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Abstract

parameter estimates.

Simulation, Visualization

Background: Structural equation modeling (SEM) is an extremely general and powerful approach to account for
measurement error and causal pathways when analyzing data, and it has been used in wide range of applied
sciences. There are many commercial and freely available software packages for SEM. However, it is difficult to use
any of the packages to analyze general pedigree data, and SEM packages for genetics are limited in their application.

Results: \We present the new R package strum to serve the need of a suitable SEM software tool for genetic analysis. It
implements a general framework for SEM within the context of general pedigree data. This context requires specialized
considerations such as familial correlations and ascertainment. Our package is an extraordinarily flexible tool capable of
modeling genetic association, linkage analysis, polygenic effects, shared environment, and ascertainment combined with
confirmatory factor analysis and general SEM. It also provides a convenient tool for model visualization, and integrates
tools for simulating pedigree data. The various features of this package are tested through a simulation study to evaluate
performance, and our results show that strum is very reliable and robust in terms of the accuracy and coverage of

Conclusions: strum is a valuable new tool for genetic analysis. It can be easily used with general pedigree data,
incorporating both measurement and structural models, giving it some significant advantages over other software
packages. It also includes a built-in approach for handling ascertainment, a helpful integrated tool for genetic data
simulation, and built-in tools for model visualization, providing a significant addition to biomedical research.
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Background

SEM is an extremely general and powerful multivariate
analysis approach used to estimate a system of linear
equations to test the fit of a hypothesized “causal” model
and account for measurement error when analyzing data
[1]. This is accomplished by estimating the parameters
for a system of simultaneous equations that are devel-
oped based on a hypothesized model, and varying the
models to identify a most parsimonious and best fitting
model. SEMs comprise two sub-models. The measure-
ment model evaluates latent variables using observed
variables, also referred to as indicators; this is the same
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framework used in factor analysis. The structural model
then estimates the relationships between the latent vari-
ables as well as other observed variables. Though SEM
has been largely utilized in the social sciences [1], it also
has utility for genetic epidemiology. In many studies of
complex genetic traits, several correlated phenotypes are
measured, some of which may have causal relationships
amongst themselves. SEM may be used to disentangle
these causal relationships, and also evaluate the inde-
pendent influences of multiple genetic variants in these
complex networks of phenotypes, longitudinal models,
environmental factors, and other covariates [2].

As SEM has been used in wide range of applied sciences,
there are many commercial and freely available software
packages for SEM [2,3]. To name a few, LISREL [4], EQS
[5], AMOS [6], CALIS (in SAS) [7], SEPATH (in Statistica)
[8], Mplus [9], and Mx [10] are the popular choices. There
are also packages available in R [11]: lavaan [12], sem [13],
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lava [14], and OpenMx [15]. Narayanan [3] provided a
comprehensive review of eight different packages for a var-
iety of criteria from documentation to parameter estima-
tion. As pointed out by Narayanan [3], different options
are available in each package, and the special features in
each package make users of SEM choose one package over
the rest for their particular needs.

It is possible to do genetic analysis using some of the
SEM packages above, especially for twin data and nuclear
family data [16]. However, as we and others reviewed else-
where [2,3], the packages do not natively allow the estima-
tion of both the measurement model and structural model
simultaneously with estimation of polygenic effects, linkage
and association effects, and ascertainment correction in
generalized pedigrees. It should be understood that the
correlation structures used in a polygenic model or linkage
model are more complex than simply adding a random ef-
fect for each pedigree. The polygenic model very specific-
ally accounts for the fact that the phenotypes of more
closely related individuals will be more strongly correlated
than the phenotypes of distantly related individuals. This
can become complicated with general pedigree structures
such as: variable family sizes, multiple generations, inclu-
sion of extended relationships such as half-siblings and
cousins and pedigree loops. Dealing with ascertainment
(i.e. the selection of pedigrees based on the extreme
phenotype of an index case) is of particular importance
in pedigree data. While it may be possible to trick a
general purpose multilevel SEM software package into
performing some of these tasks, our package interacts
with general pedigree structures natively, and in a very
natural way. The lack of a suitable SEM software tool for
genetic analysis has also been discussed elsewhere [2].

For the visualization of an SEM, some packages gener-
ate a dot file to be used in a tool to lay out the model
graphically [13-15], while other programs incorporate a
graphical user interface, so the user can draw the model
interactively [4-6,17]. A bridge package semPlot is an-
other choice for the visualization only [18], and the pro-
gram psych has functions for graphical display of SEM
[19]. However, most tools lack the flexibility to draw
more than one variance component in the model, which
is common in genetic analysis. Also, few tools provide
the visualization as the convenient built-in component
with a function call.

Previously, we developed a robust and flexible frame-
work for SEM in general pedigree data. It not only can
handle both measurement and structural models, but it
can also estimate polygenic variance effects, genetic link-
age effects and association effects while correcting for
ascertainment, which sets it apart from other SEM
methods for genetics [20]. One of the primary concep-
tual innovations of this framework is that it enables the
analyst to mentally separate the model of familial
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correlation from the causal/measurement model by the
use of Kronecker notation. Here, we present strum, a
user-friendly R package that implements this framework,
and also provides visualization, which is not a common
built-in component of most SEM R packages.

Implementation

The statistical details of the framework implemented by
strum are described by Morris et al. [20], and creating
the R package involved a considerable amount of additional
innovative work. Briefly, our method uses Kronecker prod-
uct notation to model the covariance among relatives as
well as the covariance among measured variables (pheno-
types, genes, covariates, etc.), and allows for the estimation
of polygenic effects, linkage and/or association effects, and
incorporates an ascertainment correction. For a flavor of
the theory behind our modeling approach, consider fitting
a polygenic model with ¢ observed traits. Let yj represent
the vector all the traits for each individual stacked on top of
each other for the k™ pedigree, ®, represent the kinship
coefficient matrix for the k™ pedigree and I represent the
identity matrix with dimensions equal to the size of the k™
pedigree. Also, let V,, (0) and V. () represent ¢ x ¢ variance
covariance matrices for the polygenic and environmental
effects written as functions of some model parameters (0).
We assume that the covariance of y, may be written as var
V) =Dr®V, (0) + RV, (8), where ® is the Kronecker
product. The use of such a polygenic covariance structure
for pedigree data allows the analyst to focus on specifying a
set of equations and latent variables to model V,, (0) and V,
(8). The model syntax allows the analyst to easily include or
exclude polygenic random effects from both observed and
latent traits.

Before model fitting, models must first be algorithmically
parsed into a set of matrices which are functions of the
model parameters. As described elsewhere [20], the model
fitting process then proceeds in two stages. In the first
stage, the “saturated” model parameters are estimated by
using maximum likelihood to fit a univariate variance com-
ponent model for each variable and then to fit a bivariate
variance component model for each pair of variables. In
the second stage, strum seeks the parameters which
minimize the distance between (a) the observed mean and
variance components (as found in stage 1) and (b) the
mean and variance components implied by the parameters.
We do not force the variances to be positive because this
can create unpredictable asymptotic distributions as we
have shown elsewhere [21]. A robust sandwich type esti-
mator is used to estimate the standard errors of the param-
eter estimates [22-24]. The sandwich type estimator makes
the standard errors and p-values asymptotically valid in
terms of coverage and type 1 error rate even in the pres-
ence of data that is not multivariate normally distributed.
However, data that is not multivariate normal may reduce
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the efficiency and the power. As with all SEM software,
there is always a danger that the estimates are based on a
local optima. To help avoid local optima, strum generates
multiple random starting values via an innovative heuristic
genetic/evolutionary algorithm. Much of the internal code
is written in C++ for computational efficiency.

The chi-squared test of model fit is a commonly used
test of the null hypothesis that the model fits the data
well. The strum package presents several different ver-
sions of the chi-square test correcting for first or second
moments as discussed by Morris et al. [20]. In addition,
strum implements what we refer to as the “theoretically
corrected” chi-square which is based on the true asymp-
totic distribution of the distance calculated in stage 2 of
the fitting process. The true asymptotic distribution is
the same distribution as a weighted sum of chi-squared
random variables with weights determined using Eigen
decomposition. See for example equation 2 of Satorra
and Bentler [25]. To determine the p-value, we simulate
from the asymptotic distribution using the estimated
weights. We then back calculate a chi-square statistic
which would have produced the p-value. Comparative
Fit Index (CFI) using this theoretically corrected chi-
square and the degree of freedom is reported as well.

The strum package has an intuitive interface for input-
ting and fitting models using a set of simple operators
which are parsed by the package. It includes both fitting
and simulation of a broad range of models including la-
tent measurement models, structural equation models
with covariates, and including latent growth curve
models. It can also handle multilevel models, polygenic
random effects and linkage random effects. The syntax
is very similar to that employed by lavaan [12], so that
the development of measurement and structural equa-
tions is intuitive and elegant. Also, being implemented
as a package in R [11], which is a commonly used and
well documented software tool, adds more value into the
strum package. The following section lists features that
make strum unique.

Pedigree data

The strum package can be used for general pedigree data
with many different types of relative pairs as well as indi-
vidual data, including pedigrees with loops. Pedigree
size, the number of pedigrees, and presence of loops is
not restricted by strum, but may be limited by the sys-
tem (eg. Memory size, CPU speed etc.). Large pedigrees
with many traits may make the make the estimation
process slow. The general framework allows the analyst
to easily separate the model for familial correlation from
the structural part of the model. This makes it simple to
incorporate polygenic effects, common environmental
effects (e.g. household effects) and linkage effects into
the SEM. Thus strum is, in some ways, a generalization
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of variance component based methods/software for gen-
eral pedigrees [26].

Genetic analysis

The strum package can be used for a broad array of genetic
analysis within SEM. It allows many different types of stat-
istical analyses to be incorporated including genetic associ-
ation and linkage analysis. Other types of analysis models
can be done easily, like SEM with latent variables with a
polygenic effect, confirmatory factor analysis (CFA) of a
pleiotropic genetic effect influenced by a SNP, multiple
SNP latent genotype models, Mendelian randomization
models, and the classic “ACE model” that estimates com-
ponents of variance due to additive genetic (A), shared en-
vironment (C), and residual environment (E) [27].
Additionally, strum can estimate polygenic variance and
covariances among variables. Again, the general framework
of strum allows these analyses to be done easily and com-
bined in creative and unique ways.

Ascertainment

One obvious issue that arises with pedigree data analysis is
ascertainment bias because the families are not selected at
random but through one or more affected individuals,
called probands. Ascertainment in pedigree analysis is a dif-
ficult issue which has been discussed by many researchers
[28]. The strum package implements an approach that uses
the likelihood conditional on the actual trait value of the
proband, assuming single ascertainment [20].

Simulation

The strum package can simulate multivariate pedigree data
making it an ideal tool to understand how well different
methods work. The simulation integrates with HapMap
data [29] to create realistic patterns of linkage disequilib-
rium for the pedigree founders. Given a pedigree structure
as input, it performs gene dropping to the offspring. It also
simulates polygenic correlations between family members
and genetic associations within the overall SEM context.
Ascertainment can also be simulated.

Visualization

A major addition since our 2010 work [20], the strum
package includes a “built-in” tool for model visualization,
which few SEM programs have. Unlike some of the
other SEM tools introduced previously, the visualization
of models in strum is done by a simple native R function
call, plot() with the model name. It can plot the classic
path diagram of the model utilizing the existing R pack-
age Rgraphviz [30]. Additionally, it is flexible in its
graphical layout types as some models may be more suit-
able to be laid out other than the classic hierarchical
path diagram.
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Results and discussion

The results from a simulation study to evaluate the per-
formance of the strum package are reported. We report
the biases and mean absolute deviations of model pa-
rameters as well as coverage probabilities, i.e., the per-
centage of replicates with 95% confidence intervals (CI)
that covered the true parameter. Additionally, we report
the distribution of p-values for the 4 different chi-square
tests of model fit. For the ascertainment modeling evalu-
ation, we report the coverage probabilities of 95% confi-
dence intervals for the different settings we tested which
demonstrate that our method of ascertainment correc-
tion greatly improves coverage rates for ascertained data.

Models

We considered 4 different analysis models in the simula-
tion study, trying to cover the different types of analysis
that can be done in the strum package. For each model,

Page 4 of 13

the model diagram plotted using the strum package and
the R code to construct the model object in the strum pack-
age is shown in Figure 1. The string value for the formulas
argument defines the relationship among variables. The
measurement equations are specified by the " = ~" operator.
The " ~" operator specifies the structural equations in the
model. The "=" operator specifies the constraints in the
model, ie, fixing a model parameter - a variance, covari-
ance, or coefficient. Please refer to the reference manual for
a more detailed description. Figure 1 describes the models
which we simulated to evaluate the performance of strum.

Model 1: Genetic association analysis model with a latent
trait

Figure 1A shows an example of a typical genetic associ-
ation analysis model with a latent trait. Suppose that
there are three measurements (P1, P2, P3), and it is hy-
pothesized that there is a single latent trait (L1)

A
rs6040343 { l" (e}
[sﬁ {é (gw
fl1 = 'L1 =~ P1 + P2 + P3 + <e>

L1l ~ rs6040343 + <p,e>"'
myModell = createStrumModel (formulas=f1)

plot (myModell)

anger =~ Al + A2

stress =~ S1 + S2

bp ~ anger + stress + <p,e>
stress ~ anger + rs6040343
var (stress)=.1"

myModel3 = createStrumModel (formulas=£3)

plot (myModel3)

P (e) a
P2 [P
(e} (e} (e)
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plot (myModel2)
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myModel4 = createStrumModel (formulas=f4)

plot (myModel4)

Figure 1 Analysis models tested in simulations. The plots and strum model formulas are shown for (A) Model 1 - Genetic association analysis
model with a latent trait, (B) Model 2 - Genetic linkage analysis model with a latent trait, (C) Model 3 - SEM with multi-level latent variables and
polygenic effect, and (D) Model 4 - CFA with a pleiotropic genetic effect influenced by a SNP.
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underlying the three measurements. The latent variable
L1 is influenced by a SNP (rs6040343) and a set of vari-
ance components, polygenic (p) and random environ-
mental (e). Each trait is also influenced by its own
random environmental factor.

Model 2: Genetic linkage analysis model with a latent
trait

Figure 1B shows an example of a typical genetic linkage
analysis model with a latent trait using identity by des-
cent (IBD) sharing information. Suppose again that there
are three measurements (P1, P2, P3) and a single latent
trait (L1) underlying the three measurements. The latent
variable L1 is influenced by a set of genetic and random
variance components. Each trait is also influenced by its
own random environmental factor.

Model 3: SEM with multi-level latent variables and poly-
genic effect

Figure 1C is an example of a SEM model with multi-level
latent variables and a polygenic effect. Suppose that there
are six measurements (A1, A2, SBP, DBP, S1, S2) and three
underlying latent variables (anger, bp, stress). anger is mea-
sured by (A1, A2), bp measured by (SBP, DBP) and stress
is measured by (S1, S2). bp is caused by anger and stress,
and stress is caused by anger and a SNP (rs6040343). All
traits and latent variables are also influenced by their own
polygenic and random variance components except stress,
which has the variance fixed at 0.1 for both polygenic and
random components.

Model 4: CFA with a pleiotropic genetic effect influenced
by a SNP

Figure 1D is an example of a CFA model with a pleiotropic
genetic effect influenced by a SNP. Suppose that there are
two sets of three measured traits, which are indicators for
two underlying latent variables. The latent variable z1

Page 5 of 13

underlies the first set of three measurements (X1, X2, X3)
and the latent variable z2 underlies the second set of three
measurements (X4, X5, X6). Both z1 and z2 are influenced
by a SNP (rs6040343) through a latent variable gl. Note
that the coefficient of gl to z1 is fixed to be 1. All traits
and latent variables are also influenced by their own vari-
ance components.

Simulation

We simulated two different types of pedigree data. First,
we used the pedigree data from the file “example_ped.
csv”, which we included in the package, as the base pedi-
gree structures. It consists of 477 individuals from 75
nuclear families with 4 to 11 siblings. The second set of
pedigree data consists of 50 individuals from 5 different
extended pedigrees with different structures as shown in
Figure 2. For the genotypes, we used the chromosome
20 of Hapmap III phased data [29], which is again in-
cluded in the package. A SNP rs6040343 was selected
randomly. Data were simulated under different settings,
and for each setting, we simulated 1000 replicates.

In the first simulation design, the overall performance
of the 4 different models was assessed. To check the per-
formance under the different sample size, we simulated
sets of 75, 150, 300 and 500 pedigrees using two sets of
base data above, one with nuclear families only and the
other with mixed extended pedigrees. The pedigrees
were not ascertained, and the analyses were accordingly
done by not modeling the ascertainment scheme. The
true value for all parameters equaled 1 for all models.
Additionally, for both data sets, we simulated 10000 rep-
licates for Model 1 to assess the type 1 error rate under
the null hypothesis of no association between the SNP
marker and the latent variable.

The second simulation was designed to evaluate the per-
formance of the ascertainment modeling for Model 3. The
pedigrees were ascertained by the simulated values of 6

Figure 2 Pedigree structures used for simulations.
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Figure 3 The bias of each parameter by sample size. A is for Model 1, B is for Model 2, C is for Model 3, and D is for Model 4 from Figure 1.
In each plot, the bars are grouped by three different parameter categories with different colors; green for coefficient parameter (denoted as CO),
mustard for intercept parameter (denoted as /N) and peach for variance component parameter (denoted as VC) within each sample size. Each

number in the x-axis is the sample size, i.e, the number of pedigrees simulated.




Song et al. BMC Genetics (2015) 16:35

Page 7 of 13

0.35 < Model
—-— 1
2
0.30 s
4
. 025 4
S
= A
w
=] .
2 ~ .
< 0.15 - \
c
<] . -
g u\‘\ = A
—m R,
‘“‘\\\\\\-u = e -a
0.05 o C:T_?:t;;
0.00
T T T T
75 150 300 500
Sample Size

extended pedigree data.

Figure 4 Mean absolute deviation and root mean square error across all parameters values each model by sample size. A is for mean
absolute deviation, and B is for root mean square error. The solid lines are with the nuclear family data, and the dotted lines are with the

0.35 — Model
A —= 1
2
0.30 ~3
4
5025 1 *
I N a
4 A A
€ 0.20 .
o N
(%} ey
s “\ R “
$ 0.15 - \
,2_ P I Saa A
8 ot~ S
& 0.10 | TP =y
= \>\“\.,,_ .
0.05 T e
0.00
T T T T
75 150 300 500
Sample Size

J

observed traits in the model. Within a pedigree, a member
was assigned to be affected when the mean of 6 trait values
was greater than the threshold value of a given prevalence.
Among the affected members, the possible proband candi-
dates were randomly selected from the binomial distribu-
tion with a given ascertainment probability. To run strum
analysis without the warning messages for the existence of
multiple probands, only the first proband candidate was
assigned to be the proband for that pedigree when there
existed multiple candidates. Any pedigree without a pro-
band was discarded. The analyses were done with and with-
out modeling the ascertainment. For each type of data set,
we again simulated sets of 75, 150, 300 and 500 pedigrees
under different prevalence and ascertainment probabilities.
We considered 4 different prevalence values — 0.1%, 1%, 5%
and 10%. Given these prevalence values, we tested for 3 dif-
ferent ascertainment probabilities, 0.05, 0.1 and 0.2.

Bias and errors

From 1000 replicates, we computed the bias for each
model parameter. In Figure 3, the plots of these bias
values are shown for all parameters in each model by
sample size; the left is using the nuclear family data set
and the right is with the extended pedigree data set. In
each plot, the bars are grouped by three different param-
eter categories; coefficient parameter (denoted as CO),
intercept parameter (denoted as IN) and variance compo-
nent parameter (denoted as VC) within each sample size.
In all models, the coefficient and intercept parameters were
generally close to the true values while the variance com-
ponent parameters tended to be overestimated. The direc-
tion of bias was preserved over varying sample sizes and
data types for the each variance component parameter in

Model 1, 2 and 4 while it was not in Model 3. With regard
to sample size, the accuracy of parameter estimates in-
creased with the bigger sample size as expected. The accur-
acy also increased with extended pedigree data, especially
for the SEM analysis model (Model 3) and the CFA model
(Model 4).

The mean of absolute deviation and the root mean
squared error over all parameter values by sample size
are shown in Figure 4 for each model and both data sets.
The absolute deviations of parameter estimates de-
creased as the sample size was increased (4A). Among 4
analysis models, the SEM analysis model (Model 3) had
the biggest absolute deviations for both data types. Over-
all, the absolute deviations were reduced with the ex-
tended pedigree data. The root mean squared error
values had the same trend as the mean absolute error
values (4B). It was bigger for the smaller sample size, es-
pecially the SEM analysis model (Model 3), but it de-
creased with the larger sample size.

Coverage probability and type 1 error

Again for all parameters in each model and the sample
size, the plots of the coverage probabilities for nominal
95% confidence interval are shown in Figure 5, by three
different parameter categories within each sample size.
All coverage rates of the 95% CI were very close to the
nominal value for all sample sizes and both data types.
No noticeable trends by the different parameter categor-
ies were observed for the coverage probabilities as ob-
served in the bias estimates. The coverage probabilities
for the linkage analysis model (Model 2) were a little
lower than for other analysis models. The type 1 error
rate for Model 1 is shown in Table 1. Overall, the type 1
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Figure 5 The coverage probability of each parameter type by sample size. A is for Model 1, B is for Model 2, C is for Model 3, and D is for
Model 4 from Figure 1. Note that CO is for the coefficient parameters, IN is for the intercept parameters, and VC is for the variance component

parameters of the models. The numbers in the x-axis in each plot represent the sample size, i.e, the number of pedigrees simulated.
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Table 1 Type 1 error rate for analysis model 1

Nuclear family Extended pedigree

a level 0.05 0.01 0.001 0.05 0.01 0.001
Pedigree count

75 0.0582 0.0136 0.0015 0.0560 0.0114 0.0017
150 00545 00122 00013 00536 00116 00016
300 00513 00092 00009 00538 00115 00011
500 0.0500 0.0097 0.0012 0.0513 0.0097 0.0004

The results are from 10000 replicates.

error rate is a little inflated for the smaller sample size,
but improves as the sample size get larger.

Test of model fit

The model fit statistic represents a test of the null hypoth-
esis that the model used is correct versus the alternative
hypothesis that the model is saturated [15]. The strum
package reports the 4 different model fit measures with the
degrees of freedom and p-values; the unadjusted chi-
square index of fit, the mean adjusted chi-square index of
fit, the mean and variance adjusted chi-square index of fit,
and the theoretically corrected chi-square index of fit as
described in the Implementation section.

In Figure 6, the histograms of p-values for the case
with 75 extended pedigrees are shown for each analysis
model. Though the distribution of p-values from the
mean adjusted and the mean and variance adjusted tests
of model fit were more uniform than the one from the
unadjusted test, it still was distributed quite apart from
the uniform distribution. Only the p-value from the theor-
etically corrected test was distributed close to the uniform
distribution. Thus, we recommend that the theoretically
corrected results be used.

Ascertainment

The coverage probability of the ascertainment modeling
in strum analysis is shown in Figure 7, compared to the
result without the ascertainment correction. Each bar in
the plot by prevalence shows the mean coverage prob-
ability from all ascertainment probabilities pooled for a
sample size (7A), and vice versa for the bar by ascertain-
ment probability (7B). Coverage rates for the different
scenarios and parameters were averaged to get the over-
all picture, because the number of parameter and sce-
nario combinations was large. As it is already known
that the estimates are biased in the analysis with the
ascertained pedigrees, the reflected coverage probabilities
were far below the nominal value of 95% for all settings, re-
gardless of sample size, prevalence and ascertainment
probability (the shaded bars in Figure 7). Without ascer-
tainment correction, for different sample sizes, the mean
coverage probability of all parameters decreased as the
sample size increased, since the pedigree likelihood would
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converge to the biased distribution. As the prevalence
value increased, the mean coverage probability was im-
proved slightly. Comparing to the results from the nuclear
family data, the coverage rates were a little higher with the
extended pedigree data.

On the other hand, the lost coverage probability was
recaptured with the ascertainment modeling in strum
analysis, very close to the nominal value of 95% for all
settings and for both data types, again regardless of
sample size, prevalence and ascertainment probability
(the solid bars in Figure 7). We note that our ascertain-
ment correction approach uses the single ascertain-
ment approach which assumes that the ascertainment
probability is very close to zero. Thus, as expected, for
the biggest ascertainment value (0.2) we tested, the
coverage probability showed a little decrease with the
increased sample size for both data types (Figure 7B).
The same pattern was observed with the larger preva-
lence values (0.1 and 0.05) for the extended pedigree
data. As may be seen, the method is fairly robust to de-
viations from the “single ascertainment” assumption.
However, if a very high proportion of the affected popula-
tion is ascertained, our approach may not be adequate.

In Figure 8, the boxplots of the coverage probabilities,
combined from all scenarios of prevalence, ascertain-
ment probability and sample size, are shown for with
and without ascertainment correction by parameter cat-
egory; A is using the nuclear family data set and B is
with the extended pedigree data set. For all parameter
categories, some of the scenarios resulted in very poor
coverage rates when ascertainment correction was not
used. However, the intercept type parameters were par-
ticularly bad with a median coverage rate across all the
parameters and settings of close to 0. As may be seen,
regardless of the parameter category, many parameters
had improved coverage in some of the investigated
scenarios. The intercept showed an especially dramatic
improvement. With ascertainment correction, the me-
dian coverage probabilities were close to the nominal
value of 95%. Among three different parameter cat-
egories, the intercept parameter had the lowest cover-
age probabilities regardless of the data type, sample
size, ascertainment probability, and prevalence. Al-
though adjusting for ascertainment did not have a big
effect on the median coverage probability across all
the ‘Coefficient’ and “Variance Component’ parame-
ters, coverage for many of these individual parameter
was significantly improved. This may be seen by the
fact that the number of low coverage outlier parame-
ters is significantly smaller in the adjusted vs un-
adjusted graphs. These results show that our method
for ascertainment correction can meaningfully im-
prove the generalizability of the results obtained from
ascertained pedigree data.
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Figure 6 Distribution of p-values of the test of model fit.

Conclusions

Here, we present the package strum, which can be
easily used with general pedigree data, giving it some
significant advantages over other software packages. It
improves upon existing SEM packages by allowing for
multilevel modeling in general pedigrees. This

flexibility allows the dissection of multiple influences
on multifactorial traits, which is of key importance in
genetic epidemiology. True pleiotropy occurs when
common associations are observed between the same
gene and unrelated phenotypes [31,32]. SEM can
clarify this phenomenon by explicitly modeling
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ascertainment correction. The number associated with a color in each plot represent the sample size, i.e, the number of pedigrees simulated.

correlation among related phenotypes, and potentially
dispel distinctions between seemingly unrelated disor-
ders. In addition, the flexibility to estimate polygenic
variance allows the user to estimate heritability in the
context of candidate gene effects and environmental
influences. Also, to our knowledge, no other currently
available SEM packages have a built-in approach for
handling ascertainment. Our package has a helpful in-
tegrated tool for genetic data simulation. Finally, it
has convenient built-in tools for model visualization.
Therefore, the strum package provides a significant
addition to biomedical research.

We presented the result from the simulation study for
the performance evaluation of the new strum package.
The parameter estimates were fairly unbiased with the
proper coverage probabilities for all 4 models we tested.
The p-value from the theoretically corrected test of
model fit was properly distributed as uniform under the
null hypothesis that the model used is correct, therefore
we recommend to users to use the theoretically cor-
rected test to if check the model fits the data. Also, the
coverage probability with the ascertainment modeling in
strum analysis was very close to the nominal value of
95% for all settings, while the result without the
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ascertainment correction showed the coverage probabil-
ities were far below the nominal value.

Although our simulation study could not cover all
possible scenarios that might be present in the real
world, our results show that the strum package is very
reliable and robust in terms of the accuracy and cover-
age of parameter estimates. Our package can be easily
used with general pedigree data and it has robust sup-
port for modeling ascertainment, making it unique
among SEM packages. Therefore, we conclude that strum
is a valuable new tool for genetic analysis and it represents
a step of progress for biomedical and genetic research.
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