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Abstract

Background: Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of
skatole located in the region 74.7-80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which
gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice
to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would
help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to
identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine

mapping of the SSC7 skatole QTL region.

Results: A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace
and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc,
respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9-80.

3 Mb in Landrace, with the highest test scores found in a region between the genes NOVAT and TGM1 (p < 0.001). The
same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.
9-80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like)
and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype
block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with

levels of sex steroids.

Conclusions: Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs.
The QTL region was narrowed down to 44 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance
for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these

markers attractive for selection against boar taint.
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Background
Boar taint is an unpleasant smell and/or taste of meat
from some uncastrated male pigs. In most countries, the
problem is solved by castrating piglets at a young age.
Banning surgical castration would, however, be advanta-
geous due to ethical and economic reasons, and the EU
aims for alternative solutions to the boar taint issue
within few years [1].

The two main compounds responsible for boar taint are
androstenone and skatole (3-methylindole). Androstenone
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is a steroid hormone produced in the testicles, via the
same biological pathway as testosterone and estrogens,
whereas skatole is a fermentation product produced by
degradation of tryptophan in the intestine [2, 3]. Both
compounds are metabolized in the liver; however, defi-
cient degradation leads to their accumulation in adipose
tissue. Indole, another metabolite of tryptophan, also con-
tributes to boar taint, but is less pronounced than the two
other compounds [4, 5]. Levels of skatole and indole in
adipose tissue are highly correlated [6-8], this is also true
for androstenone and skatole [5, 7, 9]. Androstenone in-
hibits skatole metabolism [10-12], explaining why ele-
vated levels of skatole is mainly a problem in male pigs.
Heritabilities for androstenone and skatole in the range of
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0.5-0.7 and ~0.4 have been reported for Norwegian Land-
race and Duroc, respectively [7], suggesting that these
boar taint compounds can be reduced by selective breed-
ing. Our previous studies found very high genetic correla-
tions of boar taint compounds to testosterone and
estrogens (0.8-0.9 for androstenone and 0.4-0.6 for
skatole, respectively) [7]. However, some studies have
suggested that selection for low levels of boar taint should
be feasible as they found no negative correlations between
boar taint and male fertility [13] or production traits
[14-17]. Other studies, on the other hand, show
negative correlations between boar taint and male fer-
tility [18, 19] and boar taint and meat quality [20].
Therefore, even though genetic selection is a promis-
ing alternative to reduce boar taint [13-16, 19, 21,
22], unfavorable correlations to steroid hormones as
well as uncertainty on the cost/benefit of including
boar taint in the breeding goal [1] have slowed down
practical implementation in breeding. Thus, genetic
markers breaking unfavorable correlations between
boar taint compounds and sex steroids may be potent
selection candidates.

Several QTL studies have been conducted to reveal
genomic regions underlying boar taint [7, 23-32]. Re-
sults are quite inconsistent but with different breeds, age
of the boars and definition/measurements of the traits
partly explaining why results differ between studies. The
region on SSC7, however, seems to consistently affect
both androstenone and skatole levels in Norwegian
Landrace and Duroc [7, 31] as well as in other breeds
[23-25, 29]. The cytochrome P450 members CYPIAI
and CYPIA2 have been suggested as candidate genes for
skatole and are located on SSC7 [31, 33]. No functional
mutations have, however, been detected in any of the
studies. Also, the genomic region obtained in the Nor-
wegian populations [31] seems to include three different
QTLs for androstenone and two for skatole.

The aim of this study was to fine map the most signifi-
cant region affecting the level of skatole, found on SSC7
at 74.7-80.5 Mb (Sus scrofa build10.2 positions) [31].
This QTL was identified by LDLA analysis and did not
affect levels of testosterone or estrogens, making it par-
ticularly interesting for implementation in breeding. To
assess the role of this QTL in levels of skatole, we per-
formed fine mapping of the region by selecting SNPs
from whole genome re-sequencing data, followed up by
genotyping and association analyses.

Results

Whole genome re-sequencing was performed on 24
Landrace and 23 Duroc pigs, and provided a total of
10.1 billion paired-end reads (PE; 2 x 100 base pairs)
with a per-animal genome coverage ranging from 9-17X.
Initial quality control removed approximately 15% of the

Page 2 of 9

reads and the remaining reads were mapped against the
pig reference genome (Sscrofa 10.2) with an overall map-
ping percentage of 77%. SNP detection was performed
in a 5.8 Mb QTL region for skatole on SSC7 (74.7—
80.5 Mb). After filtering, 3836 SNPs were found in com-
mon for Landrace and Duroc for the QTL region, and
166 of these were selected for genotyping. Additionally,
22 and 23 SNPs from the Illumina 60 K BeadChip were
available in the QTL region for the Landrace and Duroc
boars, respectively. SNP filtering on minor allele fre-
quency (MAF) and call rate made 126 and 157 SNPs
available for association analyses in Landrace and Duroc,
respectively.

Association analyses was performed to identify SNPs
and haplotypes associated with skatole in the SSC7 QTL
region. The SNPs were also tested for association to levels
of indole, androstenone, testosterone, estradiol and es-
trone sulphate [See Additional files 1 and 2 for results for
Landrace and Duroc, respectively]. To determine if the re-
gion contains more than one QTL we reanalyzed the data
with the most significant SNP included as a fixed effect
and checked if this influenced the test scores of the other
markers in the region. The test revealed no other signifi-
cant SNPs in the region, suggesting that the associations
are caused by one QTL only.

The highest log likelihood-ratio test scores (LRT) for
skatole in Landrace were found for SNPs rs321605443
and rs330435414 at 78.4 and 78.5 Mb, respectively
(LRT = 34.6; explaining 5.0% of the phenotypic vari-
ation). These SNPs are located in an intergenic region
between a 5S rRNA gene (ENSSSCG00000018509) and
syntaxin binding protein 6 (amisyn) (STXBP6) with ex-
tensive LD (Fig. 1). Altogether, 21 SNPs were signifi-
cantly associated with skatole using LRT values
corrected for multiple testing (p < 0.001) in the region
75.9-80.3 Mb.

The most significant results on SSC7 in Duroc was found
for SNP rs431825253 at 80 Mb (LRT = 10.7; explaining
2.6% of the phenotypic variation). When considering a p-
value of 0.01 (LRT > 6.6), 18 SNPs in the 78.9-80.1 Mb re-
gion were found significant in the current study. The high-
est test scores in Duroc were found in GZMB (granzyme B
(granzyme 2, cytotoxic T-lymphocyte-associated serine ester-
ase 1)), GZMH-like and STXBP6 (Fig. 2).

The most significant SNPs in Landrace, located be-
tween 78.3-78.5 Mb were grouped into a haplotype
block of ten SNPs (Fig. 1). Association analyses revealed
that haplotypes within this block are significantly associ-
ated with levels of skatole (LRT = 24.3) and that they ex-
plain 2.3% of the phenotypic variation. A haplotype
block was constructed for the most significant SNPs in
Duroc at 79.8-80.1 Mb (Fig. 2). Haplotypes within this
block was not significantly associated with skatole
(LRT = 3.2).
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Fig. 1 Region plot of the single marker associations between SSC7 SNPs and skatole in Landrace. Test statistics (LogLikelihood (LRT) scores) is
shown along the y axis and physical position in MegaBases (Mb) is shown along the x axis, together with genes holding significant SNPs. An
additional file show the complete list of genes in the region [see Additional file 3]. The threshold of significance is indicated as a dashed line
(multiple testing adjusted p = 0.001). Linkage Disequilibrium (r?) between SNPs as estimated by Haploview is plotted below and the haplotype
block is indicated in red. The darker shades of black represent stronger r*. Haplotypes in the block and their frequencies are presented below the

LD plot
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Discussion

Skatole is a major contributor to boar taint and selection
against this compound would be advantageous for both
economic and ethical reasons. The correlation between
skatole and sex steroids is lower that the correlation be-
tween androstenone and sex steroids [7]. This makes se-
lection against high levels of skatole, as compared to
androstenone, less likely to affect reproduction in the pigs.

Fine mapping in Landrace

Only two of the 21 significant SNPs are located inside
genes, one in the first intron of Neuro-oncological ven-
tral antigen 1 (NOVAI) and one in the 3’UTR region of
Transglutaminase 1 (TGMI). The other 19 significant
SNPs were located in a 2.5 Mb segment in the intergenic
regions NOVAI - 5§ rRNA (ENSSSCG00000018509),

ENSSSC00000024192 -ENSSSC00000022792 and 5SS
rRNA (ENSSSCG00000018509) - STXBP6.

NOVAL is a protein that controls alternative splicing
of mRNAs in different cell types [34—36], whereas
TGM1 is a membrane-bound enzyme that helps to pro-
tect against infections and water loss [37] and is associ-
ated with skin diseases [38]. To our current knowledge,
these genes do not seem to have any relevance to skatole
and we find it more likely that other mechanisms or
genes in region, whose function is not yet characterized
in pigs, are involved [for a list of all genes in the region
see Additional file 3]. Intergenic SNPs may affect distal
regulatory regions of candidate genes by changing tran-
scription factor binding sites, interfering with chromatin
signaling or by bringing chromosomes together in the
nucleus [39]. Evolutionary conserved non-coding regions
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Fig. 2 Region plot of the single marker associations between SSC7 SNPs and skatole in Duroc. Test statistics (LogLikelihood (LRT) scores) is shown
along the y axis and physical position in MegaBases (Mb) is shown along the x axis together with genes holding significant SNPs. A complete list
of genes in the region can be found in Additional file 3. The threshold of significance is indicated as a dashed line (p = 001). Linkage Disequilibrium (%)
between SNPs as estimated by Haploview is plotted below and haplotype block is indicated in red. The darker shades of black represent stronger r*
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are more likely to contain regulatory motifs [39]. Some
of the most significant SNPs in Landrace (rs322137732,
344485447, rs326608782, rs431825241, rs321605443,
rs344465955, rs3304354.14, rs334377914 with LRT scores
of 19.8-34.6) showed 65-82% sequence similarity to hu-
man NOVAI - STXBP6 intergenic regions when se-
quences of 200-400 bp surrounding the SNPs were
blasted. However, no sequence hits were found for other
mammals besides human, making it difficult to predict
the degree of evolutionary conservation in this region.
Sequence surrounding rs321711075 (LRT = 20.9)
showed a 68% sequence similarity to the human long
non-coding (IncRNA) RNA LINCO00645, and the regula-
tory properties of IncRNA may give new meaning to
GWAS associations in non-coding genomic regions [40].
It has been shown that IncRNAs are abundant in gene

deserts associated with genetic traits in human [41], and
there are examples where specific intergenic IncRNAs
are involved in trait regulation through chromatin
modifications (e.g. [42, 43]). Because there are no
known sequence motifs common to long non-coding
RNAs they are difficult to annotate [44] and the search
for IncRNAs in the pig genome has just begun [45].
Whether the QTL signal for skatole in Landrace is
caused by regulatory activity of a IncRNA needs to be
further investigated.

None of the SNPs investigated were associated with
levels of indole, androstenone, testosterone, estradiol
and estrone sulphate, confirming the results of Grindflek
et al. 2011 [31]. This makes the QTL particularly inter-
esting for breeding purposes, as it would not influence
the levels of sex steroids.
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Fine mapping in Duroc

The results in Duroc were less significant than those
found in Landrace, which is in agreement with our earl-
ier QTL study [31]. The QTL peak in Duroc was in a
slightly different chromosomal position than the most
significant SNPs in Landrace. This may indicate that dif-
ferent genetic mechanisms are contributing to this QTL
in the two breeds, but might also be due to differences
in allele frequencies and LD structure. Furthermore, the
average skatole levels are lower in Duroc (0.06 ug/g)
than in Landrace (0.10 pg/g), which possibly also affects
our results. The most significant SNPs associated with
skatole, located in genes belonging to the granzyme fam-
ily, were associated with levels of indole and androste-
none in fat. The alleles associated with low levels of skatole
were also associated with low levels of androstenone, indi-
cating that selection for low boar taint is possible. No asso-
ciations were found for levels of testosterone, estradiol or
estrone sulphate.

The most significant results for skatole levels were
found in a gene dense region on SSC7 where seven of
the 18 significant SNPs are in genes of the granzyme
family: GZMB and GZMH-like, while four are in the
gene STXBP6 (Fig. 2). One significant SNP is non-
synonymous, but predictions using SIFT [46] do not
suggest any change in protein function. Granzymes are
serine proteases found in immune related cell types such
as cytotoxic T lymphocytes and natural killer cells where
they play a role in eliminating diseased cells [47]. Inter-
estingly, tryptophan catabolism is also involved in regu-
lation of immune responses [48]. Specifically, granzyme
B induction by interleukin has been associated with up-
regulation of other immunoregulatory proteins including
indoleamine 2,3-dioxygenase (IDO) [49] which is the rate-
limiting enzyme in tryptophan metabolism [50]. Although
the connection between granzymes and skatole is not
straight forward, different levels of tryptophan could re-
flect levels of skatole and thereby explain our results.

Two significant SNPs are located in introns of
STXBP6. STXBP6 binds to the SNARE complex [51]
and is involved in vesicle-mediated transport. The gene
STX5A, encoding another syntaxin involved in SNARE
interactions and vesicular transport, has been found
down-regulated in rats by treatment of indole-3-
carbinol, one of the metabolites of skatole [52]. If skatole
metabolites also have an effect on syntaxin genes in pigs,
it might explain our results, but further studies are re-
quired to clarify any effect of this kind.

Haplotype associations

The haplotype block in Landrace showed significant as-
sociation to levels of skatole. The most frequent haplo-
type in the block (frequency ~0.4) was associated with
lower levels of skatole whereas the second most frequent
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haplotype (frequency ~0.22) was associated with higher
levels. The difference in mean skatole levels between an-
imals homozygous for these two haplotypes was 0.06 pg/
g skatole. Considering consumer acceptance levels of
0.2 pg/g, 14.5% of Norwegian Landrace boars have been
shown to have skatole levels that are too high [7]. The
SNPs within these haplotype blocks can therefore be
used as genetic markers for lowering the overall skatole
levels in this Landrace population.

Conclusions

Fine mapping of a QTL for skatole on SSC7 was con-
ducted to narrow down the QTL region and search for
genes and mechanisms underlying the QTL. The most
significant results were found in the intergenic regions
between 75.9-78.5 Mb and in NOVAI and TGMI in
Landrace. In Duroc, SNPs within GZMB, GZMH-like,
STXBP6 and intergenic regions at 78.8—80.1 Mb were
found to be most significant. The region in Duroc was
also associated with levels of indole and androstenone.
Although no causal variant was detected, genetic
markers for boar taint that are not associated with sex
steroids have been identified and would therefore be
highly relevant for selection purposes.

Methods

Animals and phenotypes

For re-sequencing purposes, 23 Norwegian Duroc and
24 Norwegian Landrace boars used in the Norsvin
breeding program from 2010 to 2013 were selected. The
boars were key individuals in our previous QTL studies,
with either high or low levels of boar taint [7, 31], or fre-
quently used Al boars during these three years, in order
to catch as much as possible of the genetic variation
present in the population.

A total of 911 Duroc and 767 Landrace boars from
Norsvin’s boar testing station were genotyped in this
study. The boars include fathers and sons from 70 Duroc
and 92 Landrace half sib families, and 60 K BeadChip
genotypes (Illumina) were available for all the boars. For
Landrace, another 440 sons were available with 60 K ge-
notypes from the previous study [31], making imput-
ation to the new markers genotyped in this study
feasible, and these boars were also included in the asso-
ciation analysis. For Duroc, all the available boars were
genotyped in this study. Animals were reared under
similar conditions using standard commercial feed and
were sacrificed over a period of 26 months. On average,
the Duroc and Landrace boars reached slaughter weight
(100 kg) at 156 and 143 days, respectively, and were
slaughtered on average 15 days later. Blood samples for
DNA extraction were collected before slaughter and
subcutaneous adipose tissue samples from the neck for
skatole measurements were collected at the slaughter
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line and stored at —40 °C until chemical analyses were per-
formed. The boars were slaughtered in compliance with
national guidelines. The pigs were stunned in an atmos-
phere with 90% CO,, and the carcasses were ex-
sanguinated, scalded and split within 30 min post mortem.

Levels of skatole were measured in subcutaneous fat,
at the Hormone laboratory, NMBU, using high perform-
ance liquid chromatography [8] whereas levels of
androstenone in fat and plasma were analyzed by a
modified time-resolved fluoroimmunoassay [53] and
using antibody by Andresen [54]. Plasma levels of testos-
terone, estradiol and estrone sulphate were analyzed at
the Hormone laboratory at Oslo University Hospital.
The plasma levels of testosterone were measured by a
radioimmunoassay (Orion Diagnostica, Espoo, Finland)
whereas plasma levels of 17(3-estradiol were measured
by a fluoroimmunoassay (Perkin Elmer, Turku, Finland).
Levels of estrone sulphate in plasma were measured by a
radioimmunoassay (Diagnostic System Laboratories,
Inc., Webster, TX, USA). More information about chem-
ical analyses and compound levels can be found in
Grindflek et al. [7].

DNA for genotyping purposes was extracted from
blood using the MagAttract DNA Blood Midi M48
protocol on the Bio-Robot M48 (Qiagen, Hilden,
Germany). DNA concentration and quality were evalu-
ated using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, DE, USA).

Re-sequencing, pre-processing and read mapping
Genomic DNA from 23 Duroc and 24 Landrace boars
sequenced on an Illumina GAII (Illumina, San Diego,
USA). The sequencing was performed by a commercial
sequencing center (Fasteris, Switzerland) according to
manufacturer’s protocols. FastQC version 0.10.1 (Babra-
ham Bioinformatics, UK) was used for quality checking,
revealing an overall per-base quality >30. Pre-processing
of reads was done using a custom Perl script written to
remove duplicated reads, trim sequencing primer se-
quence and remove reads shorter than 0.8 of their ori-
ginal length. On average, 15% of reads were filtered
using this pipeline and the remaining reads were aligned
to the Sus scrofa 10.2 reference genome [55] using the
software Bowtie2 version 2.0.0 with default parameters
[56]. Mapped reads were sorted by their chromosomal
coordinates using Samtools version 0.1.18 [57]. The Pic-
ard AddOrReplaceReadGroups program (http://broadin-
stitute.github.io/picard/) was used to assign unique IDs
to the files before SNP calling.

SNP detection, annotation and selection

SNPs were detected within each breed using Freebayes
[58] generating a list of SNPs within the QTL region on
SSC7 where each SNP was supported by a minimum of
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two reads across the samples. SNPs located within re-
peat regions (as defined by pig ensembl release 67) were
removed. Moreover, to reduce the chances of false posi-
tive SNPs, the following two filtering criteria were ap-
plied: 1) The minimum total coverage of the reference
allele was two, and 2) both the two homozygous and the
heterozygote genotype had to be present for each SNP.
The read depths for SNP positions across all sequenced
samples were in the range of 12 to 882, with a mean
count of 506, whereas the MAF of the SNPs ranged
from 0.03 to 0.5 with a mean count of 0.22. After initial
filtering a list of common SNPs for Duroc and Landrace
was made, comprising 3836 SNPs within this region.
The Variant Effect Predictor (VEP) [59] was used to an-
notate SNPs to gene structure elements (including
exons, introns, UTRs) and to classify variants (e.g. mis-
sense, nonsense, synonymous, stop gain/loss). SNPs were
selected for genotyping based on their position in order
to cover the whole QTL region. Furthermore, non-
synonymous SNPs were prioritized. A total of 166 SNPs
were selected for genotyping. The SNPs have been sub-
mitted to NCBI dbSNP [60]. Sequences around some of
the identified SNPs were searched for similarity against
human using BLAST [61].

Genotypes and phase inference

The boars were genotyped using matrix-assisted laser
desorption/ionization time-of-flight mass spectroscopy
(MALDI-TOF MS) assays. Assays were designed using
MassARRAY Assay Design software (Agena Biosciences,
Hamburg, Germany) at multiplexing levels between 8
and 27 [See Additional file 4 for assay primers], and
genotyping was done using the IPLEX protocol accord-
ing to the manufacturer’s instructions. Genotypes were
also retrieved for porcine 60 K Illumina BeadChip SNPs
in this QTL region for the same boars, as available from
Grindflek et al. 2011 [31]. SNP filtering was done for
minor allele frequency (>0.05) and call rate (>0.95), re-
ducing the number of SNPs to 157 and 126 for Duroc
and Landrace, respectively, in the QTL region. The
BEAGLE software version 1.0.0 [62] was used to phase
chromosomes and impute sporadic missing genotypes.
The Haploview software version 4.2 [63] was applied to
calculate pair-wise LD measures for all SNP pairs and
the “four gamete rule” method, as implemented in Hap-
loview, was used to define haplotype blocks.

Single marker and haplotype association analysis
Association analysis was done for skatole, indole,
androstenone, testosterone, 17(-estradiol and estrone
sulphate levels for all SNPs using the mixed model:

y = sire + herd-year-season + wait-station + pen + ani-
mal + sample-date + SNP/haplotype +
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age_25kg + days-test + days-wait + liveborn +
(liveborn)? + e

Here, y is the phenotype expressed as In(ug/g levels of
the phenotype) and the fixed effects are sire, herd-year-
season, waiting in boar test station before slaughter or
not, and pen. Covariates used were age at 25 kg (start of
boar test), age from 25 kg to 100 kg (days in boar test),
days from 100 kg to slaughter (days in waiting station)
and number of live born in same litter. Animal ID, sam-
ple date for adipose tissue and SNP/haplotype were fit-
ted as random effects. To test if the QTL region
contained more than one QTL, the dataset was re-
analyzed fitting the most significant SNP as a fixed effect
in the model above.

Association mapping was conducted using the ASReml
software v.2.00 [64]. Log likelihood (LoglL) ratios for
each SNP or haplotype were estimated as the difference
in LogL value between models with and without this ef-
fect. Log-likelihood ratio test (LRT) scores were calcu-
lated as two times the (LogL) and LRT was assumed
approximately chi-square distributed with one degree of
freedom. Multiple testing correction was done to adjust
the significance threshold with the effective number of
independent tests (MeffG) [65].

Additional files

Additional file 1: Summary of LogLikelihood test scores (LRT values) for
all SNPs and compounds examined in Landrace. SNPs are presented with
their IDs (rs# or 60 K ID), position on Sscrofa10.2, functional classes and
their effect, amino acid change, SIFT prediction and LRT scores for
skatole, indole, androstenone in fat and plasma, testosterone, estradiol
and estrone sulphate. (XLSX 18 kb)

Additional file 2: Summary of LogLikelihood test scores (LRT values) for
all SNPs and compounds examined in Duroc. SNPs are presented with
their IDs (rs# or 60 K ID), position on Sscrofa10.2, functional classes and
their effect, amino acid change, SIFT prediction and LRT scores for
skatole, indole, androstenone in fat and plasma, testosterone, estradiol
and estrone sulphate. (XLSX 22 kb)

Additional file 3: All genes in the 5.8 Mb SSC7 QTL region (74.7—
80.5 Mb, build 10.2) according to Ensembl. (XLSX 23 kb)

Additional file 4: Primers used for genotyping. (XLSX 26 kb)
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