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Abstract

Background: Differential plasma concentrations of circulating lipid species are associated with pathogenesis of
type 2 diabetes (T2D). Whether the wide inter-individual variability in the plasma lipidome contributes to the
genetic basis of T2D is unknown. Here, we investigated the potential overlap in the genetic basis of the plasma
lipidome and T2D-related traits.

Results: We used plasma lipidomic data (1202 pedigreed individuals, 319 lipid species representing 23 lipid classes)
from San Antonio Family Heart Study in Mexican Americans. Bivariate trait analyses were used to estimate the
genetic and environmental correlation of all lipid species with three T2D-related traits: risk of T2D, presence of
prediabetes and homeostatic model of assessment – insulin resistance. We found that 44 lipid species were
significantly genetically correlated with one or more of the three T2D-related traits. Majority of these lipid species
belonged to the diacylglycerol (DAG, 17 species) and triacylglycerol (TAG, 17 species) classes. Six lipid species (all
belonging to the triacylglycerol class and containing palmitate at the first position) were significantly genetically
correlated with all the T2D-related traits.

Conclusions: Our results imply that: a) not all plasma lipid species are genetically informative for T2D pathogenesis; b)
the DAG and TAG lipid classes partially share genetic basis of T2D; and c) 1-palmitate containing TAGs may provide
additional insights into the genetic basis of T2D.
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Background
There is a strong genetic basis to the risk of developing
type 2 diabetes (T2D) with heritability estimates ap-
proximating 60% [1, 2]. In the continued quest for early
identification of T2D, it is important to find biomarkers
that, at least partly, explain the genetic basis of T2D
pathogenesis. Concentrations of specific plasma lipid
species are considered to be potential biomarkers of type
2 diabetes (T2D) because subtle changes in the plasma

lipidome are associated with the risk of diabetes [3, 4],
prediabetes [4] and insulin resistance [5, 6]. Further, the
overall heritability of the plasma lipidome is 37% with
many lipid species individually showing significant herit-
ability [3]. Together, these observations raise an interesting
possibility of an overlap (i.e. pleiotropy) in the genetic
basis of the plasma lipidome and T2D related traits.
Evidence of such shared genetic bases can lend more
credence to the candidature of plasma lipidome as a
biomarker of T2D. Direct evidence from human studies
to support or refute this conjecture is currently not
available. Here, we report our findings from the large
study of extended Mexican American families – the
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San Antonio Family Heart Study (SAFHS) – to investi-
gate the shared genetic basis of plasma lipid species
concentrations and three phenotypic traits related to
T2D in the high risk population of Mexican Americans.

Methods
Study participants
Data for this study came from the 1202 SAFHS individ-
uals (representing 42 families) on whom plasma lipido-
mic data as well as other phenotypic data was available.
Details of the study participants have been described
elsewhere [7]. We used the phenotypic data collected at
baseline as well as during an average of 9250.64 person-
years of follow-up through a maximum of 4 clinic visits
(1 baseline visit and 3 additional follow-up visits) spaced
approximately 5 years apart. Informed consent was ob-
tained from all participants before collection of samples.
The Institutional Review Board of the University of
Texas Health Science Center at San Antonio approved
the study. The biological relationships observed in the
study sample are shown in (Additional file 2: Table S1).

T2D-related traits
We studied three traits related to T2D: risk of T2D,
presence of prediabetes and homeostatic model of as-
sessment – insulin resistance (HOMA-IR). Risk of T2D
was used as a discrete trait and was coded as 0 if an in-
dividual did not have T2D at baseline and remained
T2D-free throughout follow-up. If the individual either
had T2D at baseline or was detected as a new case of
T2D during follow-up the individual was considered to
have T2D and was coded as 1. Presence of T2D was di-
agnosed [8] as presence of at least one of the following:
i) self-reported T2D; ii) fasting blood glucose ≥126 mg/dl
and/or 2-h post glucose load blood glucose ≥200 mg/dl or;
iii) history of anti-diabetic medication use. The other two
traits (presence of prediabetes and HOMA-IR) were
studied in only those individuals free of T2D at base-
line. Prediabetes was defined as presence of impaired
fasting glucose (IFG) or impaired glucose tolerance
(IGT) or both. IFG was defined as fasting blood glucose
levels of 100–125 mg/dl while IGT was defined as
blood glucose levels of 140–199 mg/dl after 2-h of 75 g
oral glucose load. Finally, insulin resistance was quantified
using HOMA-IR which was estimated as follows – fasting
blood glucose (mmol/L) x fasting plasma insulin (μU/ml)/
22.5 [9].

Phenotypic assessments
We assayed 319 lipid species representing 23 lipid classes.
This assessment was only done at the baseline visit. Con-
centration of the lipid species in the plasma was measured
using a combination of high performance liquid chroma-
tography and mass spectroscopy as described elsewhere

[4, 10]. Briefly, 10 μL aliquots of plasma were combined
with 200 μL CHCl3/MeOH (2:1) and 15 μL of internal
standard mix. Then samples were mixed, sonicated and
allowed to stand (20 min) at room temperature. Mass
spectrometric analysis was performed using on extracted
lipid injections. Identification and quantitation of lipid
species was performed by liquid chromatography electro-
spray ionisation-tandem mass spectrometry using an Ap-
plied Biosystems 4000 QTRAP. Liquid chromatography
was performed on a Zorbax C18, 1.8 μm, 50 × 2.1 mm
column at 300 μL/min. Quantification of individual lipid
species was then performed using scheduled multiple-
reaction monitoring (MRM) in positive ion mode [11, 12].
Lipid concentrations were calculated by relating the peak
area of each species to the peak area of the corresponding
internal standard. Cholesterol ester species were corrected
for response factors determined for each species. Lipido-
mic profiling studies were conducted in the Metabolomics
Laboratory, Baker IDI Heart and Diabetes Institute.
Full details of the methods used to assess other clinical
phenotypic traits like waist circumference, blood pres-
sure and biochemical phenotypes have been described
previously [13].

Statistical analyses
Since the focus of this investigation was pleiotropy be-
tween T2D-related traits and the plasma lipidome, we
used bivariate trait analyses within the variance compo-
nents framework [14]. Variance components methods
hypothesize that the total phenotypic variance can be par-
titioned into genetic and residual environmental variance
for a given trait. When two traits are being simultaneously
considered (bivariate analyses), the phenotypic covariance
between the two traits is considered to be a function of
the variance of each trait, the heritability of each trait and
the genetic and environmental correlation between the
traits. Specifically, the phenotypic correlation between the
two traits ρP is defined as follows:

ρP i; jð Þ ¼ ρG i; jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2i þ h2j

q

þ ρE i; jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−h2i
� �þ 1−h2j

� �

r

In this equation, i and j are indexes for the two traits
being considered, h2 is the heritability ρG is the genetic
correlation coefficient, and ρE is the environmental cor-
relation coefficient. Maximum likelihood methods are
then used to arrive at the estimate of ρG and ρE. Statis-
tical significance for a null hypothesis that ρG = 0 was
tested by constraining ρG to 0 and using a chi-square
test based on the difference in the log-likelihood of the
unconstrained and constrained model.
To account for multiple comparisons, we used the

Benjamini-Hochberg method of controlling for false
discovery rate [15]. To investigate whether significant
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Fig. 1 (See legend on next page.)
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proportion of lipid species within a class were genetic-
ally correlated with a given trait, we used the Fisher’s
test p value and converted it into an enrichment score
(ES) using a negative logarithmic transformation. We
used the well-established SOLAR software [16] to con-
duct the bivariate analyses and estimate the genetic
correlation coefficient between each T2D-related trait
and each lipid species. We also tested the hypothesis
that the circulating levels of lipid species were influenced
by use of lipid-lowering medications. For this we used cen-
sored normal regression [17] where each lipid species con-
centration was used as the dependent variable, a two-level
indicator variable was used as the predictor variable and
the standard errors were robustly estimated by using the
family identifier as a clustering variable. The censored nor-
mal regression analyses were conducted using Stata 14.0
software (Stata Corp, College Station, TX). Statistical sig-
nificance for all the analyses was tested at a global type I
error rate of 0.05.

Results
Study participants
This study included a total of 1202 individuals of Mexican
American descent representing 42 extended families. The
mean age of the participants was 39.36 years (standard de-
viation (16.87) and 724 (60.23%) were females. At the time
of enrolment, 1.84 and 9.62% individuals were receiving
lipid-lowering and anti-hypertensive agents, respectively.
Results of the censored normal regression analyses (see
Additional file 3: Table S2) showed that the influence of
lipid-lowering medications on individual lipid species was
statistically non-significant. At baseline 176 (14.64%) indi-
viduals had T2D while another 124 (10.32%) developed
T2D during follow-up. Together, 300 (24.96%) individuals
had T2D either at baseline or during follow-up. Individ-
uals who were free of T2D at baseline (n = 1026) were
used for data on prediabetes (as discrete trait) and
HOMA-IR (as continuous trait). All the T2D-related traits
were significantly and substantially heritable (risk of T2D:
h2r = 0.6444, p = 5.68 × 10−13; presence of prediabetes:

h2r = 0.4321, p = 0.0001; and HOMA_IR: h2r = 0.4155,
p = 1.90 × 10−17).

Genetic correlation between T2D-related traits and lipid
species
We first conducted the bivariate trait analyses for all
combinations of T2D-related traits and lipid species.
The results of these analyses are summarized in Fig. 1
and detailed in (Additional file 4: Table S3). We ob-
served that after correction for multiple comparisons 37
(11.58%), nine (2.82%) and 24 (7.52%) lipid species
remained significantly genetically correlated with the risk
of T2D, presence of prediabetes and HOMA-IR, respect-
ively. Overall, there were 44 (13.79%) lipid species
(shown in Fig. 2) that were significantly correlated with
at least one of the three T2D-related traits. A compari-
son of the trait-specific associations indicated that i)
most of the genetic correlations with T2D were in 0.4–
0.6 range; ii) stronger (albeit less frequent) genetic corre-
lations were found with prediabetes and iii) similar pat-
terns of genetic correlations were observed for T2D and
HOMA-IR even though the analyses for HOMA-IR were
restricted to individuals who did not have T2D at base-
line. Of the 44 lipid species, the following six lipid spe-
cies were significantly genetically correlated with all
three T2D-related traits: TG(16:0/16:0/16:0), TG(16:0/
16:0/18:0), TG(16:0/16:0/18:1), TG(16:0/16:1/17:0),
TG(16:0/17:0/18:1) and TG(16:0/18:0/18:1) indicating a
preponderance of 1-palmitate in these TAG species.

Comparison of genetic and environmental correlations
Interestingly, significant shared environmental influences
were observed for 114 (35.7%), 59 (18.5%) and 172 (53.9%)
lipid species with T2D, prediabetes and HOMA-IR,
respectively (Additional file 5: Table S4). However, the
strength of environmental correlation was generally lesser
than that for corresponding genetic correlation. As shown
in Table 1, the dihydroceramide/ceramide species showed
the strongest environmental correlations while the LPC
and some PC species showed a strong negative environ-
mental correlation. In all there were 48 lipid species that

(See figure on previous page.)
Fig. 1 Genetic correlation of each lipid species with T2D-related traits: risk of T2D, presence of prediabetes and homeostatic model of assessment –
insulin resistance (HOMA-IR). Risk of T2D and presence of prediabetes were modeled as discrete tests using the liability threshold approach
while HOMA-IR was used as a continuous, inverse-normalized trait. Presence of prediabetes and HOMA-IR analyses were restricted to individuals
who did not have T2D at baseline (n = 1026). Plots show bubble charts with the lipid species on the abscissa and the estimated genetic correlation
coefficient (ρG) on the ordinate. The size of the bubble is proportional to –log10p, where P is the statistical significance to test the null hypothesis that
ρG = 0. The number of lipid species that were significantly genetically correlated (after controlling for false discovery rate) are shown at the upper-right
corner of each plot. The bubbles are color coded to indicate lipid classes shown at the bottom of the Figure. The lipid classes studied were:
dihydroceramide (dhCer), ceramide (Cer), monohexosylceramide (MHC), dihexosylceramide (DHC), trihexosylceramide (THC), GM3 ganglioside
(GM), sphingomyelin (SM), phosphatidylcholine (PC), alkylphosphatidylcholine (PC(O)), alkenylphosphatidylcholine (PC(P)), lysophosphatidylcholine
(LPC), lysoalkylphosphatidylcholine (LPC(O)), phosphatidylethanolamine (PE), alkylphosphatidylethanolamine (PE(O)), alkenylphosphatidylethanolamine
(PE(P)), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylglycerol (PG), cholesteryl ester (CE),
cholesterol (COH), diacylglycerol (DAG) and triacylglycerol (TAG)
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were environmentally correlated significantly with all three
traits.
For the lipid species that showed significant genetic

correlation with at least one T2D-related trait (n = 44), we
found that the genetic correlation was generally stronger
than the environmental correlation (see Additional file 1:
Figure S1). Specifically, only 1 (Cer(d18:1/16:0)) and 4
(Cer(d18:1/16:0), DG(16:0/18:2), DG(18:0/18:2) and
DG(18:1/20:4)) lipid species showed a larger environmental

correlation as compared to genetic correlation when inves-
tigated in the context of prediabetes and HOMA-IR, re-
spectively – all the remaining combinations of the 44 lipid
species and 3 T2D-related traits showed a larger genetic
than environmental correlation.

Genetic correlation at the level of lipid classes
The 44 lipid species that were significantly genetically
correlated with T2D-related traits included 17 diacylglyc-
erols (DAG), 17 triacylglycerols (TAG), three species each
from the lysophatidylcholine and alkyllysophospahtidyl-
choline classes and two species each from the ceramide
and cholesterol ester classes. Using the enrichment score
and adjusting for 23 lipid classes, the DAG and TAG lipid
classes were clearly overrepresented in the genetically cor-
related lipid species (Fig. 3a). We therefore examined if
the total concentration of all species within these two clas-
ses was genetically correlated with T2D-related traits. We
observed that both the DAG and TAG concentrations
were significantly genetically correlated with each of the
three T2D-related traits (Fig. 3b).

Discussion
Our results provide compelling evidence in favor of a
genetic pleiotropy between circulating levels of lipid spe-
cies and T2D-related traits. Specifically, the DAG and
TAG lipid classes were significantly genetically corre-
lated with T2D and six members of the TAG class were
genetically correlated with risk of T2D, presence of pre-
diabetes as well as insulin resistance. Implied evidence
in favor of a pleiotropic nexus between lipids and T2D is
accumulating. Li et al. [18] have recently demonstrated
using data from two, large cohorts that there is a pleio-
tropic association of lipid genes with blood glucose and
HOMA-IR. It is noteworthy that the lipid levels and
genes considered by Li et al. [18] correspond with the
traditional measures of lipidemia like total serum choles-
terol, serum triglycerides and high-density lipoprotein
cholesterol. The fact that TAG as a lipid class was found
in our study to be genetically correlated with T2D is in
line with the observations of Li et al. [18].
However, value of plasma lipidomic studies lies in the

refined resolution of the investigations. Our observations
suggest that not all TAGs are genetically correlated with
T2D and that the search for pleiotropic clues can be re-
stricted to the more informative TAG species than the
overall levels of serum triglycerides. It is also interesting
that all the six TAG species genetically correlated with
all the T2D-related traits had palmitate at the first pos-
ition. Combined with palmitoloeate or stearate moieties,
the 1-palmitoyl containing species were positively genet-
ically correlated with all T2D-related traits. These results
conceptually corroborate the growing understanding
that palmitate metabolism may be partially compensated

Fig. 2 Comparison of the significantly associated lipid species with
differing T2D-related traits. The plot shows estimated genetic correlation
coefficients for each the 44 lipid species that were associated with
at least one T2D-related trait. Filled circles indicate statistically significant
associations (after accounting for multiple comparisons) while hollow
circles indicate non-significant associations. The markers are color-coded
for each trait as indicated in the key
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through genetic [19, 20] or epigenetic [21] mechanisms
in T2D.
While the exact genetic explanation for a link between

1-palmitate containing TAG species and type 2 diabetes
remains obscure, the evidence for a possible genetic link
between palmitate-regulated genes and type 2 diabetes
is growing. For example, over a decade ago Kelpe et al. [22]
demonstrated using elegant experiments that palmitate-
mediated ceramide synthesis is transcriptionally involved in
the genetic control of insulin secretion. In contrast, a recent
genome-wide association study [23] showed that an or-
chestrated control of several genes plays a part in the
palmitate-associated beta-cell death. More recently, it
has been posited that palmitate can moderate tool-like
receptor 4 (TLR4) signaling and can thus contribute to
diabetes pathogenesis through regulation of the gluconeo-
genic genes. In the context of insulin resistance, Yang et
al. [24] have recently shown that palmitate can impair the
expression of FNDC5, CTRP15 and FGF21genes in
C2C12 myotubes and thus ensue insulin resistance. It has
also been shown that the downstream metabolic effects of
circadian rhythm disturbances (which are exerted genetic-
ally) may be triggered by palmitate fluctuations [25, 26].
These observations lend strong support for our finding
that the 1-palmitate containing TAG species may be

genetically correlated with risk of diabetes, prediabetes
and insulin resistance. Further studies are required to
localize and specifically understand the shared genetic
influences on the 1-palmitate containing TG species
and T2D.
Our findings of striking environmental correlations be-

tween members of the dihydroceramide and ceramide
classes with T2D-related traits deserves mention. It must
be realized that bivariate trait analyses partition the total
phenotypic variance into shared genetic and shared
environmental components. Thus, a lack of genetic
correlation should be interpreted as lack of shared
(pleiotropic) loci that can explain concurrent variation
in two traits (e.g. between a given lipid species and a
selected T2D-related trait) [14]. Therefore, the strong
environmental correlations observed with dihydrocer-
amide and ceramide species is most likely indicative of
a lack of common genetic control of circulating levels
of these classes of lipids and T2D.
Some limitations of our study need to be recognized.

First, a potential overlap among the observed genetic
correlations can be conceptualized to be consequent to a
phenotypic correlation among the T2D-related traits.
While this possibility cannot be ruled out, it was unlikely
in our dataset for the following reasons: a) The analyses

a b

Fig. 3 Genetic correlation of lipid classes with traits related to type 2 diabetes (T2D). a Bar chart showing the number of species studied within
each lipid class and the number of statistically significant (after correction for false discovery rate) lipid species within each class. The statistically
significant species are shown as black component within each color coded lipid class. Numbers above each bar indicate the enrichment score
(ES) for the given lipid class. ES more than 2.66 showed statistically significant enrichment (shown using red colored numbers) in the genetically
correlated species for a given lipid class. b Genetic correlation of the DAG and TAG lipid classes with T2D-related traits. Details of the T2D-related
traits are as described in legends for Fig. 1. Numbers at the top of each bar indicate the statistical significance for the test of the null hypothesis
that the genetic correlation coefficient is zero

Table 1 Environmental correlation coefficients of lipid species for indicated T2D-related traits*

Risk of T2D Prediabetes HOMA-IR

Highest ρE Cer(d18:0/24:1),
0.3177, p = 2.7 × 10−8

PS(40:5),
0.2917, p = 1.0000

Cer(d18:0/22:0),
0.4234, p = 2.3 × 10−24

Lowest ρE LPC(26:0),
−0.3588 p = 0.0001

PC(39:6),
−0.2076, p = 0.1501

PC(P-34:1),
−0.2972, p = 7.8 × 10−17

N (significant) 114 59 172
*cells for the first two rows contain name of the lipid species, the observed ρE and its significance value
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for prediabetes and HOMA-IR were restricted to indi-
viduals who did not have T2D at baseline; b) the number
of lipid species genetically correlated with HOMA-IR far
exceeded that genetically correlated with prediabetes;
and c) not all lipid species that were significantly genet-
ically correlated were concomitantly correlated with
HOMA-IR. Second, it is possible that by excluding indi-
viduals with T2D at baseline for the analyses related to
prediabetes and HOMA-IR, we may have reduced the
post hoc power. Our calculations indicate that to detect
a genetic correlation coefficient of 0.5 contingent on the
pedigree structure of the dataset and assuming a global
type I error rate of 0.05, we had a power of 88.1% in the
full set of 1212 individuals. By reducing the sample size
by ~15%, we found that the power was reduced to
79.2%. Thus, we believe that we had sufficient power to
detect the correlation signals for all traits studied here.

Conclusions
Taken together, these findings imply that there is a likely
overlap in the set of polygenes that are associated with
circulating levels of some lipid species and the T2D
pathogenesis. In and of itself, statistical evidence for plei-
otropy does not prove the genetic underpinnings of any
biological process. However, it is a necessary first step in
the direction of trying to tease apart the shared genetic
influence on biologically meaningful phenotypic traits.
To that end, our study is the first investigation of the po-
tentially shared genetic influences on the plasma lipidome
and T2D pathogenesis. Our results imply that urgent steps
need to be taken to understand the joint genetic drivers of
the plasma lipidome and T2D.
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