931, p-value = 1.26 × 10− 5), and
ERBB4 (rs6757087, p-value = 1.26 × 10− 5). Two SNPs,

Fig. 1 The Manhattan plots of the first stage of MO-GWAS. GWAS for MO was analyzed by logistic regression with age, sex and PC 1 to PC10
adjustment. Blue line: -log10 p-value = 4; Red line: -log10 p-value = 6
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rs11626956 (p-value = 1.26 × 10− 5), and rs9808434 (p-
value = 1.26 × 10− 5) were located in an intergenic region.

Discussion
This is the first MO-GWAS conducted using the Han-
Chinese population in Asia. This GWAS, with 1110 MO
patients and 10,852 matched controls in Han-Chinese
population, established that the top 6 SNPs (rs8050136,
rs9939609, rs1421085, rs9941349, rs1121980, and
rs9937354) were all located in the most replicable obes-
ity gene: the FTO.
In 2007, the well-known obesity gene, FTO, was first

identified in a European ancestry population [34]. Since
then, FTO has been replicated and validated in many
other ethnic populations, including African [35] and
Asian [36] populations. The association between FTO
and severe obesity or MO is also reported in the Euro-
pean [37] and Japanese [38] populations. However, the
evidence has been very limited for Han-Chinese, the lar-
gest population in the world.
In this two-stage GWAS, we found that six SNPs on

FTO top all SNPs in association with morbid obesity in
Han-Chinese (rs8050136, rs9939609, rs1421085,
rs9941349, rs1121980, and rs9937354), especially with
the rs8050136 and rs9939609 and rs1421085 reaching
p ≤ 5 × 10− 8. According to our data and HapMap data,
these six SNPs are within the same LD block in the in-
tron 1 of FTO gene (Additional file 1: Figure S1). Of
these, rs9941349 was found to be associated with obesity
for the first time.
The latest evidence indicated the association between

rs9939609 of FTO (p = 0.026) and obesity (BMI ≥ 30 kg/
m2) in 1188 Taiwanese subjects [39]. A previous meta-
analysis study with 4189 Han-Chinese individuals also
validated the association between obesity (BMI ≥ 28 kg/
m2) and rs9939609 (odds ratio [OR]: 1.39, p-value =
0.02) along with rs8050136 (OR: 1.45, p-value = 0.01)
[40]. In addition, the association between rs8050136 and
obesity (BMI ≥ 27.5 kg/m2) is implicated in 1170 Chinese
subjects [41], and rs1121980 has been replicated in Han-
Chinese [42] and Malay populations [43]. Furthermore,
rs1421085 is detectable in Chinese children aged 3 to 6
years [44].
Although rs9939609 is the most replicable FTO SNP,

it is more prevalent in the European [45] populations
(42%), than in Africans (12%) [46], East Asians (12–
20%), and South Asians (30–33%) [39]. In our study, the
MAF of rs9939609 was only 13.2%.
Claussnitzer et al. [47] suggested that rs1421085 may

be the causal variant, instead of rs9939609 on FTO gene,
as a single nucleotide variant alteration in rs1421085 (T-
to-C) may cause disruption from the ARID5B-mediated
suppression of IRX3 and IRX5, leading to adipocyte de-
velopmental shift from browning (energy expenditure)

to whitening (energy storage), and suppression of mito-
chondrial thermogenesis.
The SNPs rs8050136, rs9937354, rs1421085, and

rs1121980, in the first intron of FTO, are located in an
enhancer region. Recent studies have indicated that the
links between the intronic variance within FTO and
body composition are mediated through functional in-
teractions with neighboring genes. The first intron of
FTO carries a binding site for the transcription factor
CUX1, which modulates the leptin receptor localization
within neurons, through the regulation of RPGRIP1L ex-
pression. This intron also contains an enhancer se-
quence that directly binds to the promoter of IRX3 [48,
49]. Therefore, the mechanisms underlying the contribu-
tion of FTO to the risk of obesity are apparently more
complex than expected.
Aside from the FTO-related SNPs, nine SNPs were

statistically significant according to the Bonferroni cor-
rection criteria, with p-value < 9.6 × 10− 4 (0.05/52) in the
joint analysis. These SNPs flank RBFOX1, RP11-638
L3.1, TMTC1, CBLN4, CSMD3 and ERBB4 genes.
Two significant SNPs of RBFOX1 gene (RNA-binding

fox-1 homolog 1) were discovered in this study,
rs12925846 and rs17235335. This gene has been associ-
ated with several complex diseases, including schizo-
phrenia, autism, mental retardation in epilepsy, attention
deficit disorder, and obesity [50]. RBFOX1 is thought to
affect adiposity through the hypothalamic melanocortin
4 receptor (MC4R) pathway [51]. Mutations of MC4R
are known to cause a monogenic form of obesity in
humans [52] via leptin. In the brain, the hypothalamus is
known as the control center for satiety/hunger and so-
cial defeat. RBFOX1 gene, also known as ataxin-2-
binding protein 1 gene (A2BP1), could regulate neuron-
specific splicing by binding to the pentanucleotide (U)
GCAUG sequences upstream of the regulated exon [53].
The involvement of RBFOX1 in obesity development is
questionable and warrants further investigation.
One MO-associated SNP, rs2126015, is located on the

RP11-638 L3.1 gene, a long noncoding RNA. Previous
studies indicated the association of this SNP with neuro-
logical disorders such as attention deficit hyperactivity
disorder (ADHD), and early-onset recurrent major de-
pressive disorder (MDD) [54]. This gene is also highly
expressed in the adipose tissue. lncRNAs are known to
play important epigenetic regulatory roles in some im-
portant molecular processes, such as gene expression,
genetic imprinting, histone modification, chromatin dy-
namics, and other activities, including formation of spe-
cific structures and interactions with all kinds of
molecules [55]. The involvement of epigenetic modifica-
tions in the development of obesity is becoming increas-
ingly evident [56, 57]. Obesity is associated with
environmental pollutants (obesogens) [58], gut
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microbiota [59], and unbalanced food intake, all of
which may result in weight gain, and altered metabolic
consequences through epigenetic mechanisms. Further
studies with a larger sample size are warranted to exam-
ine the interactions between genes and environmental
factors, particularly dietary factors.
The gene TMTC1 (rs159702) has been associated with

heart failure in an African ancestry population [60].
Moreover, the interaction of TMTC1 with abdominal
obesity may contribute to phenotypic variation of left
ventricular mass (LVM) [61]. However, the mechanism
of TMTC1 involvement in MO remains unclear.
The proteins encoded by gene CBLN4 (rs6069477) are

involved in the regulation of neurexin signaling during
synapse development. Agouti related protein (AGRP)-ex-
pressing neurons are a key starvation-sensitive hypothal-
amic population, activated during energy deficit and
increases appetite and weight gain. An animal study has
shown that, CBLN4 is downregulated in AGRP neurons
after food-deprivation [62]. It is worth further investigat-
ing the mechanism between this gene and MO.
The rs16883931 is located in the CSMD3 (CUB and

Sushi Multiple Domains 3). This gene is a large protein
expressed in the fetal and adult brain and is involved in
dendrite development. Mutations of the CSMD3 gene
were identified in schizophrenic and autistic patients.
However, biochemical properties and functions of the
CSMD3 protein remain unknown [63].
Another MO-associated gene ERBB4 (rs29944391) is a

member of the EGF receptor family. Genetic studies
have indicated a link between ERBB4 and type 2 dia-
betes, and obesity. Neuroregulin 4 (NRG4), a ligand that
specifically binds to ERBB4, has been reported to pro-
mote browning of white fat, fuel oxidation, prevention of
high-fat diet-induced obesity, and improvement of insu-
lin sensitivity [64].
The SNP rs116917414 was the most significant SNP in

the first stage GWAS (p-value = 1.15 × 10− 12). However,
this SNP was not included in the second stage owing to
the failure in probe design. While we searched for a
proxy SNP for rs116917414 using 1000 Genome data-
base, we were unable to detect any SNP in strong LD
(r2 > 0.8) with rs116917414. Hence, we used the next-
generation sequencing data (N = 1445) collected from
the Taiwan Biobank to investigate the association be-
tween rs116917414 and BMI. No significant association
was found between this SNP and BMI (pGA vs. GG = 0.6,
pAA vs. GG = 0.5) (Additional file 1: Table S4), indicating
the necessity for a larger sample size to confirm its ef-
fects. This SNP resides in the conserved noncoding re-
gion close to the RP11-380P13.1 (ENSG00000250137)
pseudogene promoter 5′-region. Notably, a study using
Framingham data has reported the location of rs2130928
in the RP11-380P13.1 and its association with BMI (p =

0.0012) [65]. As only little is known about the RP11-
380P13.1, it is worthy of further research.
A recent GWAS for BMI in the Japanese population

identified 85 SNPs [66]. We have investigated the associ-
ation of these SNPs in our Han-Chinese population.
Only six of these SNPs could be replicated in our study
population (p < 0.05) (Additional file 1: Table S3), prob-
ably owing to the differences in studied traits, designs,
and populations, as one involves cross-sectional GWAS
with BMI as a quantitative trait in the Japanese general
population, and the other was a case-control GWAS
study of Chinese MO.
As this is the first large-scale MO-GWAS performed

in the Han-Chinese population, the biological mecha-
nisms or pathways known for some of the discovered
genes are limited. Validation and mechanistic studies of
these discovered genes are crucial. Patients with MO are
those at the extreme tail of BMI distribution in popula-
tion, within the same obesogenic environment. These
patients show much higher increase in mean BMI in
obesogenic environments, owing to genetic susceptibility
[15–18]. A recent thought on the genetic underspin of
the common complex traits is that “genes load the gun,
but the environment pulls the trigger [67].” There were
no obese individuals during famines, and the prevalence
of obesity increased with increase in food supply. The
subjects that present with greater genetic susceptibility
to obesity are likely to gain more weight or fat in obeso-
genic environments. Individuals that carry the risk allele
of FTO gene tend to have a higher protein [68] and cal-
orie [69] intake. The interaction between genetic risk
scores (from known obesity-related variants), and total
fried food consumption and physical activity has been
reported in NHS, HPFS, and Women’s Genome Health
Study [70]. Moreover, the behavioral susceptibility the-
ory has also suggested that genes control the response to
food cues (smell, sight, and taste), and determine sensi-
tivity to satiety in obesogenic environments [67].

Conclusions
In summary, this is the first study illustrating genetic
characteristics of MO in the Han-Chinese population.
The most significantly associated locus of MO, in Han-
Chinese population, was the well-known FTO gene.
These SNPs, located in the intron 1, may include the
leptin receptor modulator. In addition, other significant
loci, including RBFOX1, RP11-638 L3.1, TMTC1,
CBLN4, CSMD3, and ERBB4, showing weak associations
with MO, suggested the potential mechanism underlying
disorders with altered eating behaviors or brain/neural
development, warranting further study on satiety con-
trol. Our results highlight the complexity of genetic in-
volvement in the development of MO in humans.
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Methods
Study design and sample size
We conducted a two-stage GWAS in Taiwan Han-
Chinese population of 1110 patients with MO between
19 to 55 years of age. In total, 575 patients were included
in the first stage and 535 patients, in the second stage.
At the end, we carried out a joint analysis for those
SNPs showing significant tendency in the first stage.
The study flow chart is provided in Fig. 2. MO cases, de-

fined by BMI ≥ 35 kg/m2 [4, 5], were recruited from the
Minimally Invasive Surgery Center of Min-Sheng General
Hospital, Taoyuan city, Taiwan. Patients diagnosed with
psychosis, developmental diseases, and cancer were ex-
cluded. In western countries, MO is defined as BMI ≥ 40
kg/m2. Bariatric surgery is an optional treatment for
people with MO that meet the following criteria: BMI ≥
40 kg/m2 or between 35 and 40 kg/m2 and other signifi-
cant diseases (for example type 2 diabetes or high blood
pressure). However, it is generally accepted that the BMI
cut-off points for defining obesity should be lower for
Asians [71]. In 2011, the Asian Pacific Metabolic and Bar-
iatric Surgery Society suggested that [5] bariatric surgery
should be considered as a treatment option for obesity in
people with Asian ethnicity when (1) BMI > 35 kg/m2 with
or without co-morbidities, or (2) BMI ranged from 32 to
35 kg/m2 with co-morbidities. We used the definition of
Asian Pacific Metabolic and Bariatric Surgery Society to
recruit patients with MO.

For the control groups. In the first discovery stage,
1707age (± 3 years) and sex matched controls (BMI < 35
kg/m2) were included from Han-Chinese Cell and Gen-
ome Bank in Taiwan (HanBKT) established from Octo-
ber 1, 2002, to January 14, 2004. The recruitment
procedure and data collection have been previously re-
ported [72]. In brief, it aimed to collect representative
genetic samples to document genetic diversity in Taiwan
Han-Chinese and to serve as controls in disease associ-
ation studies. In the second confirmatory stage, another
independent set of 9145age (± 5 years) and sex matched
controls (BMI < 35 kg/m2) was included from Taiwan
Biobank (TWB) [73]. Details on the TWB can be found
on its official website (https://taiwanview.twbiobank.org.
tw/index). Altogether, 10,852 subjects (1110 MO cases
and 9742matched controls) were included in the joint
GWAS.

DNA extraction and genotyping
DNA from MO cases was extracted from buffy coats of
whole blood using the phenol-chloroform method [74].
Genomic DNA of controls collected by HanBKT and
TWB were isolated from leukocytes using Puregene®
DNA purification kit (Gentra Systems, Minneapolis,
MN, USA) [72, 73, 75] and its quality was assessed from
the ratio of absorbance recorded at 260 and 280 nm
wavelengths using a NanoDrop ND-1000 spectropho-
tometer (NanoDrop Technologies, DE, USA) [72–75].

Fig. 2 The study flow chart of two-stage GWAS
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Genotyping was carried out by the National Center for
Genome Medicine (NCGM) in IBMS, AS (http://ncgm.
sinica.edu.tw/ncgm_02/index.html).
In the first-stage GWAS, Affymetrix Axiom™ Genome-

Wide CHB 1 Array (Thermo Fisher Scientific Inc., US)
was used as the genotyping platform for both MO cases
and controls. The array had 640,674 markers. The qual-
ity of genotyping was evaluated by genotype calling rate
(CR), minor allele frequency (MAF), and Hardy-
Weinberg Equilibrium (HWE). SNPs that failed to pass
the quality control (CR < 97%, MAF < 5%, or HWE <
0.001) were excluded. The remaining 562,523 SNPs were
used in the first-stage GWAS.
In the second stage, the top SNPs selected from the

first stage were validated using an independent sample
set, as previously described (535 MO cases and 6242
controls). For MO subjects, the SNPs were genotyped
using MassARRAY® iPLEX Gold array from SEQUE-
NOM MassARRAY® System. For the TWB controls,
SNPs were genotyped by Axiom™ Genome-Wide TWB
Array.

Statistics
To search for SNPs associated with MO, logistic regres-
sion (dichotomous MO status as outcome) analysis was
performed at both stages, and joint analysis was con-
ducted after sex and age adjustment. To adjust for popula-
tion stratification and batch effects, principle components
(PCs) from 1 to 10 derived from the principle component
analysis (PCA) were included in the regression model. We
adopted an ordinal genotype coding system (number of
minor allele: 0, 1, and 2). Haploview software [76] was
used to analyze linkage disequilibrium (LD) structure of
the identified SNPs. Data were analyzed with PLINK and
SAS 9.4 (SAS Inc., NC, USA).
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