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Abstract

Background: Fertility is considered an important economic trait in dairy cattle. Most studies have investigated cow
fertility while bull fertility has received much less consideration. The main objective of this study was to perform a
comprehensive genomic analysis in order to unravel the genomic architecture underlying sire fertility in Holstein
dairy cattle. The analysis included the application of alternative genome-wide association mapping approaches and
the subsequent use of diverse gene set enrichment tools.

Results: The association analyses identified at least eight genomic regions strongly associated with bull fertility.
Most of these regions harbor genes, such as KAT8, CKB, TDRD9 and IGF1R, with functions related to sperm biology,
including sperm development, motility and sperm-egg interaction. Moreover, the gene set analyses revealed many
significant functional terms, including fertilization, sperm motility, calcium channel regulation, and SNARE proteins.

Most of these terms are directly implicated in sperm physiology and male fertility.

Conclusions: This study contributes to the identification of genetic variants and biological processes underlying
sire fertility. These findings can provide opportunities for improving bull fertility via marker-assisted selection.
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Background

Improving reproductive efficiency of dairy cattle has be-
come one of the major challenges of the dairy industry
worldwide. The intense selection for production traits in
the last decades has led to a decrease in fertility [1, 2].
Fertilization failure and early embryonic loss have been
identified as the two main factors contributing to this
decline [3, 4]. For instance, fertilization rate in high-
producing dairy cows is about 75 %, and only 65 % of
the fertilized eggs are considered viable at 5-6 days
post-fertilization [5]. It is no surprise that conception
rates are only 35-45 % [5]. Many reasons may account
for this decline in reproductive performance, including
physiological, nutritional, environmental, and genetic
factors. In this sense, several studies have recognized
that there is substantial genetic variation underlying
reproductive success in dairy cattle [6, 7].
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Reproduction is a very complex process that involves
numerous consecutive events, including gametogenesis,
fertilization, and early embryo development, that should
be accomplished in a well-orchestrated manner in order
to achieve a successful pregnancy. The relative importance
of the parental effects on the reproductive success, i.e.,
maternal versus paternal contribution to the zygote, is still
largely unknown [8]. Most studies in dairy cattle have fo-
cused on female fertility, while male fertility has received
much less attention. It is worth noting that the service sire
has a direct influence not only in the fertilization process
but also on the viability of the preimplantation em-
bryo [9, 10]. In fact, previous studies have reported
that the service sire represents an important source
of variation for conception rate in dairy cattle [11-13].

Both candidate gene [14—16] and whole-genome scan
[17-21] approaches have attempted to identify genomic
regions and individual genes responsible for the genetic
variation in bull fertility. For instance, two highly con-
served spermatogenesis genes, MAPIB and PPPIRII,
were significantly associated with male fertility in
Holsteins [16]. In addition, genetic markers in BTA2,
BTA5, BTA14, and BTAX were associated with testicular
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development, sperm quality, and hormone levels in
young Brahman and Tropical Composite bulls [19, 21].
It should be noted that these association studies detect
in general only the most significant markers, and hence,
the vast majority of the genetic variants contributing to
the trait remains hidden. In this context, gene set or
pathway-based analysis offers an alternative strategy
based on evaluating modules of functionally related
genes, rather than focusing only on the most significant
markers [22, 23]. This approach provides unique oppor-
tunities to detect the genetic mechanisms underlying
complex phenotypes. Indeed, using this pathway-based
approach, we have identified some processes, such as
small GTPases mediated signal transduction or calcium
ion binding, that may explain part of the differences in
sire fertility [24].

The main objective of this study was to unravel the
genomic architecture underlying sire fertility in dairy
cattle. Sire Conception Rate (SCR) was used as a mea-
sured of bull fertility. SCR is a new and more accurate
phenotypic evaluation of dairy sire fertility calculated
using field data. Two complementary genome-wide asso-
ciation approaches plus different gene set analyses were
performed in order to identify genomic regions, individ-
ual genes, functional gene terms, and biological path-
ways associated with sire fertility. These findings can
contribute to a better understanding of the genetics
underlying this complex trait and may point out oppor-
tunities for improving bull fertility via selective breeding.

Methods

Phenotypic and genotypic data

The Animal Improvement Programs Laboratory of the
United States Department of Agriculture (AIPL-USDA)
implemented in 2008 a national phenotypic evaluation
of bull fertility called Sire Conception Rate (SCR). The
model that is being used in the U.S. bull fertility evalu-
ation includes both factors related to the service sire
under evaluation (including age of the bull and Al
organization) and also factors (nuisance variables) asso-
ciated with the cow that receives the unit of semen
(including herd-year-season, cow age, parity, and milk
yield) [25, 26]. The trait SCR is defined as the expected
difference in conception rate of a given bull compared to
the mean of all other evaluated bulls; in other words, a
bull with an SCR value of +5.0 % is expected to achieve
a conception rate of 37 % in a herd that normally aver-
ages 32 % and uses average SCR bulls. It is worth noting
that the U.S. bull fertility evaluation, in contrast to eval-
uations for other traits such as production, is intended
as a phenotypic rather that a genetic evaluation, because
the estimates include not only genetic but also some
(permanent) environmental effects.
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The entire evaluation of U.S. Holstein bull fertility was
used in this study. Specifically, a total of 44,449 SCR re-
cords were available from a total of 10,884 Holstein
bulls. These SCR records were obtained from 23 con-
secutive evaluations provided to the U.S. dairy industry
between August 2008 and April 2016. These 23 different
SCR evaluations are available at the Council of Dairy
Cattle Breeding (CDCB) website (https://www.cdcb.us/).
Additional file 1 shows (A) the distribution of SCR
values per evaluation and (B) the distribution of the
number of SCR records per bull, i.e., total number of re-
peated measurements per sire evaluated. The reliabilities
of the SCR records, calculated as a function of the num-
ber of breedings, were also available for the analyses.

Genotype data for 60,671 single nucleotide poly-
morphism (SNP) markers were available for 7447 out of
the 10,884 Holstein bulls with SCR evaluation. The SNP
data were kindly provided by the Cooperative Dairy
DNA Repository (CDDR). Those SNP markers that
mapped to the sex chromosomes, or were mono-
morphic, or had minor allele frequency less than 1 %
were removed from our dataset. After data editing, a
total of 58,029 SNP markers were retained for subse-
quent genomic analysis.

Statistical methods for genome-wide association mapping
The association analysis between phenotypes and geno-
types using related individuals with repeated measure-
ments can be implemented within the framework of the
classical repeatability animal model,

y=XB+ Zu+ Wpe +e

where y is the vector of phenotypic records (SCR
values), B is the vector of fixed effects included in the
model, u is the vector of random animal effects, pe is
the vector of random permanent environmental and
non-additive effects, and e is the vector of random re-
sidual effects. The matrices X, Z, and W are the inci-
dence matrices relating phenotypic records to fixed,
animal, and permanent environmental effects, respect-
ively. In this context, the random effects are assumed to
follow a multivariate normal distribution,

u Ko2 0 0
pe|0.,0.,0, |~N|0,| 0 Io,” O
e 0 0 Ro?

where o2, of,e, and ¢? are the animal additive genetic,
permanent environmental, and residual variances re-
spectively; K is a kinship matrix that can be calculated
using either pedigree or genotypic information, and R is
typically an identity matrix (I) or a diagonal matrix.

In this particular study, two alternative genome-wide
association mapping approaches were performed: (1)
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single-step genomic best linear unbiased prediction
(ssGBLUP) and (2) classical genome-wide association
study (cGWAS) using regular single-marker regres-
sion analysis but with correction for population
structure. The ssGBLUP combines all the available
phenotypic, pedigree and genotypic information, and
fits all the SNP simultaneously, while cGWAS typic-
ally uses only animals that have both phenotypic and
genotypic data, and fits the SNP markers one at a
time.

Genome-wide association mapping using ssGBLUP

The ssGBLUP method is one of a group of statistical
methods that were originally developed for genomic pre-
diction and later were extended for performing gene
mapping. Indeed, ssGBLUP model is a modification of
the classical BLUP model where the pedigree relation-
ship matrix A is replaced by H which combines pedigree
and genotypic information [27]. The combined pedigree-
genomic relationship matrix H ' is calculated as
follows,

0 0
H!'=A"1!+ [ . ]
0 G;'-A,

where Gi' is the inverse of the genomic relationship
matrix and Az, is the inverse of the pedigree-based rela-
tionship matrix for genotyped animals. In this case, G;
has dimensions 7,993 x 7,993 and it was created using
the 7447 sires with both SCR and SNP data plus 546 ge-
notyped sires with no SCR records. In addition, the A
matrix (25,075 x 25,075) was calculated based on a five
generation pedigree downloaded from AIPL-USDA web-
site. The random effects were assumed multivariate normal
with u~N(0, Ho2), pe ~N(0, I,,of,e), and e ~N(0, Qx'd?).
Note that in this case the original kinship matrix K is re-
placed by H, and the residual matrix R is the inverse of a
diagonal matrix Q with its elements representing the reli-
abilities of the SCR values. The subscripts # and N indicate
the size of the matrices and represent the number of indi-
viduals with SCR records (z = 10, 884) and the total num-
ber of SCR records (N = 44, 449), respectively.

Candidate regions associated with sire fertility were
identified based on the amount of genetic variance ex-
plained by 1.5 Mb window of adjacent SNPs evaluated
across the entire bovine genome. Given the genomic es-
timated breeding values (GEBVs), the SNP effects can be
estimated as § = DZ'[ZDZ']’lﬁg, where § is the vector
of SNP marker effects, D is a diagonal matrix of weights
of SNPs, and &, is the vector of GEBVs [28]. The per-
centage of genetic variance explained by a given 1.5 Mb
genomic region was then calculated as,
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B
V. . Var( . ZIS])
ar(ta) 100 = # x 100
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where u; is the genetic value of the i/ genomic region
under consideration, B is the total number of adjacent
SNPs within the 1.5 Mb region, and s; is the marker ef-
fect of the /" SNP within the i region. All the ssGBLUP
calculations were performed using the BLUPF90 family
of programs from Ignacy Misztal and collaborators,
University of Georgia.

Genome-wide association mapping using single marker
regression (cGWAS)

For the whole genome single marker regression, we
extended the repeatability model as,

Yy = XB + XsnpBsyp + Zu + Wpe + e

where Xgyp is the design matrix for the SNP under study
(coded as 0, 1 or 2) and Bsxp is the regression coefficient
or SNP effect (also known as the allele substitution
effect). In this particular case, the distribution of the ran-
dom effects were assumed multivariate normal with u ~
N(0, Gy072), pe ~ N(0, Imoﬁe), and e ~ N(0, I;,;02). Here the
original kinship matrix K is replaced by G that is calcu-
lated based on the 7447 sires that had both SCR records
and genotypic data. The subscripts m and M indicate
the size of the identity matrices and represent the num-
ber of individuals with SCR records (n =7,447) and the
total number of SCR records (N =32,590) used in this
particular analysis.

Note that the extended repeatability model can be
written as y=XB + XsnpBsnp + €, where € ~N(0,V) with
V=2G,Z o>+ WW'oﬁe +I,02. In this scenario, the sig-
nificant effect of the SNP marker can be tested using a
standard Wald statistics computed from the ratio of the
estimate of Ssyp and its standard error. However, the ap-
plication of this test across the whole genome is compu-
tationally prohibitive. Alternatively, the association of a
given SNP with SCR can be evaluated in a more compu-
tationally efficient way using the following test statistic,

Xenp Vo' (Y—X@
2=
v/ Xsxp Vo' Xsnp

which approximates the Wald test, and hence, is asymp-
totically standard normal. Here, V,, is computed as V but
from a model where the term Xgnpfsnp is removed, and
[§ is obtained from the model y = X + XsnpfBsap + €, as-
suming e~ N(0, V,02). These analyses were performed
using the R package RepeatABEL [29].
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Gene set analysis

The gene set analysis consists basically in three different
steps [24, 30]: (i) the assignment of SNPs to genes, (ii)
the assignment of genes to functional categories, and fi-
nally (iii) the association analysis between each func-
tional category and the phenotype of interest.

1. The SNPs were assigned to bovine genes based on
the UMD3.1 bovine genome sequence assembly [31]
using the Bioconductor R package biomaRt [32, 33].
A given SNP was assigned to a particular gene if it
was located within the gene or at most 15 kb either
upstream or downstream the gene. An arbitrary
threshold of P-value < 0.01 was used to define
significant SNPs (based on the results of the
cGWAS); in this context, significant genes were
defined as those genes that contained at least one
significant SNP.

2. The databases Gene Ontology (GO) [34], and
Medical Subject Headings (MeSH) [35, 36] were
used to define functional categories of genes. The
idea is that genes assigned to the same functional
category can be considered as members of a group
of genes that share some particular properties,
typically their involvement in the same biological or
molecular process.

3. The significant association of a given term with SCR
was analyzed using Fisher’s exact test. The P-value
of observing g significant genes in the term was
calculated by

()0)
S\ ki
Pvalue =1 ; <N)
k
where S is the total number of significant genes
associated with SCR, N is the total number of genes
that were analyzed, and & is the total number of
genes in the term considered [24, 37]. The GO gene
set enrichment analysis was performed using the R
package goseq (using method hypergeometric) [38]
while the MeSH enrichment analysis was carried out
using the R package meshr [39, 40]. Additionally, the
semantic similarities among GO functional terms

were calculated based on the GO hierarchy using
the R package GOSemSim [41].

Results

Whole genome association analysis

Two complementary genome-wide association ap-
proaches, ssGBLUP and cGWAS, were performed in
order to identify genomic regions and candidate genes
associated with Sire Conception Rate (/= 0.32). These
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two alternative methods slightly differ in how they iden-
tify significant regions or genes associated with the
phenotype of interest. On the one hand, ssGLUP allows
to identify genomic regions that explain a given amount
of genetic variance. On the other hand, using cGWAS, it
is possible to formally evaluate the significance of the as-
sociation (using a statistical test) between each genetic
marker and the phenotype of interest. In our study,
these two methods yielded very similar results; in fact,
the spearman’s rank correlation coefficient between the
SNP effects calculated with ssGLUP and cGWAS was
equal to 0.943. In addition, the corresponding Manhattan
plots showed similar profiles with common significant
regions in BTA21 and also BTA25 (Fig. 1). Note that, as
expected, ssGBLUP vyields less noisy results with well-
defined peaks across the entire genome.

Figure la displays the results obtained with ssGLUP
method in terms of the proportion of genetic variance
explained by 1.5 Mb SNP windows across the entire bo-
vine genome. A total of six different genomic regions,
distributed on chromosomes BTA5, BTA13, BTA21 and
BTA25, explained more than 0.50 % of the genetic vari-
ance for sire conception rate. Figure 2 shows the gen-
omic location, the percentage of genetic explained, and
the list of genes located in each of these SNP windows.
The region that explained the highest percentage of gen-
etic variance (1.06 %) was located on chromosome 21
(21:8031396-9528223). Interestingly, this region harbors
IGFIR, an insulin-like growth factor receptor that plays
critical roles in different reproductive events, including
testis development and spermatogenesis. Another SNP-
window on BTA21 (21:68,846,429-70,294,301) explained
also a substantial amount of genetic variance (0.82 %);
this regions harbors two genes, TDRD9 and CKB, which
are implicated in sperm development and sperm quality,
respectively. Moreover, two different regions on BTA25
(25:3148958-4647188, and 25:26736589-28233820) ex-
plained together almost 1.50 % of the genetic variance.
Notably, these regions harbor several putative candidate
genes for bull fertility, including MGRN1 and SEPTI2,
which are directly involved in spermatogenesis, and
CCT6A that is implicated in the fertilization process. Fi-
nally, two genomic regions on BTA5 and BTA13 were
also identified; each of these windows explains roughly
0.60 % of the genetic variance. The region located on
BTA5 (5:105357507—-106813133) harbors two genes,
PARP11 and AKAP3, that are involved in sperm matur-
ation and motility. In addition, at least two putative
genes related to male infertility, CTCFL and SPO11, are
located in the middle of the region detected on BTA13
(13:58456868-59951247).

Figure 1b displays the results obtained with cGWAS in
terms of - logyo(Pvalue) for each of the SNP markers
evaluated across the genome. In addition, Table 1
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Fig. 1 Manhattan plots showing the results of the genome-wide association mapping for Sire Conception Rate: a Percentage of genetic variance
explained by 1.5 Mb SNP windows across the genome (ssGBLUP method), and b — log;o(Pvalue) for each of the genetic markers evaluated across
the genome (cCGWAS method)

describes in detail the six most significant SNP markers
detected in this analysis (P-value < 1.5 x 10™%; g-value <
0.15). The most significant SNP (BTB-01438088, P-value
=5.1x10®) is located in BTA9 in an intron of the gene
RIMSI. This gene regulates synaptic vesicle exocytosis
and is also involved in the regulation of voltage-gated
calcium channels. Unsurprisingly, the RIMS]I allele nega-
tively associated with conception rate is in low frequency
in the population (fg =0.038). Two SNP markers located
in chromosome 25, BTA-59768-no-rs and ARS-BFGL-

NGS-112660, showed remarkable associations with sire
conception rate (P-value=2.8x10"7). Note that this
genomic region (BTA25 26-28 Mb) was also detected
using ssGLUP method. The two significant markers were
highly correlated (high linkage disequilibrium), and
therefore, it is very likely that they represent the same
genetic signal. The marker BTA-59768-no-rs is located
in an intron of the gene KATS8. This gene encodes a his-
tone acetylase implicated in chromatin modification and
gene expression regulation. Finally, like ssGBLUP, the
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Fig. 2 Genomic regions (1.5 Mb) that explain more than 0.50 % of the genetic variance for Sire Conception Rate: genomic location, percentage
of variance explained, and list of genes. Adapted from www.ensembl.org using bovine assembly UMD 3.1

Table 1 Most significant genetic markers associated with Sire Conception Rate (SCR)

Marker Chr Position Frequency B+se P-value g-value Nearest gene
BTB-01438088 9 11867269 0.038 -065+0.12 51x1078 0.001 RIMST (within)
BTB-01138539 15 26472899 0815 0.26 £ 0.06 70%x10°° 0.102 CADM1 (22 kb)
ARS-BFGL-NGS-106232 21 71210609 0.670 0.20 £0.05 14%10°° 0.136 BRF1 (within)
BTA-59768-no-rs 25 27477941 0.266 -0.29+0.06 27x1077 0.005 KAT8 (within)
ARS-BFGL-NGS-112660 25 27672891 0.266 —0.29 £ 0.06 28%x1077 0.005 [TGAM (34 kb)

Hapmap8541-BTA-59825 25 28711626 0.150 -030+0.07 14%x10°° 0.136 TYW1 (within)
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single marker regression also detected the region in
BTA21 at 68-71 Mb as significantly associated with sire
fertility (P-value=1.4x10"°). The significant SNP
marker ARS-BFGL-NGS-106232 is located within the
gene BRFI, which encodes one the subunits of the RNA
polymerase III transcription factor complex, and hence,
it is directly involved in transcription initiation.

Gene set analysis

The whole-genome association analysis was complemen-
ted with a gene set enrichment analysis in order to de-
tect potential functional categories and molecular
mechanisms associated with sire fertility. Of the 58,029
SNP markers evaluated in the analysis, 27,066 were lo-
cated within or surrounding annotated genes; this set of
SNPs pointed a total of 17,259 annotated genes. A sub-
set of 349 of these 17,259 genes had at least one SNP
with P-value <0.01, and hence, were defined as signifi-
cantly associated with bull fertility.

Figure 3 displays a set of GO Biological Process terms
that were significantly enriched with genes associated
with SCR. Noticeably, some of these terms are closely
associated with male fertility, such as reproduction
process (GO:0022414) and fertilization (GO:0009566).
These two categories, highly related in the GO hier-
archy, had four significant genes in common, namely
BSP3, BSP5, SLC22A16, and ZP2, all of them directly in-
volved in the process of spermatogenesis and subsequent
ovum fecundation. Furthermore, many significant GO
terms were associated with ion transport and homeosta-
sis, including cation transport (GO:0006812), zinc II ion
transport (GO:0006829), regulation of sodium ion
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transport  (GO:0002028), zinc ion  homeostasis
(GO:0055069), and cellular metal ion homeostasis
(GO:0006875). Moreover, terms related to developmen-
tal biology (e.g. GO:0048588), small GTPase mediated
signal transduction (e.g. GO:0032482), and mRNA pro-
cessing (e.g. GO:0050685) were also enriched with sig-
nificant genes.

Several GO terms classified into the Molecular Func-
tion domain showed an overrepresentation of genes as-
sociated with sire fertility (Additional file 2). Especially,
functional terms related to channel regulation [e.g., cal-
cium channel regulator activity (GO:0005246, P-value =
0.020) and sodium  channel regulator activity
(GO:0017080, P-value =0.010)], and transmembrane
transporter activity [e.g., inorganmic cation transmem-
brane transporter activity (GO:0022890, P-value = 0.009)
and  ion  transmembrane  tramsporter  activity
(GO:0015075, P-value = 0.015)] showed an overrepresen-
tation of significant genes. Of particular interest, two
closely related terms, SNARE binding (GO:0000149,
P-value=0.007) and SNAP  receptor  activity
(GO:0005484, P-value =0.003), which involve a group
of membrane-associated proteins that participate in
different reproductive events including spermatogen-
esis and acrosome reaction, were significantly
enriched with at least three genes, STXIA, STXIB
and STX8, associated with sire conception rate.

Table 2 shows a panel of MeSH terms that were
enriched with genes associated with SCR. Many of these
terms are closely related to male fertility, such as sperm-
atozoa (D013094), sperm capacitation (D013075), and

-
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Table 2 MeSH terms significantly enriched with genes associated with Sire Conception Rate (SCR)

Mesh term ID MeSH term name No. genes No. significant genes P-value

D005640 Follicle stimulating hormone 34 4 64%x107°
D013075 Sperm capacitation 9 2 161072
D013081 Sperm motility 13 4 14%107%
D013094 Spermatozoa 71 5 20x1072
D017868 Cyclic AMP-dependent protein kinases 75 5 25%x 10772
D018698 Glutamic acid 35 4 71%x107°
D018873 Pregnancy rate 4 2 28%107°
D020691 rab GTP-binding proteins 12 3 20%x 1073

SCR, namely AKAP3, BSP3, BSP5, NTRK2 and ZP2,
were part of these terms. Additionally, two other terms
related to fertility, follicle stimulating hormone
(D005640) and pregnancy rate (D018873), were also
enriched with significant genes, including AKTI,
CTTNBP2NL, FSHR and IGFIR. Finally, functional cat-
egories involving protein kinases (D017868) and
GTPases (D020691) were also detected as significant in
the MeSH-informed enrichment analysis.

Discussion

There is growing evidence that bull fertility is influenced
by genetic factors. The present study was specifically
performed to unravel the genomic architecture under-
lying sire conception rate, an accurate phenotypic meas-
ure of dairy sire fertility. Although previous studies have
attempted to identify potential genes and pathways re-
lated to SCR [17, 24], this study has some unique fea-
tures, including the analysis of a large dataset including
almost 11 k bulls with about 45 k fertility records, the
use of alternative methods for gene mapping, and the
application of novel gene set tools, such as MeSH en-
richment analysis.

Many methods have been proposed to detect and
localize genes underlying complex traits. Given that
there is no method that is clearly superior than the
others, it is recommended to combine multiple ap-
proaches in order to obtain more reliable findings [42].
As such, two alternative whole genome scans were im-
plemented in this study, including a regular single
marker regression (cGWAS) and a single-step genomic
prediction method (ssGLUP). It is worth noting that
these two methods yielded very similar results. In par-
ticular, both approaches have identified candidate gen-
omic regions in BTA21 and BTA25 that may be
underlying the genetic variation in dairy sire fertility.

The significant region in BTA21 located at 68—71 Mb
(see Figs. 1 and 2) harbors at least two candidate genes,
namely CKB and TDRD?9 that might be directly involved
in sire fertility. Gene CKB encodes the enzyme creatine
kinase, and previous studies have reported that elevated

levels of creatine kinase in the sperm are associated with
severe oligospermia and male infertility [43]. In fact,
some researchers have proposed that creatine kinase
should be used as an indicator of sperm quality and ma-
turity in humans [44]. Similarly, gene TDRD9 encodes
an helicase which plays an important role during sperm-
atogenesis by silencing potential transposable elements,
and hence, protecting the integrity of the male germline
[45]. Hence, our findings provide a foundation for future
studies that seek to decipher the specific roles of CKB
and TDRDY in bull fertility. No less important, the re-
sults of ssGBLUP in BTA21 at 8—-9 Mb strongly suggest
IFGF1 as a candidate gene for sire conception rate. This
gene belongs to a family of insulin-like growth factors
that has important roles in sex determination, testis de-
velopment, spermatogenesis and steroidogenesis [46].
Interestingly, /GFIR has been implicated in regulating
Sertoli cell proliferation and maturation, testis size, and
sperm capacitation [47, 48]. Therefore, our findings pro-
vide more evidence of the association between IGFIR
and male fertility.

Both ssGBLUP and cGWAS identified the region in
BTA25 at 26-28 Mb as significantly associated with
SCR. This region harbors at least two genes, namely
KAT8 and CCT6A, with potential roles in dairy sire fer-
tility. The gene KAT8, a member of the MYST histone
acetyltransferase family, is highly expressed during
sperm development [49], and it plays essential roles dur-
ing early embryonic development [50]. In addition, the
gene CCT6A encodes a molecular chaperone that medi-
ates the sperm-ooctyte interaction during fertilization
[51]. Moreover, the significant region detected in BTA25
but at 3—4 Mb also contains candidate genes for bull fer-
tility, such as SEPTI12 and MGRNI. Indeed, SEPTI2 is
expressed specifically in the testis and encodes a GTP-
binding protein that has been implicated in sperm mor-
phogenesis, sperm motility and male infertility [52, 53].
Likewise, the gene MGRNI is widely expressed in the
male reproductive system, and recent studies have
shown that MGRNI knockout in mice results in male in-
fertility, with disruption of hormones secretion and
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impaired sperm motility [54]. It should be noted that
this specific region in BTA25 had been already associ-
ated with sire fertility [17]. Overall, our findings provide
further evidence for the presence of one or more genes
that affect bull fertility in these regions of BTA25. Add-
itional functional studies, including resequencing and
fine mapping, are needed to decipher the roles that these
genomic regions have in male fertility.

Given that whole-genome scans only detect the most
significant regions, and these regions explain only a
small fraction of the genetic variance, additional ap-
proaches are needed in order to dissect the complex
genetic architecture of a quantitative trait. In the present
study, different pathway-based approaches, using GO
and MeSH databases, were used in order to obtain add-
itional insights regarding the genetic determinants and
biological mechanisms underlying sire fertility. Interest-
ingly, some biological processes directly related to male
fertility, such as fertilization and sperm motility, were
among the most significant functional categories. Fur-
ther analyses revealed that at least six genes associated
with SCR, including AKAP3, BSP3, BSP5, NTRK2,
SLC22A16, and ZP2, were part of these functional cat-
egories. Interestingly, the gene AKAP3 is expressed in
the spermatozoa and is involved in sperm motility,
sperm capacitation, and the acrosome reaction [55]. In
addition, the genes BSP3 and BSP5 are two binder of
sperm proteins implicated in sperm capacitation and
fertilization [56]. The gene ZP2 encodes a sperm recep-
tor that mediates gamete recognition during the
fertilization [57]. These findings clearly demonstrate that
gene set tools can greatly complement genome-wide as-
sociation studies in order to understand the genetic basis
of complex traits.

Of special interest, GO molecular function terms re-
lated to SNARE proteins showed an overrepresentation
of significant genes. SNARE proteins are implicated in
membrane fusion events, including several events that
occur during spermatogenesis and also the acrosome re-
action [58]. In fact, it was proposed that SNARE proteins
are key players involved in controlling the acrosome re-
action during fertilization [59]. Therefore, our findings
provide further evidence regarding the active role of
SNARE proteins in male fertility. On the other hand,
several GO terms associated with ion transport and
channel regulation also showed a significant enrichment
of genes associated with SCR. It is well-documented that
ion channels regulate several sperm physiological re-
sponses, including maturation, motility, and chemotaxis
[60]. Interestingly, most of the significant terms were re-
lated to calcium transport and regulation, and several
studies have reported that calcium is indeed implicated
in the regulation of sperm motility, and it is an essential
second messenger for the acrosome reaction [61].
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Therefore, our findings provide further evidence of the
important association between calcium and sperm physi-
ology. More in general, note that the genetic markers
located in genes initially detected in our GO or MeSH-
informed enrichment analysis may facilitate the incorp-
oration and implementation of genomic selection in
commercial breeding schemes.

Conclusions

In this study, a comprehensive genomic analysis was
performed with the purpose of unravelling the genetic
architecture underlying sire conception rate in Holstein
dairy cattle. Genomic regions in BTA5, BTA9, BTA13,
BTA15, BTA21 and BTA25 were associated with sire fer-
tility. Most of these regions harbor genes with known
roles in sperm biology, including sperm maturation, mo-
tility and fertilization. Moreover, gene set analysis re-
vealed that many of the significant terms, such as
reproductive process, calcium ion channels, and SNARE
proteins, are implicated in biological processes related to
male fertility. Overall, this integrative study sheds light
on the genetic variants and mechanisms underlying this
complex phenotype in cattle. In addition, these findings
can provide opportunities for improving bull fertility via
marker-assisted selection.
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Additional file 1: Descriptive statistics for Sire Conception Rate (SCR):
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Additional file 2: Gene Ontology Molecular Function terms significantly
enriched with genes associated with Sire Conception Rate. (DOCX 23 kb)
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