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Abstract

Background: Gene regulation is important for cells and tissues to function. It has been studied from two aspects at
the genomic level, the identification of expression quantitative trait loci (eQTLs) and identification of long-range
chromatin interactions. It is important to understand their relationship, such as whether eQTLs regulate their target
genes through physical chromatin interaction. Although chromatin interactions have been widely believed to be
one of the main mechanisms underlying eQTLs, most evidence came from studies of cell lines and yet no direct
evidence exists for tissues.

Results: We performed various joint analyses of eQTL and high-throughput chromatin conformation capture (Hi-C)
data from 11 human primary tissue types and 2 human cell lines. We found that chromatin interaction frequency is
positively associated with the number of genes that have eQTLs and that eQTLs and their target genes tend to fall

(FIRES).

among multiple human primary tissues.

into the same topologically associating domain (TAD). These results are consistent across all tissues and cell lines
we evaluated. Moreover, in 6 out of 11 tissues (aorta, dorsolateral prefrontal cortex, hippocampus, pancreas, small
bowel, and spleen), tissue-specific eQTLs are significantly enriched in tissue-specific frequently interacting regions

Conclusions: Our data have demonstrated the close spatial proximity between eQTLs and their target genes
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Background

Gene regulation is important for cells and tissues to
function. Differences in gene regulation are often re-
sponsible for cellular and morphological differences be-
tween cell lines and tissues. The advancement of
high-throughput technologies such as DNA and RNA
sequencing and SNP chips allows researchers to study
gene regulation at the genomic level and from multiple
perspectives. On the one hand, motivated by the likely
functional importance of genetic variants in gene regula-
tion, many studies have focused on identifying expres-
sion quantitative trait loci (eQTLs), which are genetic
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variants statistically associated with gene expression
across individuals [1-4]. eQTLs can regulate the expres-
sion of their target genes by altering cis-regulatory ele-
ments (CREs) such as enhancers, promoters, insulators,
mediators, etc. [5-7]. On the other hand, analyses of
chromatin spatial organization have established the im-
portance of chromatin interaction in gene regulation [8—
10]. For example, by forming long-range chromatin inter-
actions, CREs can regulate the expression of their target
genes hundreds of kilobases (Kb) away [11-13].
High-throughput chromatin conformation capture (Hi-C)
has been widely adopted to provide a genome-wide view
of chromatin interactions within a tissue or cell line [14—
17]. Hi-C data are usually presented as a chromatin con-
tact matrix, in which the genome is divided into
equal-sized bins. The value of each element in the matrix
represents the number of read pairs mapped to a pair of
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bins, which is called the chromatin interaction frequency
(CIF).

These two complementary approaches focus on differ-
ent aspects of gene regulation. eQTL results are statis-
tical across individuals and require an associated SNP,
while chromatin interactions are physical within a sam-
ple and do not require a polymorphism to be present. It
is desirable to integrate the results of these two ap-
proaches to better understand their relationships, such
as whether eQTLs regulate their target genes through
chromatin interactions. Analyzing Hi-C data from hu-
man IMR90 fibroblasts and embryonic stem cells, Dug-
gal et al. [18] showed that eQTLs are spatially close to
their target genes, especially for those located within the
same topologically associating domain (TAD) and over-
lapping with CREs, and that genomic regions containing
eQTLs tend to have a higher CIF. Consistent with Dug-
gal et al.,, using Hi-C data from human cell lines gener-
ated by Rao et al. [14], the Genotype-Tissue Expression
(GTEx) study [3] has also shown that eQTLs that are
enriched for CREs are in close spatial proximity with
their target gene promoters. In both studies, the Hi-C
data came only from cell lines, while the eQTL results
were generated from both tissues and cell lines. Some
other studies, for example, those aimed to predict
enhancer-promoter interactions [19-21] and those
aimed to detect regulatory SNPs [22], did not provide
evidence to support the relationship between Hi-C data
and eQTL results, but instead used this connection as
ground truth to demonstrate the validity of their own
results.

Although chromatin interactions have been widely be-
lieved as one of the main mechanisms underlying
eQTLs, we are unaware of any direct evidence of this for
tissues. It is well known that eQTLs are tissue specific
[3]. Moreover, Schmitt et al. [23] recently identified hot-
spots of local chromatin interactions from Hi-C data,
called frequently interacting regions (FIREs). FIREs are
bins that frequently interact with nearby regions
<200Kb, and they display strong tissue specificity. It is
unclear how much overlap exists between tissue-specific
FIREs and tissue-specific eQTLs.

Hi-C and eQTL data are now available for multiple
human primary tissues and cell lines. For example,
Schmitt et al. [23] generated Hi-C data for 14 human
primary tissues and 7 human cell lines, and the GTEx
study [3] performed genome-wide mapping of eQTLs
across 48 human tissues. There are 11 tissues and 2 cell
lines that overlap between these two sources (See Add-
itional file 1: Supplementary Materials and Table S1), fa-
cilitating a direct evaluation of the relationship between
chromatin interactions and eQTLs across multiple tis-
sues and cell lines. Fig. 1 shows an example of the con-
nection between Hi-C data and eQTL results.
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We performed a series of joint analyses on the rela-
tionship between Hi-C data and eQTL results. We found
that CIF is positively associated with the number of
eGenes identified from the GTEx study (an eGene is de-
fined as a gene in which the expression is significantly
associated with an eQTL), and that eQTLs and their tar-
get genes are more likely to co-localize within the same
TAD than randomly generated control datasets. All
these results are consistent across all tissues and cell
lines we evaluated. Since both eQTLs and FIREs are
known to be highly tissue specific [3, 23], we also stud-
ied the relationship between tissue-specific eQTLs and
tissue-specific FIREs and found that majority of the tis-
sues demonstrate a positive association between them.

To the best of our knowledge, our study is the first to
demonstrate the relationship between chromatin interac-
tions and eQTLs across multiple human primary tissues,
and to study the relationship between tissue-specific
eQTLs and tissue-specific FIREs. These results help im-
prove our understanding of the roles of chromatin inter-
actions and eQTLs in gene regulation mechanisms.

Results
Chromatin interaction frequency is positively associated
with the number of eGenes
If chromatin spatial organization affects how eQTLs
regulate their target genes, one would expect that a pair
of genomic loci mapped with eQTL-gene associations
would interact frequently. To test this hypothesis, we fit-
ted negative binomial regression models to evaluate the
relationship between the number of eGenes and CIF be-
tween two loci at the 40Kb bin resolution. In our ana-
lysis, we only considered chromatin interactions
between different bins, and eQTL-gene pairs that fall
into different bins (see Methods). After adjusting for
genomic distance between loci, the number of eGenes
showed significantly positive effects on CIF across all tis-
sues and cell lines (Fig. 2a). For example, in spleen, the
effect of the number of eGenes is estimated to be 0.20 (p
value <2.2 x 10 - 16), indicating that CIF would be 1.22 (
= ¢"?°) times higher for every extra eGene in a 40Kb bin
pair. The magnitude of the effects varies across tissues
and cell lines, ranging from 0.02 to 0.20. As expected,
the effect sizes are similar for tissues from the same
organ, such as the two brain tissues, DLPFC and hippo-
campus. Moreover, genomic distance has a significant
negative effect on chromatin interaction and the effects
are similar across all tissues and cell lines. This is ex-
pected because CIF between two genomic regions tends
to decrease as their genomic distance increases [16].
Lieberman-Aiden et al. [16] have discovered the A and
B compartments, which are associated with relatively
high and low gene density, respectively, and showed that
two regions within the same type of compartment (A vs.
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Fig. 1 An example to show the connections between Hi-C data and eQTL results. The top triangle is the raw Hi-C contact matrix for a 12 Mb
region in chromosome 9 (chr9:92,000,000-104,000,000) for the DLPFC tissue at 40Kb resolution. The bottom triangle shows a TAD
(chr9:99,640,000-100,480,000), which contains a DLPFC-specific FIRE (chr9:100,320,000-100,360,000) and an eGene, XPA (xeroderma pigmentosum
complementation group A; chr9:100,437,191-100,459,639). The GTEx study identified 20 eQTLs inside this FIRE for XPA in the tissue of brain
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A or B vs. B) have a higher CIF than regions within dif-
ferent types of compartment (A vs. B). This result indi-
cates that gene density may play a role in Hi-C
interaction, and motivated us to add the absolute differ-
ence in the number of tested genes between the two bins
as a covariate in our regression model (Fig. 2b). As ex-
pected, the difference in gene density has a significant
negative effect on CIF in all tissues and cell lines. The
difference in gene density also has little correlation with
the number of eGenes (Pearson correlation <0.06 in all
tissues and cell lines). Moreover, the number of eGenes
is still positively correlated with CIF, and its estimated
effects are slightly increased compared to the model
without the difference in gene density. Furthermore, we
also stratified the data by the difference in gene density
(Additional file 1: Figure S1). The difference in the num-
ber of eGenes varied from 0 to 8 and the sample sizes
were relatively small for the strata with difference >5
(Additional file 1: Table S2). For most strata, the results
showed similar patterns as those in Fig. 1; in some
strata, the estimated effects for the number of eGenes
were negative but they were not statistically significant
(Additional file 1: Figure S1).

We also repeated the analyses with the number of
eGenes replaced by the number of genes without any
associated eQTL and by the number of genes not
expressed in the corresponding tissue or cell line
(Additional file 1: Figure S2). The latter two had
mostly opposite effects from the number of eGenes.
For spleen and GM12878, the effects of the number
of genes without eQTL were positive, but at a much
smaller magnitude than those for the number of
eGenes. These results clearly demonstrate that CIF is
associated with the number of eGenes, not the total
number of genes.

To ensure the conclusions are not sensitive to the
choice of models, we also performed alternative analyses
by taking the log-transformation of covariates (see
Methods). The results still support the conclusion of
positive association between CIF and the number of
eGenes (Additional file 1: Supplementary Materials).

eQTL-gene associations are enriched in TADs

Since genomic regions within the same TAD are
known to interact more frequently than those in dif-
ferent TADs [24, 25], we next examined whether
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Fig. 2 Effect of the number of eGenes on CIF. Two negative binomial regression models were fitted to estimate the effect of the number of
eGenes (blue) on CIF, one with adjustment for genomic distance (orange) (@), and the other with adjustment for both genomic distance (orange)
and the difference in gene density (grey) (b). The error bars are + standard error

eQTL-gene associations are enriched within TADs.
For each tissue and cell line, we simulated a pseudo
SNP-gene pair to match every real eQTL-gene pair by
keeping the location of the TSS of the gene but flip-
ping the SNP position to the opposite side of the TSS
(details in Methods). Most eQTL-gene pairs stayed in
the same TAD after flipping, but a significant number
of them changed from being inside the same TAD to
falling in different TADs (range 10—-15% across tissues
and cell lines), while none changed the other way
(McNemar’s test p-value <2.2x107 ' for all tissues
and cell lines). The real data also had a significantly
higher fraction of eQTL-gene pairs falling in the same
TAD than the simulated data (Fisher’s exact test

p-value <2.2x10' for all tissues and cell lines;
Fig. 3a). For example, 74.0% of the real eQTL-gene
associations and 62.8% of the simulated pairs in
GM12878 were inside TADs.

The associations also hold when we take the genomic
distance into account, both in a joint analysis with gen-
omic distance as a covariate and in stratified analyses with
genomic distance as the stratifying variable (see Methods).
In the logistic regression, the odds for a SNP-gene pair to
be in the same TAD is significantly higher for the real data
than for the pseudo data, and the results are consistent
across all tissues and cell lines (Fig. 4). The results for our
stratified analyses are in Fig. 3b (for GM12878 and hippo-
campus) and Additional file 1: Figure S4.
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Fig. 3 Enrichment of eQTL-gene associations in TADs. (a) The fraction of SNP-gene pairs within TADs for the real data (dark blue) and the
simulated data (light blue). (***) p <0.001 for Fisher's exact test. (b) Two examples, GM12878 and hippocampus, showing more detailed results
after stratifying by the distance between eQTL and TSS of target genes (x-axis, in 40Kb). All comparisons have p < 0.001
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Fig. 4 Odds ratio and 95% confidence interval (Cl) for SNP-gene pairs mapping at the same TAD between real and pseudo data
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Tissue-specific eQTLs are enriched in tissue-specific FIREs

in the majority of tissues

Since eQTLs also have high tissue specificity [3], we
then examined whether tissue-specific eQTLs are
enriched in tissue-specific FIREs. For the 11 tissues we
considered, a total of 349,311 eQTLs were tissue spe-
cific. Eight (73%) of the 11 tissues had estimated odds
ratio > 1, indicating enrichment of tissue-specific eQTLs
in tissue-specific FIREs. Among them, six (55%) tissues
(DLPFC, spleen, small bowel, hippocampus, pancreas
and aorta) were statistically significant after Bonferroni
correction (Fig. 5), and left ventricle almost met the cut-
off. This significant enrichment of tissue-specific eQTLs
in tissue-specific FIREs suggest that tissue-specific
eQTLs may function through chromatin interactions
that are also tissue specific, at least in the six tissues that
were significant. However, a significant negative associ-
ation was found in lung. There could be multiple rea-
sons for this result: 1) a more complicated relationship
might exist between eQTLs and chromatin spatial
organization in lung than in some other issues; 2) the
biospecimen used to generate the eQTL and Hi-C data
were collected from different people and might have
been sampled from different locations of the lung; 3)
those samples might be heterogeneous, consisting of dif-
ferent ratios of cell types. Further experimental data will
be needed to help evaluate these potential factors. The
results for other tissues and the two cell lines were not
significant (Fig. 5). Although the results did not have a
consistent direction across all tissues, they did suggest
that more tissues may have a positive association
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between tissue-specific eQTLs and tissue-specific FIREs
than a negative association.

Discussion

Chromatin spatial organization and eQTLs are known to
be involved in gene regulation. In this work, we system-
atically studied the relationship between eQTL-gene as-
sociations and chromatin interactions across 11 tissues
and 2 cell lines. We found that CIF is positively asso-
ciated with the number of eGenes. Moreover, we
found that eQTL-gene associations are enriched in
TADs. These results hold in all tissues and cell lines
we evaluated. While these results may have been
widely expected to hold, we have now provided solid
statistical evidence across multiple tissues. These re-
sults suggest that eQTLs may regulate their target
genes through chromatin interactions.

We also found that in six of the 11 tissues,
tissue-specific eQTLs are significantly enriched in
tissue-specific FIREs. This result suggests that
tissue-specific eQTLs may function through chromatin
interactions that are also tissue specific, at least in those
six tissues. However, lung showed a significant negative
association. This might be due to more complicated
mechanisms in lung, or heterogeneity in sample sources,
location, or tissue cell types because we matched the
two sources of data simply by tissue name. The potential
heterogeneity might have introduced noise in our ana-
lyses, and some of our results might have been stronger
if the data had been more homogeneous.

Fig. 5 Enrichment of tissue-specific eQTLs in tissue-specific FIREs. We estimated odds ratio, 95% confidence interval after Bonferroni correction,

Tissues (11) Odds Ratio 95% CI
DLPFC 4.29 [2.20, 8.04]
Spleen 3.39 [2.11, 5.46]
Small bowel 2.61 [1.00, 6.14]
Hippocampus 244 [1.11,5.12]
Pancreas 1.83 [1.10, 2.94]
Aorta 1.68 [1.08, 2.51]
Left ventricle 1.55 [0.98, 2.37]
Liver 1.49 [0.83, 2.59]
Adrenal 0.85 [0.37, 1.70]
Lung 0.20 [0.06, 0.52]
Ovary 0.14 [3.01e-04, 1.29]
Cell lines (2) Odds Ratio 95% CI
GM12878 1.04 [0.36, 2.74]
IMR90 1.01 [0.76, 1.33]
and p-value after Bonferroni correction from Fisher's exact test. The lower bound for small bowel is 1.002
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The relationship between tissue-specific eQTLs and
tissue-specific chromatin interactions is helpful for iden-
tifying genes regulated by eQTLs through chromatin in-
teractions in the corresponding tissue. For example, the
brain cortex tissue DLPFC has 2954 tissue-specific
eQTLs and 323 tissue-specific FIREs. When both factors
were considered, we identified 32 DLPFC-specific
eQTLs located in those DLPFC-specific FIREs. These
eQTLs are significantly associated with 4 genes, includ-
ing ADGRB?2 (adhesion G protein-coupled receptor B2),
WASF3 (WAS protein family member 3), SPEF2 (sperm
flagellar 2), and XPA (xeroderma pigmentosum comple-
mentation group A). Among these genes, ADGRB2,
which encodes a transmembrane signaling receptor [25],
has a brain-specific developmental expression pattern
and its expression level is increased as the development
of the brain progresses [26]. The TSS of this gene
(chr1:32,192,718) is ~47Kb from a DLPFC-specific FIRE
(chr1:32,240,000-32,320,000).

Due to the relatively low depth in the Hi-C data cur-
rently available for multiple tissues, we performed our
analyses at the 40Kb resolution to avoid data sparsity. It
would be ideal to perform the analyses at a higher reso-
lution. However the availability of high-resolution Hi-C
data for tissues is currently very limited.

The eQTL results used in our study were available
only for SNP-gene pairs that are within 1 Mb distance.
The power of the eQTL analysis is largely determined by
sample size. Because of these issues, we might have
missed some SNP-gene associations in our analyses. In
addition, our TAD enrichment analysis did not account
for linkage disequilibrium (LD) between eQTLs. The ef-
fects of LD, if any, are probably canceled out between
the real and simulated datasets.

Conclusions

In summary, we have demonstrated the close spatial
proximity between eQTLs and their target genes across
multiple human primary tissues. These results help us
further understand the complementary effects of chro-
matin interactions and eQTLs in gene regulations.

Methods

Data description

We used Hi-C and eQTL data of 11 primary human tis-
sues and 2 cell lines from Schmitt et al. [23] and the
GTEx project [3], including the lymphoblastoid cell line
GM12878, the fetal lung fibroblast cell line IMR90, and
adrenal, aorta, dorsolateral prefrontal cortex (DLPFC),
hippocampus, left ventricle, liver, lung, ovary, pancreas,
small bowel and spleen tissues (Additional file 1: Table
S1). We focus on the autosomes in all our analyses. The
reference genome is hgl9.
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The Hi-C data contained over 2.9 billion raw
intra-chromosomal unique read pairs on the 13 samples,
out of which >1 billion have distance >15Kb. We used
40Kb bin resolution for the Hi-C data. We also down-
loaded the information for TAD boundaries and FIREs
from Schmitt et al. [23]. On average, there are 2068
TADs and 3681 FIREs per sample. Schmitt et al. [23]
study also published RNA-seq data for each tissue sam-
ple, measured by FPKM values. In the GTEx study, all
tested SNP-gene pairs were within 1 Mb distance [3].
Details of data preprocessing are in the Additional file 1:
Supplementary Materials.

Regression analysis of chromatin interaction frequency
We first evaluated the relationship between CIF and
eQTL results using regression analysis. We mapped
every SNP-gene pair tested in the GTEx study to a bin
pair. SNP-gene pairs mapped to the same 40Kb bin were
excluded from our analysis; that is, if a tested gene falls
in one bin, it must have a corresponding SNP or eQTL
in the other bin. We defined the following features for
every bin pair (i, j), where i <j: 1) the CIF (I; _ ), 2) the
number of eGenes with TSS in bin i or bin j (G.gepe)
3) the number of tested genes with TSS mapped
to bin i (G;), 4) the number of tested genes
with TSS mapped to bin j (Gj), and 5) the genomic dis-
tance between bin i and bin j (D=|i-j|). We fo-
cused on bin pairs that contain at least one tested
gene (i e,G;+G;>0). Since in the GTEx study,
all tested SNP - gene pairs were within 1Mb distance,
the bin pairs in our analysis also had distance < 1Mb. In
addition, because the samples in the two original studies
came from different tissue sources, we focused on genes
that expressed in both sources, specifically, genes that
were tested in the GTEx study [3] and had FPKM> 1 in
the corresponding tissue or cell line in Schmitt et al. [23].

We performed negative binomial regression of CIF on
the number of eGenes in each tissue or cell line. Since
the CIF between two loci is known to be affected by
their genomic distance [16], we included distance as a
covariate in our model:

In ([Hi—C) ~ GeGene +D (1)

In addition, it is known that chromatin interactions
are less frequent between a gene-dense compartment
and a gene-poor compartment than those within the
same compartment [16]. While the compartments are
defined on multi-Mb scale, this result indicates that gene
density may play a role in Hi-C interaction. We thus fur-
ther adjusted for the unevenness in the distributions of
genes between two bins. Specifically, we added Gpyr= |
G, - G;| to our model as another covariate:
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11’1 (IHi—C) ~ GeGene + GDlﬁ‘ + D (2)

We also conducted stratified analyses over subsets
stratified by Gp

In Results we showed that there were significant posi-
tive associations between CIF and the number of
eGenes. To further evaluate whether these associations
are truly due to eGenes, we repeated the regression ana-
lysis for the number of non-eGenes (defined as tested
genes without any eQTLs), and compared its effect with
the effect of eGenes. We also performed a regression
analysis for the number of not expressed genes (defined
as genes that had FPKM < 1 in Schmitt et al. [23] and
not tested in GTEx in the corresponding tissue or cell
line). Specifically, we performed the following regression
analyses:

In (IHi—C) ~ Gnon—eGene + GDtﬂ +D (3)
In (IHi—C) ~ Gnot expressed gene + Glef +D (4')

where G, _ cGene i the number of non-eGenes and G,,,;
expressed gene 1S the number of not expressed genes.

We also performed sensitivity analysis by fitting alter-
native regression models where the input variables enter
the models on the log scale or as categorical variables
(details in Additional file 1: Supplementary Materials,
and in Additional file 2: Additional Results).

Enrichment analysis of eQTL-gene associations in TADs
We next evaluated if eQTL-gene associations are
enriched in TADs for all the tissues and cell lines we
considered. For each tested SNP-gene pair, we created a
matched pseudo pair as a control: we kept the gene’s
TSS position but flipped the position of SNP to be on
the opposite side of the TSS but with the same distance
from the TSS. For example, if the SNP is 93Kb down-
stream of the TSS, the flipped position will be 93Kb up-
stream of the TSS. The real SNP-gene pairs and the
pseudo SNP-gene pairs have the same overall distribu-
tion of gene locations and same overall distribution of
SNP-TSS distance. If the flipped position fell outside of
the chromosome, both the real and the matched pseudo
pair were removed from analysis.

We categorized SNP-gene pairs by two features:
whether the pair is a real pair and whether the SNP and
the gene’s TSS are in the same TAD. We then performed
McNemar’s test on the resulting 2 x 2 table to detect
whether there was a significantly higher probability for
SNP-gene pairs to change from being inside the same
TAD to falling in different TADs after flipping the pos-
ition of SNP than the opposite change. We also per-
formed Fisher’s exact test to evaluate the association
between these two features.
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In addition, we took distance into account by perform-
ing logistic regression Y~X+D, where Y indicates
whether a SNP-gene pair is in the same TAD, X indi-
cates whether the pair is real, and D is the distance be-
tween the SNP and the TSS of the gene. We also
performed stratified analyses by stratifying the data by
genomic distance ranging from 40Kb to 1 Mb.

Analysis of tissue-specific FIREs and tissue-specific eQTLs
Finally, we investigated the tissue specificity of Hi-C
data. We defined tissue-specific FIREs and studied their
enrichment surrounding genes and their association with
tissue-specific eQTLs. For each of the 11 tissues, we de-
fined tissue-specific FIREs as those FIREs detected only
in that tissue and not in any of the other 10 tissues.
Tissue-specific eQTLs were similarly defined using the
GTEx meta-analysis results (details in Additional file 1:
Supplementary Materials). For GM12878 and IMR90,
cell line-specific FIREs and eQTLs were similarly defined
using all 13 samples we considered. For example,
GM12878-specific FIREs are the FIREs detected only in
GM12878 and not in any of the other 12 samples.

For each tissue, we examined whether tissue-specific
eQTLs are enriched in tissue-specific FIREs. For each
tissue and cell line, we counted the number of eQTLs
according to whether the eQTL is tissue specific and
whether it falls in a tissue-specific FIRE. We computed
the odds ratio as the ratio of the fraction of
tissue-specific eQTLs mapped to tissue-specific FIREs to
the fraction of those mapped to the other FIREs of the
tissue. We also computed Bonferroni corrected p-value
and confidence interval at the 95% level after Bonferroni
correction (i.e. 99.54% nominal level, where 0.9954 = 1—
0.05/11).

Additional files
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(DOCX 1137 kb)

Additional file 2: Additional results. (XLSX 18 kb)
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