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Abstract

Background: Like glucose-6-phosphate dehydrogenase (G6PD) deficient hemizygous males and homozygous
females, heterozygous females could also manifest hemolytic crisis, neonatal hyperbilirubinemia or kernicterus upon
exposure to oxidative stress induced by certain foods such as fava beans, drugs or infections. Although hemizygous
males and homozygous females are easily detected by conventional GE6PD enzyme assay method, the
heterozygous state could be missed by the conventional methods as the mosaic population of both normal and
deficient RBCs circulates in the blood. Thus the present study aimed to apply high resolution melting (HRM) curve
analysis approach to see whether HRM could be used as a supplemental approach to increase the chance of
detection of G6PD heterozygosity.

Results: Sixty-three clinically suspected females were evaluated for G6PD status using both enzyme assay and HRM
analysis. Four out of sixty-three participants came out as G6PD deficient by the enzyme assay method, whereas
HRM approach could identify nine participants with G6PD variants, one homozygous and eight heterozygous.
Although only three out of eight heterozygous samples had G6PD enzyme deficiency, the HRM-based
heterozygous G6PD variants detection for the rest of the samples with normal G6PD enzyme activities could have
significance because their newborns might fall victim to serious consequences under certain oxidative stress.

Conclusions: In addition to the G6PD enzyme assay, HRM curve analysis could be useful as a supplemental
approach for detection of G6PD heterozygosity.
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Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency
is an X-linked inherited disorder with a worldwide
prevalence of 4.9% and the disorder affects 400 million
people globally [1]. The G6PD gene-encoded enzyme is
involved in the production of NADPH, which maintains
RBCs’ reduced glutathione levels and consequently plays
a role in keeping cellular proteins and lipids in the re-
duced state when erythrocytes are subjected to an oxida-
tive stress [2]. Most individuals with G6PD deficiency
remain clinically asymptomatic. However, a reduction in
G6PD enzyme activity makes RBCs susceptible to
hemolysis under conditions of oxidant drug administra-
tion, ingestion of foods which induce oxidative stress, or
infections [3, 4].

As an X-linked genetic disorder, G6PD deficiency is
more likely to affect males than females. The major clin-
ical manifestations are generally noticed in hemizygous
males and homozygous females [5-8]. However, studies
have shown that random X-chromosome inactivation can
result in mosaic populations of normal and deficient
erythrocytes [9] and heterozygous females can also be af-
fected in some circumstances and especially such a situ-
ation can occur when the population of deficient RBCs
develops hemolysis under conditions of oxidative stress
[10-12]. Thus, G6PD heterozygous females are also sus-
ceptible to oxidative stress-induced hemolysis, even
though the severity is variable. The most serious outcome
might be seen in the heterozygous newborns who could
suffer from an acute hemolytic crisis resulting in an acute
bilirubin-induced encephalopathy, kernicterus and even
death [13-15]. Moreover, it has been illustrated that the
proportion of defective to normal RBC population might
be subjected to change over time, e.g., the age-related bias
of X-chromosome inactivation leading to G6PD deficiency
in octogenarian, nanogenarian, and centenarian females in
a population with prevalent G6PD variants have been re-
ported [16]. In some cases, the numbers of defective RBCs
are much higher and total G6PD enzyme activity might be
comparable to those in G6PD deficient hemizygous males.
In a situation like this, hemolysis is inevitable upon expos-
ure to oxidant drugs, fava beans or infectious agents.
Under the circumstances, knowledge of heterozygous
polymorphic status in the G6PD gene of females would
help the concerned persons to avoid certain foods and
drugs that may make heterozygous females victims to oxi-
dative stress. Additionally, heterozygous females could
give birth to hemizygous male newborns who could suffer
from hemolytic crisis upon accidental exposure to oxida-
tive stress which could lead to hyperbilirubinemia, kernic-
terus and even death [17, 18].

Although typical screening tests detect hemizygous
G6PD deficient males and homozygous G6PD deficient
females with ease, they do not detect heterozygous
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females with high efficiency. The fluorescent spot test
and Quantitative G6PD enzyme assay methods are based
on the principle of measurement of NADPH produced
from NADP* by G6PD enzyme. So, these conventional
methods are likely to misdiagnose G6PD heterozygous
females with a higher proportion of normal to deficient
RBCs population in the circulation [19, 20]. On the
other hand, although the cytochemical assay and
MRT-based cytofluorometric method could differentiate
among G6PD normal, G6PD hemizygous, G6PD homo-
zygous and G6PD heterozygous samples, these methods
are cumbersome, requiring several steps, prone to error,
and it is difficult to process and screen a large number
of samples using these approaches [19, 21]. The
DNA-based tests are also reliable and can be used for
diagnosis of patients with homozygous, hemizygous, and
heterozygous G6PD deficiency. But most of the
DNA-based methods, such as sequencing, denaturing
high-performance liquid chromatography (DHPLC),
amplification refractory mutation system polymerase
chain reaction (ARMS-PCR), single strand conform-
ational polymorphism (SSCP) etc. are either costly or
technically cumbersome and requires the use of hazard-
ous chemical compounds. Thus, in addition to the quan-
titative G6PD enzyme assay, a supplemental DNA-based
rapid and reliable approach such as high-resolution
melting (HRM) curve analysis for screening of G6PD
variants could be really useful to increase the chance of
detection of heterozygous status.

High-resolution melting (HRM) curve analysis is a
DNA-based high throughput, rapid and reliable muta-
tion screening approach that can effectively separate
wild-type status from hemizygous, homozygous and het-
erozygous statuses [22]. The approach has successfully
been applied for screening of genetic variants involved
in various genetic diseases including autosomal reces-
sive, autosomal dominant and X-linked recessive disor-
ders [23-25]. This present study aimed to apply HRM
curve analysis approach to see whether HRM could be
used as a supplemental approach to increase the rate of
detection of G6PD heterozygosity.

Results

Demographic information and G6PD enzyme status of the
study participants

Depending on the history of the previous hemolytic cri-
sis, all sixty-three Bangladeshi Bengali female partici-
pants who were in the age range of 0-15 years were
suspected of having G6PD deficiency. The mean age of
the study participants were 8.47 + 3.24 years. To diag-
nose how many of the suspected participants had an ac-
tual G6PD deficiency, quantitative enzyme assay was
performed using RBC specimens of each participant.
Among 63 participants, only 4 (6.34%) came out as
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G6PD enzyme deficient, provided that the cut-off for
G6PD enzyme deficiency was set to 7.37 U/g Hb, as
demonstrated in our previous study [26].

HRM-based assessment of samples targeting the common
G6PD variants in Bangladesh
All 63 specimens were subjected to HRM analysis targeting
three previously reported G6PD common variants in
Bangladesh [26]. HRM curve analysis could identify 7 out of
63 samples that were found to vary from the wild-type alleles
(Fig. 1a, b, and ¢). The HRM curve results were confirmed
by Sanger sequencing of all samples. None of the samples
had SNPs or G6PD variants that clustered with the wild type
reference samples. Three out of seven samples that had devi-
ated from wild type allele were found to have the enzyme ac-
tivities lower than the cut-off (3.1 U/g Hb, 4.89 U/g Hb, and
5.45 U/g Hb), whereas the enzyme activities of the remaining
four samples were greater than the cut off (7.67 U/g Hb,
9.38 U/g Hb, 10.84 U/g Hb, and 11.34 U/g Hb) (Table 1).
The sequencing data showed that the Orissa variant
was present in a homozygous state in one sample with
an enzyme activity of 3.1 U/g Hb, whereas the same
variant was found in one of the seven samples in a het-
erozygous state with an enzyme activity of 4.89 U/g Hb
(Table 1). The sample with an enzyme activity of 5.45 U/
g Hb was found to have G6PD Kalyan-Kerala (c.G949A)
variant in a heterozygous state (Table 1).
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Sequencing results also confirmed that four samples
with enzyme activities greater than the cut-off but varied
from the wild-type samples had genetic polymorphisms.
All four of them were found to have heterozygous G6PD
variants. Two of the samples had G6PD Mahidol
(c.G487A) variant in a heterozygous state and their en-
zyme activities were 7.67 U/g Hb and 11.34 U/g Hb, re-
spectively, whereas the other two samples with G6PD
Kalyan-Kerala heterozygous variant had enzyme activ-
ities of 9.38 U/g Hb and 10.84 U/g Hb, respectively.
Overall, the findings suggest that screening of G6PD var-
iants by HRM curve analysis targeting the commonly
occurring variants in Bangladesh can be performed with
100% sensitivity and 100% specificity.

HRM-based assessment of samples targeting the G6PD
variants other than common mutations

When all 63 samples were subjected to HRM analysis to
screen other unreported variants, only two samples were
found to vary from the wild-type alleles (Fig. 2). Upon
Sanger sequencing, both of these two samples were found
to contain G6PD Mediterranean variant (c.C563T) in het-
erozygous states with enzyme activities of 3.52 U/g Hb
and 11.89 U/g Hb (Table 2), respectively. The samples that
made melt curve clusters with the wild type reference
samples had no other G6PD variants, implying 100% sen-
sitivity and specificity of the method. Thus, like the G6PD
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Fig. 1 HRM curves patterns for the indicated common mutations in the glucose-6-phosphate dehydrogenase gene for the study participants to
differentiate homozygous and heterozygous states from each other and from the wild-type alleles. (@) G6PD Orissa mutation, (b) G6PD Mahidol
mutation and (c) G6PD Kalyan-Kerala mutation in homozygous or heterozygous states which could be unambiguously distinguished from the
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Table 1 G6PD enzyme activity in the samples with G6PD Orissa, G6PD Mahidol, and G6PD Kalyan-Kerala variants

Mutations Exons Amino acid substitution Enzyme activity U/g Hb Enzyme activity compared to the cut-off (%)
Zy y U/g Zy Yy p
cC131G Exon 3 p. Alad4Gly 3.10 57.93% |
cC131G6* Exon 3 p. Alad4Gly 489 33.60% |
cG487A Exon 6 p. Gly163Ser 7.67 0391% 1
cG487A* Exon 6 p. Gly163Ser 11.34 35.04% 1
cG949A" Exon 9 p. Glu317Lys 545 26.03% |
cGo49A* Exon 9 p. Glu317Lys 9.38 2145% 1
cG949A* Exon 9 p. Glu317Lys 10.84 33.99% 1

# indicates heterozygous variants; *indicates homozygous variants; | indicates lower; 1 indicates higher

common variants, G6PD Mediterranean variants could
also be targeted by HRM to detect G6PD heterozygote
states in Bangladesh.

Skewing of G6PD enzyme activities in heterozygous
female participants

The results described so far indicated that 8 out of 63 fe-
male specimens had heterozygous variants. Next, we
wanted to investigate how the G6PD enzyme activities did
vary among samples with different heterozygous states
and within different samples of the same heterozygous
states. Tables 1 and 2 show that samples with heterozy-
gous variants had different levels of G6PD enzyme activ-
ities. Even samples with the same heterozygous variants
differed greatly among one another in levels of G6PD en-
zyme activities. One of the eight samples with the hetero-
zygous state had ¢.C131G variant and its enzyme activity
was 4.89 U/g Hb, which was 33.60% lower than the
cut-off 7.37 U/g Hb (Table 1). However, the enzyme activ-
ities of two of the samples with c.G487A heterozygous
variant differed greatly, such as 7.67 U/g Hb and 11.34 U/
g Hb, which were 03.91% and 35.04% higher than the
cut-off (Table 1), respectively. Similar to the c.G487A
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Fig. 2 Identification of G6PD Mediterranean (c.C563T) mutations in a
heterozygous state by using primers targeting exon-6. The HRM
curve pattern for c.C563T heterozygous mutation could be
distinguished from wild-type allele

heterozygous variant, two heterozygous c.C563T samples
showed remarkable differences in their G6PD enzyme ac-
tivities. One of these two samples had an enzyme activity
of 3.52 U/g Hb, which was 52.19% lower than the cut-off,
whereas the other one had 38.02% higher enzyme activity
than the cut-off (Table 2). Finally, the study identified 3
samples with ¢.G949A heterozygous variant. One of these
three samples had an enzyme activity of 545 U/g Hb,
which was 26.03% lower than the cut-off. However, the
enzyme activities of the rest two samples with c¢.G949A
heterozygous variant were 9.38 U/g Hb and 10.83 U/g Hb,
which were 21.45% and 33.99% higher than the cut-off
(Table 1), respectively.

Discussion

This present study demonstrates the use of high reso-
lution melting (HRM) curve analysis as a supplemental
approach in addition to G6PD enzyme assay to increase
the rate of chance of detection of G6PD heterozygote fe-
males targeting the previously reported and unreported
G6PD genetic variants in Bangladeshi population. Exten-
sive genetic researches have been revealing huge useful
information about genetic abnormalities including
chromosomal aberration, overexpression of genes, or
mutations of bases. Sensitive, accurate and timely identi-
fication of some SNPs or genetic variants can influence
clinical decision making, such as in prescribing personal-
ized medicine that may potentially lead to better prog-
nosis. In some cases, SNPs or genetic variants detection
may help to avoid disease-specific conditions, thereby
offering an appropriate patients’ management strategy.
However, it is really important to find a genetic variants
detection method that is reliable, time-saving, and

Table 2 G6PD enzyme activities in samples with the
heterozygous G6PD Mediterranean variants

Mutations Exons Amino acid Enzyme Enzyme activity
substitution activity compared to
U/g Hb cut off (%)
cC563T" Exon 6 p. Ser188Phe 352 52.19% |
cC563T" Exon 6 p. Ser188Phe 11.89 38.02% 1

*indicates heterozygous variants; | indicates lower; 1 indicates higher
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cost-effective and uses a high throughput operational
platform to supplement the conventional methods which
may be good for diagnosis but they have limitations with
higher failure rates in specific conditions. In most cases,
it is usual to target the gene-encoded products for the
diagnosis of a genetic disease, such as fluorescent spot
test or enzyme activity measurement for G6PD defi-
ciency detection, as it is less cumbersome, cost-effective
and quick. Unfortunately, targeting the gene-encoded
products sometimes do not offer the real state of the
disease and such an approach can lead to an unexpected
clinical outcome. Such a situation could occur in females
with  heterozygous G6PD  variants as skewed
X-chromosome inactivation can result in a mosaic popu-
lation of normal and deficient RBCs, where the levels of
G6PD enzyme activity in heterozygote females depend
on the ratio of G6PD normal to G6PD deficient erythro-
cytes [21, 27]. Thus, the present study aimed to illustrate
the importance of a supplemental approach, known as
high-resolution melting (HRM) curve analysis, in
addition to G6PD enzyme assay method to accurately
detect heterozygous females targeting the previously re-
ported and unreported G6PD variants in Bangladesh.

In the present study, quantitative spectrophotometric
G6PD enzyme assay method detected only 4 out of 63
samples with enzyme activities lower than the cut-off.
On the other hand, HRM-based genetic testing that con-
formed to the Sanger sequencing data revealed that 9 of
the 63 participants were carrying G6PD gene variants
that cause G6PD deficiency, one in homozygous state
and eight in heterozygous states. Five of the heterozy-
gote samples had enzyme activities that were higher than
the cut-off and such a finding could be attributed to the
skewed X-chromosome inactivation which could result
in a higher number of G6PD normal RBCs and a fewer
G6PD deficient RBCs [21]. Even though these heterozy-
gote females were normal in terms of G6PD enzyme ac-
tivities, their enzyme activity status might alter due to a
change in the ratio of the mosaic population of normal
to deficient RBCs in the later stages of life [16]. Thus,
these G6PD heterozygous females with normal enzyme
activities might be vulnerable to suffer from oxidative
stress upon exposure to oxidizing drugs and intake of
certain food that induce oxidative stress. Prescription of
oxidizing drugs to patients is generally done after a bio-
chemical assay for G6PD in a population with a high fre-
quency of G6PD deficiency. Once the test is done for
G6PD deficiency and status of the patient is known, fur-
ther checking of G6PD enzyme status might not be ne-
cessary during future treatment for a parasitic infection,
such as for malaria infection. As the G6PD enzyme ac-
tivity might be subjected to change to a low level due to
alteration in a ratio of normal to deficient RBCs popula-
tion, these heterozygous females are at risk of accidental
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G6PD deficiency-related complications [16]. Moreover,
recent studies have demonstrated that antimalarial drugs
can cause hemolysis of defective RBC population in het-
erozygous females [28]. Thus, it is important to know
the G6PD heterozygous status and once it is known,
avoidance of accidental hemolytic crisis in heterozygote
females is possible.

Detection of G6PD heterozygosity is important not
only for a deficient female but also for her newborn ba-
bies. It is important to take into consideration of the
point that 400 million people are affected globally with
G6PD deficiency [1]. Even though most of those affected
people are males, but the important point to note is that
those affected males inherit G6PD deficiency from their
heterozygous or homozygous G6PD deficient mother.
Thus, if the status of a mother is known it would be
helpful for her to avoid accidental complications as well
as to avoid neonatal problems that are more severe and
most damaging. A heterozygous G6PD deficient mother
who is never symptomatic of her deficiency may deliver
a baby boy with the deficient allele. In such a situation,
the baby boy with G6PD mutant allele may remain
asymptomatic for the first few days of life and then may
start showing symptoms of jaundice which may grad-
ually worsen to kernicterus or bilirubin encephalopathy
or even death [17, 18]. A female newborn with heterozy-
gous G6PD deficiency has also been reported with simi-
lar features. This female newborn had a normal level of
bilirubin for the first two days after birth and then rou-
tine screening revealed hyperbilirubinemia even though
the G6PD enzyme activity was in the normal range [14].
Such a phenomenon was the result of the destruction of
G6PD deficient RBCs, although the normal RBC popula-
tion survived the oxidative stress. The potential damage
due to G6PD heterozygous mutation does not end here.
Extreme hyperbilirubinemia and death were accounted
for a G6PD heterozygous female neonate who was also a
heterozygote due to (TA)6/(TA)7 promoter polymorph-
ism for uridine diphosphate glucuronosyltransferase
1A1*28 (UGT1A1*28) [13], which is generally not a risk
factor for neonatal jaundice or kernicterus [29-31]. But
UGT1A1*28 promoter polymorphism along with G6PD
deficiency can lead to extreme neonatal hyperbilirubine-
mia [32].

Till date, at least 160 G6PD gene variants are known and
these genetic variants are dispersed throughout the G6PD
gene [33]. So, HRM curve analysis targeting the full-length
G6PD gene is not feasible for large-scale screening. Fortu-
nately, all of these G6PD variants are not present in all
geographical locations of the world and only a small frac-
tion of G6PD variants could be found for a specific geo-
graphical location and ethnic population. For example,
only 9 variants, namely c.A95G, c.G392 T, c.G487A,
¢.A493G, ¢.C592T, ¢.C1024T, ¢.C1360T, ¢.G1376 T, and
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¢.G1388A account for approximately 90% of G6PD defi-
ciency in China [22, 34, 35]. Similarly, in Thai-Myanmar
border area, only G6PD Mahidol (G487A) variant accounts
for 88-96% of G6PD-deficient subjects [36, 37]. Three
G6PD variants, namely G6PD Orissa, G6PD Mediterra-
nean, and G6PD Kalyan-Kerala are commonly found in In-
dian population [38, 39]. G6PD Mediterranean (c.C563T)
is also common in Pakistan and Afghanistan and accounts
for approximately 80% of G6PD deficient cases in Pakistan
[40, 41]. Thus, targeting a set of G6PD variants specific to
the population of certain geographical location and ethnic
background, HRM melting curve approach could be im-
plemented for the screening of heterozygous G6PD vari-
ants. Hence, we planned to use HRM approach for
screening of G6PD heterozygous females in Bangladesh be-
cause only three G6PD variants in the G6PD gene had
been reported as the most common in the country [26]. In
addition to three commonly occurring mutations, we had
identified another G6PD variant, namely G6PD Mediterra-
nean (c.C563T). Thus, only four sets of G6PD
gene-specific HRM PCR primers could help avoiding mis-
diagnosis of G6PD heterozygous females.

In this study, we designed one set of primers for detec-
tion of G6PD Orissa (c.C131G) mutation and used a new
combination of primers from previously published study
for detection of G6PD Kalyan-Kerala variant (c.G949A)
[22]. Additionally, for detection of mutations including
c.A95G, ¢.C274T, ¢.G392 T, C406T, c.G487A, c.A493G,
c¢T517C, c. C519G, cC592T, c.A835G, c.G871A,
c.C1024T, ¢.C1004T, c.G1340 T, c¢.C1360T, ¢.G1376 T,
¢.G1381A and c.G1388A, published primers were used
[22]. However, in the aforementioned study, the authors
analyzed specimens of already known G6PD deficient per-
sons and their parents. In this study, we used specimens
of unknown G6PD enzyme statuses and identified some
heterozygous samples that had normal G6PD enzyme ac-
tivities. Moreover, we had illustrated the use of primers
from the above-mentioned study to detect mutations like
G6PD Kalyan-Kerala (c.G949A) and G6PD Mediterranean
(c.C563T), which had not been reported by the authors of
the cited article. Thus our HRM approach could screen
G6PD variants in heterozygous females with 100% sensi-
tivity and 100% specificity in Bangladesh. Most import-
antly, we had illustrated the importance of supplemental
HRM approach in addition to quantitative enzyme assay
method to maximize the chance of detection of G6PD
heterozygous females.

Conclusions

In summary, using conventional enzyme assay method a
significant number of heterozygote females could be
missed. G6PD enzyme activities vary greatly not only
among the samples with different heterozygous genetic
variants but also among the samples with same
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heterozygous G6PD genetic variants. A supplemental
HRM approach targeting regional common G6PD
variants could increase the chance of G6PD heterozygous
females’ detection. Since G6PD variants repertoires differ
among different geographical locations and ethnic popula-
tions, primer designing should be done accordingly.

Methods

Study participants

Based on their family history or past clinical hemolytic
complications, sixty-three female participants of Bangla-
deshi Bengali ethnic origin in the age range of 0—15 years
were enrolled at the clinical settings of Bangabandhu
Sheikh Mujib Medical University; Bangladesh Institute of
Research & Rehabilitation in Diabetes, Endocrine and
Metabolic Disorders; and Dhaka Shishu Hospital. The par-
ticipants either belonged to a family with one or more
G6PD deficient case(s) or had a history of recovery from
an episode of neonatal hyperbilirubinemia or jaundice or
hemoglobinuria accompanied by pallor or an accidental
hemolytic crisis. It was made sure that the participants
who had a history of the previous hemolytic crisis were in
remission for a sufficient period of time so that the factors
that could affect G6PD enzyme assay could be avoided,
such as higher G6PD enzyme activity after recovery from
a hemolytic crisis. The Ethical approval for this study was
taken from Bangladesh Medical Research Council
(BMRC) of National Ethics Review Committee (NERC),
Dhaka, Bangladesh. Prior to enrollment of the study par-
ticipants, written informed consents were obtained from
the parents or guardians of the study participants.

Sample collection

One mL blood was collected by venipuncture from each
of the participants in an ethylenediaminetetraacetate
(EDTA)-coated vacutainer. A fraction of the collected
blood was used for G6PD enzyme assay, whereas an-
other fraction was used for genomic DNA extraction.

Quantitative G6PD activity assay

Quantitative G6PD enzyme activity measurement was
performed using Randox G6PD assay kit (Randox La-
boratories Ltd., Crumlin, UK) and manufacturer’s in-
struction was followed. The enzyme activity assay was
performed by measuring an increase in absorbance at
340 nm which is associated with an increase in NADPH
concentration produced in the reaction catalyzed by
G6PD  enzyme. G6PD enzyme activity at ambient
temperature was calculated at ~25 °C following the
equation provided with the kit, (33,650 x AA 340 nm/
min x 100) / Hb (g/dL), where AA means a change in
absorbance per minute. The calculated value at 25 °C
was multiplied by temperature correction factor 2.076 to
get the G6PD enzyme activity at 37 °C.
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Extraction of genomic DNA from whole blood

Genomic DNA isolation from whole blood was
performed using QIAGEN flexigene® DNA kit (Qiagen,
Hilden, Germany) following manufacturer’s instructions.

Real-time PCR-high resolution melting curve analysis

The real-time PCR was followed by HRM analysis and the
procedures were performed in a CFX96 Touch™ Real-Time
PCR machine (BioRad). The screening was performed tar-
geting three reported G6PD variants in Bangladesh, namely
G6PD Orissa (c.C131G), G6PD Mahidol (c.G487A) and
G6PD Kalyan-Kerala (c.G949A) [26] and other unreported
G6PD variants including c.A95G, ¢.C274T, c¢.G392 T,
C406T, c.A493G, c.T517C, c. C519G, c.C563T, c.C592T,
c.A835G, c.G871A, ¢.C1024T, c.C1004T, c.G1340 T,
c.C1360T, c¢G1376 T, c.G1381A and c.G1388A. For
screening of G6PD Orissa (c.C131G) variant, PCR amplifi-
cation was done using forward primer 5~ -CACCTGTTC
CCTCTGCCAC-3 “ and reverse primer 5~ -TACCAGAT
GGTGGGGTAGATC-3 ~ which spans a 62 bp amplicon
of G6PD gene. On the other hand, G6PD Kalyan-Kerala
variant was screened by targeting a 226 bp sequence of
G6PD gene using the forward primer 5~ -CCCAACTCA
ACACCCAAGGA-3 ~ and the reverse primer 5 ~ -CTCA
TTCTCCACATAGAGGACGAC-3 ~ [22]. For screening
of other G6PD variants including c.A95G, c.C274T,
c.G392 T, C406T, c.G487A, c.A493G, c.T517C, c. C519G,
c.C563T, ¢.C592T, c.A835G, c.G871A, ¢.C1024T, c.C100
4T, ¢G1340 T, c.C1360T, c.G1376 T, c.G1381A and
¢.G1388A, PCR amplification was performed using previ-
ously published primers [22]. The lengths of the amplified
product ranged from 62 bp to 226 bp, which were within the
limit of standard amplicon size for HRM analysis [42, 43].

A reaction volume of 10 pL was used for real
time-polymerase chain reaction (RT-PCR). The compos-
ition of PCR mixture was as follows: 5 uL of 2X preci-
sion melt supermix (BioRad), 0.2 uL of forward primers
(10 uM), 0.2 pL of reverse primers (10 uM), 50 ng of
genomic DNA in a total of 10 pL reaction volume. The
thermal cycling profile for the real-time PCR was as fol-
lows: initial denaturation at 95 °C for 3 min; 40 cycles of
denaturation at 94 °C for 10 s, annealing at 58 °C for
30 s and extension at 72 °C for 30 s. After completion of
real-time PCR, the subsequent melt curve program had
the following steps: denaturation at 95 °C for 30 s, rena-
turation at 60 °C for 30 s, and then melting at 60 °C to
95 °C with an increment of 0.1 °C per 5 s. Real-time
HRM analysis was performed by parallel testing of (a)
specimens of the present study, (b) sequenced wild type
reference samples, and (c) available homozygous/hemi-
zygous samples for G6PD Orissa (c.C131G), G6PD
Mabhidol (c.G487A) and G6PD Kalyan-Kerala (c.G949A)
from our previous study [26].
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Polymerase chain reactions, PCR product purification, and
sequencing

For confirmation of the HRM melt curve results, Sanger
sequencing was performed for all samples as it has been
reported that some G6PD variants might generate melting
patterns that are similar to those generated by the wild
type allele [44, 45]. Sequencing of G6PD gene was done
using our previously published primers [26]. For sequen-
cing, the extracted DNA samples were subjected to poly-
merase chain reaction (PCR) following aforementioned
study protocol. Following completion of reaction cycles,
PCR product purification was performed using the MinE-
lute® PCR purification kit (Qiagen) according to manufac-
turer’s instruction.

The purified PCR product was subjected to chain termin-
ation reaction for Sanger sequencing using the Big Dye
Version 3.1 Cycle Sequencing Kit (Applied Biosystems,
Warrington, UK) following manufacturer’s instruction.
Thereafter, the chain termination product was purified
using the BigDye® XTerminator™ purification kit (Applied
Biosystems). Finally, the purified chain termination PCR
product was subjected to capillary sequencing in an ABI
PRISM 310 Automated Sequencer (Applied Biosystems).

Sequencing data collection and mutation identification
Sequencing data were collected by ABI PRISM 310 data
collection software version 3.1.0 (Applied Biosystems).
The collected data were exported in FASTA format and
thereafter the obtained data were analyzed to identify
G6PD variants by using Basic Local Alignment Search
Tool (BLAST), which compared the query sequence with
the reference (wild-type) sequence (NM_001042351.2)
retrieved from NCBI database.
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