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Abstract

Background: Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However,
the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we
aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel

length in wild barley.

Results: A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp.
vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one
location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity
array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 049 cM.

Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a
second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of
public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H.

Conclusions: This study establishes a fundamental research platform for genomic studies and marker-assisted selection,
since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve

kernel length.

Keywords: Barley, Genetic linkage map, Kernel length, QTL, Validation, Candidate gene

Background

Barley (Hordeum vulgare L.) is one of the seven cereal
crops grown worldwide and widely used in the animal
feed and food industry. In 2012, barley was cultivated on
51.05 million hectares worldwide, resulting in the produc-
tion of approximately 129.9 million metric tons (http://
www.fao.org/home/en/). Barley is diploid (2n=14), and
its seven chromosomes share homology with those of
other cereal species such as wheat, rye, and rice; therefore,
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it is an ideal species for genetic mapping and quantitative
trait locus (QTL) analysis [1].

Significant progress has been made since the advent of
molecular markers in genetic and QTL mapping. The
first genetic map in barley was constructed using restric-
tion fragment length polymorphism (RFLP) markers [2],
whereas additional markers were used to build and im-
prove barley linkage maps, including single nucleotide
polymorphisms (SNPs), diversity array technology (DArT)
markers, simple sequence repeats (SSRs), amplified
fragment length polymorphisms (AFLPs), and sequence-
tagged sites (STSs) [3-6]. Linkage maps enable general
scientific discoveries, such as genome organization, QTL
detection, and synteny establishment, whereas high-
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density maps are a useful tool in crop improvement
programs to identify molecular markers linked to QTLs.

In barley, kernel length (LEN) is a major breeding
target, since it is significantly correlated with grain yield.
In previous studies, multiple QTLs for LEN have been
fine-mapped. Ayoub et al. [7] reported a QTL for LEN
in chromosome (Chr.) 3H; Backes et al. [8] reported two
QTLs for LEN in Chr. 4H and 7H; Walker [9] detected
QTLs for endosperm hardness, grain density, grain size,
and malting quality using rapid phenotyping tools, and
reported that 11 QTLs associated with LEN were signifi-
cantly correlated with endosperm hardness, but not with
grain density, using digital image analysis. Major QTLs
for LEN have been also identified in rice, soybean [10],
and wheat [11]. In rice, several loci associated with seed
size and grain yield, including GS3 [12], GL7/GW7 [13],
qSW5/GWS [14], TGW6 [15], An-1 [16], BG2 [17],
OsSIZ1 (18], and DST [19], have been cloned through
map-based cloning techniques. Of these, An-1 encodes a
bHLH protein and regulates awn development, kernel
size, and kernel number [16]; BG2 regulates kernel-
related traits, including kernel thickness, kernel width,
and thousand kernel weight [17]; OsSIZI encodes E3
ubiquitin-protein ligases and regulates the vegetative
growth and reproductive development [18]; and DST is a
zinc finger transcription factor that regulates the expres-
sion of Gnla/OsCKX2 and improves grain yield [19].

In the present study, a recombinant inbred line (RIL)
population derived from a cross between the barley cul-
tivar Baudin (H. vulgare ssp. vulgare) and its wild rela-
tive Awcs276 (H.vulgare ssp. spontaneum) was evaluated
in one location over three years in order to: (a) construct
a high-density genetic linkage map using 1,832 DArT
markers; (b) identify QTLs for LEN; (c) validate major
QTLs for LEN in a second RIL population derived from
a cross between Fleet (H. vulgare ssp. vulgare) and
Awcs276; and (d) identify putative candidate genes that
may influence LEN. Although many loci/QTLs for LEN
have been identified previously in barley using marker-
assisted selection, the discovery of additional loci/QTLs
is necessary to enhance our understanding of the intri-
cate genetic basis of kernel morphology and phenotype
variance. These findings will provide new insights to
improve barley yield in breeding programs.

Methods

RIL populations and phenotyping

The spring barley cultivars Baudin and Fleet (H. vulgare
ssp. vulgare) along with their wild relative Awcs276 (H.
vulgare ssp. spontaneum) were obtained from a collec-
tion assembled at the University of Tasmania and used
to generate two RIL populations (Fig. 1) as described by
Chen [20]. Awcs276, a long-kernel wild barley genotype
from the Middle East, was used as the common parent
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Fig. 1 Kernel phenotypes of Awcs276, Baudin, and Fleet used for
quantitative trait locus mapping in this study. Kernels in the upper
line belong to the long-kernel parent Awcs276, those in the lower
line belong to the short-kernel parent Fleet, and those in the middle
line belong to the short-kernel parent Baudin

in the two RIL populations (Baudin/Awcs276 and Fleet/
Awcs276). Baudin/Awcs276 (mapping population, 128
lines of Fg, Fg, and Fj, generations) was evaluated in one
location over three years to detect QTLs for LEN,
whereas Fleet/Awcs276 (validation population, 94 lines
of Fy generation) was evaluated for one year to validate
putative QTLs identified in the mapping population.
Baudin/Awcs276 was planted in October 2012 (Fg), 2013
(Fo), and 2014 (Fyp) in duplicate rows of ten plants each
in a completely randomized design in Wenjiang,
Chengdu, China (30°36°N, 103°41E). The length of each
row was 1.5 m with a row-to-row distance of 15 cm.
Field management was carried out according to com-
mon practices in barley production. Mixed seeds were
collected from mature plants in May 2013, 2014, and
2015, dried, and stored at 25 °C until analysis. Fleet/
Awcs276 was planted in October 2014 and harvested in
May 2015. Fully filled grains were used for measuring
LEN in June 2015. LEN was measured in millimeters
using a ruler and estimated by one measurement of 10
randomly selected kernels in 2013 or the average of
three measurements in 2014 and 2015. The average LEN
of each year was used for QTL analysis.

Phenotypic data analysis

LEN in a given environment was determined as the arith-
metic average of three biological replicates. Student’s ¢-test
(P<0.05) was used to identify the differences in LEN
between the parental lines. Summary statistics were
performed using Excel 2010 (Microsoft Corp., Redmond,
WA, USA), whereas analysis of variance (ANOVA) in
conjunction with Student’s f-test (P <0.001) using the
general linear model (GLM) in SPSS 17.0 (IBM SPSS,
Chicago, IL, USA). Broad-sense heritability (HP) for each
trait was estimated as H” = 0;/ (0; + Gée/ n + o2/nr), where
oé is the genetic variance, oge is the genotype by environ-
ment (G x E) variance, o> is the error, n is the number
of environments, and r is the number of replicates
[21]. The Gé, O‘;e, and oZ values were calculated using
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ANOVA (P <0.001) in SAS 9.2 (SAS Institute Inc.,
Cary, NC, USA). The best linear unbiased prediction
(BLUP) method was used to estimate the random ef-
fects of mixed models. Phenotypic BLUP was calcu-
lated using the BLUP procedure in SAS 9.2.

Genotyping and construction of genetic linkage map
Total genomic DNA (gDNA) was isolated and purified
from fresh leaf tissue of one randomly selected plant in
each Fg line of Baudin/Awcs276 and F;, line of Fleet/
Awcs276 using the modified cetyltrimethylammonium
bromide (CTAB) method [22]. DArT sequencing was
conducted by Triticarte Pty Ltd. (Canberra, Australia),
selecting the corresponding predominantly active genes
of a genome fraction through the use of a combination
of restriction enzymes, which separate low copy se-
quences from the repetitive fraction of the genome
(http://www.diversityarrays.com/dart-application-dartseq).
DArT sequencing generates two data types: 1) scores for
“presence/absence” (dominant) markers, known as Silico-
DArT markers, as they are analogous to microarray DArT
markers, but are extracted in silico from sequences ob-
tained from genomic representations; and 2) SNPs within
the available genomic fragments. DArT loci were named
according to their clone identification numbers as pro-
vided by Triticarte (http://www.diversityarrays.com/dart-
application-dartseq-data-types). Polymorphic loci were
selected from a total of 62,216 DArT markers after
discarding those with a minor allele frequency of 0.4, a
missing value of more than 20 %, or a common position.

The linkage map was constructed using IciMapping
3.2/4.0 [23] and JointMap4 [24]. All unanchored markers
were properly grouped using IciMapping 3.2/4.0 with an
LOD threshold of 3. The linkage analysis was conducted
using JoinMap 4 (Kyazma, Wageningen, Netherlands)
with a recombination frequency of 0.25, and all markers
were grouped in the seven chromosomes.

QTL mapping

Phenotypic data of each trait were the means of three bio-
logical replications in a single environment. The pheno-
typic BLUP was used to detect QTLs from the combined
three-year data. QTL analysis for selected environments
was performed through the interval mapping (IM) using
MAPQTL6.0 (Kyazma, Wageningen, Netherlands) [25]. A
test of 1,000 permutations was used to identify the LOD
threshold that corresponds to a genome-wide false discov-
ery rate of 5 % (P <0.05). QTLs that were stable for a tar-
get trait across environments with clearly overlapping
positions on the same chromosome were assumed to be
the same. Stable QTLs that explained more than 10 % of
the phenotypic variance for the specific trait were consid-
ered major QTLs [26].
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QTLNetwork 2 [27] was used to determine QTLs with
additive effects at individual loci, epistatic interactions
between two different loci, and interactions between
QTLs and the environment (QTL x E). The analysis
was based on a mixed linear model (MLM) with 2 ¢cM
walking speed and 2D genome scan, which maps
epistatic QTLs with or without single-locus effects
using 1,000 permutations in order to generate a thresh-
old for the presence of QTLs and QTL x E interactions.

Marker development and QTL validation

Sequence information was obtained from the IPK Barley
Blast Server (http://webblast.ipk-gatersleben.de/barley/
index.php), and single-base differences were identified
by high-resolution melt (HRM) analysis [28]. Markers
were designed using Beacon Designer 7.9 and evaluated
by Oligo 6.0 [29]. The parameters for Primer Premier
(Premier Biosoft International, Palo Alto, CA, USA)
were as follows: inner product size of 60—100 bp, melt-
ing temperature of 55 + 5 °C, primer length of 20 + 3 bp,
and 3'-end stability to avoid self-complementarity and
primer dimer formation.

To detect markers, amplification reactions were per-
formed in a total volume of 10 pl, containing 100 ng of
template DNA, 5 pl of SsoFast EvaGreen mixture, 5
pmol of each forward and reverse primer, and DNase/
RNase-free water up to the final value. PCR conditions
were adjusted according to primer sets as follows: 4 min
at 94 °C, 50 cycles of 1 s at 94 °C, and 30 s at 55 °C. This
process is a precise warming of the amplicon DNA from
approximately 65 °C to 95 °C. At some point during this
process, the melting temperature of the amplicon is
reached, and the two strands of DNA separate or “melt”
apart [28].

The homozygous lines of Fleet/Awcs276 were used
to validate major QTLs using the developed markers.
Based on marker profiles, individuals were grouped
into two classes: genotypes with homozygous alleles
from AwcS276 and genotypes with homozygous al-
leles from Fleet. Student’s t-test (P < 0.05) was used to
calculate the differences in LEN between these two
classes of alleles and measure QTL effects within the
validation population.

Putative candidate gene identification

To identify putative coding gene regions, flanking candidate
loci, or trait-related gene products, we used the corre-
sponding QTL marker contigs to blast search against the
WGSMorex database at the IPK Barley Blast Server (http://
webblast.ipk-gatersleben.de/barley/index.php). We obtained
QTL positions within the Morex reference map and puta-
tive trait-related proteins. According to the putative protein
categories, most genes controlling kernel traits were identi-
fied in rice. The sequences of identified genes in rice were


http://www.diversityarrays.com/dart-application-dartseq
http://www.diversityarrays.com/dart-application-dartseq-data-types
http://www.diversityarrays.com/dart-application-dartseq-data-types
http://webblast.ipk-gatersleben.de/barley/index.php
http://webblast.ipk-gatersleben.de/barley/index.php
http://webblast.ipk-gatersleben.de/barley/index.php
http://webblast.ipk-gatersleben.de/barley/index.php

Zhou et al. BMC Genetics (2016) 17:130

used to perform a BLASTN search against the barley data-
base of the National Center for Biotechnology Information
(NCBI, http://www.ncbinlm.nih.gov/) and the Phytozome
website (https://phytozome.jgi.doe.gov/pz/portal.html) in
order to identify homologous candidate genes in barley and
other cereal crops.

Results

Phenotypic evaluation

The parental lines Awcs276 and Baudin showed significant
differences in LEN (P <0.05) (Fig. 1, Additional file 1). The
LEN (range, 7.12-7.97 mm; mean, 7.62 mm) of Awcs276
was higher than that of Baudin (range, 6.75-7.68 mmy;
mean, 7.28 mm). The trait variance over the three years
and the phenotypic variance among RILs were high as
shown by summary statistics, including range, mean,
standard deviation, and coefficient of variation (Additional
files 1, 2 and 3). The average LEN of 2013 was 8.11 mm
(confidence interval, 8.011-8.192 mm), of 2014 was
7.25 mm (confidence interval, 7.185-7.313 mm), and of
2015 was 7.87 mm (confidence interval, 7.787-7.949 mm).
The frequency of LEN and transgressive segregations were
observed over the three years, indicating the presence of
favorable alleles. The minimum LEN was 6.38 mm and
the maximum 9.4 mm. The broad-sense heritability of
LEN was low in 2013 (4°=0.122), owing to the lack of
biological replications, high in 2014 (4° = 0.937, F = 16.33,
P<0.0001) and 2015 (4°=0.870, F=7.42, P< 0.0001),
and moderate (h%=0.622, F=11.5, P<0.0001) over
the three years, suggesting that genetic factors played
an important role in the formation of LEN (Additional
file 2). LEN showed normal or near-normal distribu-
tion with quantitative inheritance patterns suitable for
QTL identification (Additional file 4).

Genetic linkage map construction

A total of 1832 polymorphic markers (Additional file 5)
was selected and mapped on eleven linkage groups
(LGs) (Table 1, Additional file 6). The map spanned a
total of 927.07 cM with an average marker distance of
0.49 cM. The results showed that Chr. 1H contained
LG1 with a length of 133.31 cM, Chr. 2H contained LG2
and LG3 with a length of 261.6 cM, Chr. 3H contained
LG4 and LG5 with a length of 116.05 cM, Chr. 4H con-
tained LG6 with a length of 112.55 cM, Chr. 5H con-
tained LG7 and LG8 with a length of 88.42 cM, Chr. 6H
contained LG9 with a length of 93.21 c¢M, and Chr. 7H
contained LG10 and LG 11 with a length of 121.92 cM.
The largest LG was LG2, which contained 289 DArT
markers, and the smallest was LG8, which contained
only 87 markers. On average, each LG contained166.5
DArT markers and each Chr. contained 261.7 DArT
markers. The genetic distances of the 11 LGs ranged
from 22.10 cM (LG8) to 196.24 ¢cM (LG2), and the
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Table 1 Basic information regarding the barley genetic map

Chr.  Linkage Marker number Map length (cM) Marker interval (cM)

H LG1 188 133.31 0.71
2H LG2 289 196.24 0.68
LG3 109 65.36 0.60
3H LG4 187 68.15 0.36
LG5 135 4790 035
4H LG6 165 112.55 0.68
5H LG7 129 66.32 0.51
LG8 87 2210 0.25
6H LG9 230 9321 041
7H LG10 163 74.77 046
LGN 150 47.15 031
Total 1832 927.07 049

Chr chromosome, LG linkage group, cM centimorgan

average marker distance spanned from 0.25 cM (LGS8) to
0.71 cM (LG1) (Table 1). Our genetic map was com-
pared with other consensus maps [5] and the Morex ref-
erence map, and the results showed that the marker
order had a satisfactory correspondence across the seven
chromosomes.

QTL analysis and validation

Five significant QTLs were detected for LEN across the
three environments (Table 2). The phenotypic variance
explained by individual QTLs ranged from 10.4 %
(ISLEN-2H) to 29.1 % (LEN-3H). We used interval map-
ping for QTL analysis, and identified QTLs on all the
chromosomes, except for 1H and 5H (Table 2). Two
QTLs for LEN, LEN-3H and LEN-4H, were detected in
different environments (Figs. 2 and 3); LEN-3H was
identified in 2013 and 2014 and explained 29.1 and
22.3 % of the phenotypic variance, respectively, whereas
LEN-4H was identified in different environments, having
an LOD score of 3.17-5.06. Except for the two major
QTLs, the rest three were environment-specific. Using
BLUP, we identified four QTLs (ISLEN-2H, LEN-3H,
LEN-4H, and 14LEN-6H) from the combined three-year
data, all of which had positions similar to QTLs associ-
ated with the non-combined data. However, no QTLs
were detected on 7H from the combined data (Table 2).
Among the five QTLs for LEN, LEN-3H had additive
main effects (a), whereas its interaction with the envir-
onment was not significant, showing high heritability
(Table 3), whereas the rest four QTLs did not have addi-
tive effects.

Based on the sequences of tightly linked DArT
markers, we BLAST-searched against the Ensembl Bar-
ley database at the Ensembl Plants Blast Server (http://
plants.ensembl.org) and found that LEN-3H was located
on Chr. 3HL, whereas LEN-4H on Chr. 4HL. Next, we
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Table 2 Quantitative trait loci (QTLs) for LEN identified in the Baudin/Awcs276 recombinant inbred line (RIL) population

QrL® Chr.  Linkage  Environment  Left Marker Right Marker Range (cM) LOD % Expl.
15LEN-2H  2H LG3 15WJ 3254852|F|0-65:C > A 6270031|F|0-48:.C > G-48.C > G 16326-17.508  3.11 104
Combined 3254852|F|0-65:C > A 6270031|F|0-48:C > G-48.C > G 16.326-17.508 335 1.2
LEN-3H 3H LG4 13WJ 6255968 3258624|F|0-41:C > A-41.C>A  23405-25611 507  29.1
14WJ 3931871 3258624|F|0-41.C > A-41:C>A  20.731-25.611 7.2 223
Combined 6249147 3258624[F|0-41:.C > A-41.C>A  21375-25611 6.02 19.2
LEN-4H 4H LG6 14W)J 5249122|F|0-25:G > A-25G>A  3263178|F|0-25:C > A-25:C>A  68431-69947 317 106
15WJ 3910814 5249122|F|0-25:G > A-25:G > A 62.983-68431 5.06 164
Combined 3396110 4007032|F|0-46:C > A-46:C>A  59535-69392 531 172
T4LEN-6H  6H LGS 14W)J 4594605|F|0-25A > G-25A>G  3259546|F[0-62A >T-62A>T  56031-59463 547 176
Combined 4594605|F|0-25:A > G-25A> G 3259546|F|0-62:A > T-62:A>T 56.031-59.463 392 13
T4LEN-7H  7H LG11 14WJ 3429688|F|0-38T > C 3256863|F|0-29:G > A-29G>A  19.095-22504 531 17.2

Chr chromosome, LG linkage group, cM centimorgan, Combined combined data over the three years of study, % Expl the percentage of variance explained by QTL
#QTLs were identified by Interval Mapping (IM) using MAPQTL6.0, and a test of 1,000 permutations was used to identify the LOD threshold, corresponding to a

genome-wide false discovery rate of 5 % (P < 0.05)

BLAST-searched the sequences of tightly linked DArT
markers against the Morex reference map database and
converted DArT markers to HRM markers for tracking
QTLs using quantitative real-time PCR. Accordingly,
two primer pairs were designed and used to track LEN-
3H and LEN-4H (Additional file 7).

In this study, two major QTLs were validated in Fleet/
Awcs276 (Table 4). For LEN-3H, the average LEN of
genotypes with homozygous alleles from Awcs276 was
significantly higher (P < 0.05) than that of genotypes with
homozygous alleles from Fleet. Similarly, for LEN-4H, the
average LEN of genotypes with homozygous alleles from
Awcs276 was significantly higher (P <0.05) than that of
genotypes with homozygous alleles from Fleet. Detailed
information is presented in Additional files 8 and 9.

Putative candidate genes

For the two major QTLs for LEN in Baudin/Awcs276,
we found several putative candidate genes for kernel-
related traits, and these genes could be divided into four
categories (Table 5): the first category included genes
related to defense response such as salt tolerance; the
second category included genes related to receptors
such as ethylene receptors; the third category included
genes related to transcription factors and promoters
such as basic helix-loop-helix (b HLH) DNA-binding
superfamily proteins and MADS-box transcription
factors; and the fourth category included genes related
to various enzymes such as zinc finger CCCH domain-
containing proteins, E3 ubiquitin-protein ligases, and

cytochrome P450.
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Fig. 2 Linkage map of LEN-3H located on chromosome 3H, linkage group 4
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Fig. 3 Linkage map of LEN-4H located on chromosome 4H, linkage group 6

Discussion

Awcs276 is a long-kernel wild barley genotype that has
been previously used in genetic studies, because of its
relatively long seeds, extensive environmental adaption,
and high genetic diversity that can provide abundant
germplasm resources for genetic variation and crop im-
provement [20, 30, 31]. Awcs276 was used in the present
study owing to its having genes that are superior for
LEN to those of the Australian barley cultivars Baudin
and Fleet. Therefore, two RIL populations were devel-
oped by crossing Awcs276 with Baudin and Fleet to
identify QTLs for LEN. Two major QTLs (LEN-3H and
LEN-4H) were identified from Awcs276 in two en-
vironments. LEN-3H was detected in 2013 and 2014 in
the interval of 20.731-25.611 cM on Chr. 3H using
MAPQTL6.0. A peak within this interval was also identi-
fied in 2015 with a maximum LOD of 1.19, explaining
4.1 % of the phenotypic variance (Additional file 10). Both
the environmental variation and G x E interaction were
highly significant (P < 0.0001) (Additional file 2). These re-
sults showed that the environment influenced the QTLs,
explaining the reason that none QTL was found in all the
experimental years. The effects of LEN-3H and LEN-4H
were evaluated in Fleet/Awcs276, and the results showed
that these two QTLs stably increase LEN in barley.

A QTL for kernel length was identified between 55.8 cM
and 84.3 cM on Chr. 3H in a previous study [7]. Further-
more, five markers (ABG462, PSR156a, ABG453, ABG499,
and M351316) were found within this interval, and in-
formation on the marker ABG453 was obtained from
GrainGenes (http://wheat.pw.usda.gov/GG3/). Therefore,
we used the parental lines and some extreme phenotypes
in their progenies to confirm ABG453, and found that it
was polymorphic for the parental lines. Backes et al. [8] re-
ported a QTL for kernel length on Chr. 4H in an interval
of 12 c¢cM and identified four markers (MWG2033,
MWGO0857, MWG0611, and MWG0921) within it. In the
present study, we found the nearby loci of MWG2033 in
the Hv-Consensus2006-Marcel-4H from GrainGenes and
used the parental lines to confirm the nearby markers. The
marker HVM40 was polymorphic for the parental lines
with a distance of 4.1 cM from MWG2033 in the con-
sensus map. Thus, ABG453 and HVM40 were used for
genotyping the lines of Baudin/Awcs276 (Additional
file 11). Next, we used these two markers along with
DArT markers to construct a genetic map and found
that ABG453 (69.142 c¢cM) and HVM40 (95.841 cM)
were mapped on LG4 and LG6, respectively (Additional
file 12). Using BLUP, we identified LEN-3H and LEN-4H in
the interval of 20.428-25.917 ¢cM and 59.02-69.119 cM,

Table 3 Estimated additive and additive x environmental interactions of QTLs for kernel length (LEN) in barley

QTL name Flanking LOD a effect® ael ae2 ae3 QTL heritability
interval h (a) N @)  h’@el)  h(e2)  h(aed)
LEN-3H 234-256 7.2 —0.1599* NS NS NS 0.1217 0.0139 0.0056 0.0027 0.0129

ael, ae2, and ae3, QTL x environment interaction effect in 2013, 2014, and 2015, respectively

NS non-significant, *, significant at P < 0.001

*The analysis was based on a mixed linear model (MLM) with 1,000 permutations

The mixed linear model (MLM) was used to calculate the estimated additive (a) and additive X environment interactions (ae)
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Table 4 Validation of two quantitative trait loci (QTLs) in the
Fleet/Awcs276 recombinant inbred line (RIL) population

QTL Chr. AA BB P value®
LEN-3H 3H 8.79 9.05 0.01**
LEN-4H 4H 883 9.03 0.03*

AA homozygous alleles from Fleet, BB homozygous alleles from Awcs276,
Chr chromosome

aStudent’s t-test (P < 0.05) was used to identify differences between the
parental lines; **, significant at P < 0.01; *, significant at P < 0.05

respectively. ABG453 (69.142 c¢M) and HVM40
(95.841 c¢M) were not included in the QTL interval, thus
we speculated that the QTLs detected by Ayoub et al. [7]
and Backes et al. [8] were not the same as LEN-3H and
LEN-4H. In general, the two QTLs for kernel size that were
identified in this study were within a relatively small
interval, which makes them an ideal target for breeding
programs as well as for the characterization of gene(s)
underlying this locus.

Kernel size is a major determinant of grain weight and
an important yield component [32]. It refers to the space
bounded by the husks, measured by LEN and width, and
serves as a component of grain yield that determines
kernel weight [33]. LEN was an important trait for barley
domestication and has been a major target in barley
breeding, because of its direct influence on grain yield. In
the present study, according to four categories of putative
proteins that influence LEN and several homologous
candidate genes in Zea mays, Arabidopsis thaliana,
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Brachypodium distachyon, Panicum hallii, and Sorghum
bicolor, we identified four putative candidate genes (NCBI
accession no. AK361814.1, AK365156.1, AK366345.1, and
AK374135.1) (Table 5). The putative candidate gene
(NCBI accession no. AK361814.1) for LEN-4H was hom-
ologous to An-1 in rice. And An-1 encodes a bHLH pro-
tein that positively regulates cell division, grain length, and
awn elongation, but negatively regulates the grain number
per panicle in rice [16]. The other three putative candidate
genes (NCBI accession no. AK365156.1, AK366345.1,
and AK374135.1) for LEN-3H were homologous to
DST, OsSIZ1, and BG2, respectively (Table 5). DST is a
zinc finger transcription factor that improves grain
yield and regulates the expression of Gnla/OsCKX2
[19]. Li et al. [34] reported that DSTregl enhances pan-
icle branching and increases the grain number. And
OsSIZ1 encodes E3 ubiquitin-protein ligases that regu-
late the growth and development in rice [18]. Wang
et al. [35] reported that ossizI mutants have shorter pri-
mary and adventitious roots than wild-type plants, sug-
gesting that OsSIZI is associated with the regulation of
root architecture and acts as a regulator of the Pi (N)-
dependent responses in rice. BG2 encodes OsCYP78A13,
which has a paralog in rice (Grain Length 3.2; GL3.2,
LOC_0s03g30420) with distinct expression patterns [17].
CYP78A13 is highly expressed in seeds at 5-8 day after
planting, whereas GL3.2 is specifically expressed in the
roots [17]. Analysis of transgenic plants harboring either
CYP78A13 or GL3.2 revealed that both genes can promote

Table 5 Putative genes or proteins of major quantitative loci (QTLs) for kernel length in barley

Stable  Chr. Putative candidate Gene in Putative Zea mays Arabidopsis  Brachypodium  Panicum Sorghum bicolor
QTLs genes rice genes in thaliana distachyon hallii
barley
LEN-3H 3H  Zinc finger CCCH DST AK365156.1 GRMZM2G089448 AT4G33660 Bradilg06420  Pahall01451  Sobic.001G065500
domain-containing
protein
E3 ubiquitin-protein OsSIZ1 AK366345.1  GRMZM2G155123  AT5G60410  Bradi2g38030  Pahal.COT170  Sobic.009G026500
ligase BRE1-like protein
Cytochrome P450 GE; CYP78A13; AK374135.1 GRMZM2G138008 AT1G74110 Bradi4g35890  Pahal.B0O3875  Sobic.002G367600
BG2
Polyglutamine-binding protein 1
Ankyrin-repeat protein
FeS assembly protein
Calcium-dependent protein kinase
LEN-4H 4H  Basic helix-loop-helix An-1 AK361814.1 GRMZM5G828396 AT4G36540  Bradi5g06620  Pahal.GO1160  Sobic.001G105000

(bHLH) DNA-binding
Superfamily protein

Salt tolerant-related protein

LEA hydroxyproline-rich glycoprotein family
Seed maturation protein PM41

MADS-box transcription factor 1

Ethylene receptor

Chr chromosome
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grain growth by positively affecting LEN, kernel thickness,
kernel width, and thousand kernel weight [17]. Overall, all
the four genes control seed length or grain yield in rice,
and the corresponding proteins are the putative candidate
proteins of LEN-3H and LEN-4H. Hence, the two major
QTLs, LEN-3H and LEN-4H, and the four putative candi-
date genes might play crucial and dynamic roles in the
control of LEN in barley and other grain crops.

Conclusion

In this study, we identified two major QTLs for LEN
(LEN-3H and LEN-4H) derived from Baudin/Awcs276
and validated in Fleet/Awcs276. Additionally, four puta-
tive candidate genes that might control LEN and four
categories of putative proteins that might have a pheno-
typic effect were identified for the two major QTLs. The
QTLs and putative candidate genes identified in this
study provide important information for barley genetic
studies and breeding programs.
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