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Abstract

Background: Banana shrimp Fenneropenaeus merquiensis has emerged as an important aquacultured shrimp
species in South East Asia and Australia. However, the quantitative genetic basis of economically important traits in
this species are currently not available, while for body colour, cooked or uncooked, there are no genetic parameter
estimates for any shrimp or indeed any decapod crustacean. In this study, we report for banana shrimp genetic
parameters for morphometric traits and, the first time for any shrimp, parameter estimates for body colour. Ten
highly polymorphic microsatellite markers were developed from genomic sequences and used to construct a
pedigree for 2000 offspring from approximately 60 female and 60 male parents that were sampled from a single
routine commercial production pond.

Results: Restricted maximum likelihood method applied to a single trait mixed model was used to estimate
heritabilities, while correlations were estimated using the multi-trait approach. The estimates of heritability for
morphometric traits were moderate to high (h? = 0.14 — 0.50). Body colour of uncooked shrimp showed a heritable
additive genetic component (h?=0.03 - 0.55), and those estimates obtained for cooked shrimp were significantly
different from zero. Genetic correlations among morphometric traits were all positive and very high (close to unity,
ry =085 — 0.99). The genetic correlations of body traits (weight, length and width) were positive with both colour after
cooking (0.74 — 0.84) and body colour measured on live shrimp (0.59 to 0.70). The positive genetic correlations between
the cooked body colour and uncooked body colour (0.64 + 0.20) suggests these two traits can be simultaneously improved
in practical selective breeding programs. This first ever report of genetic parameters for cooked or uncooked colour in
crustacean indicates there is potential for genetic improvement of both growth and body colour through selection.

Conclusions: In the present study we demonstrated for banana shrimp that genetic parameters can be estimated from
commercial samples (using pedigrees based on DNA markers), that selection for shrimp colour should be successful under
such commercial conditions.
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Background

Banana shrimp Fenneropenaeus merguiensis accounts for
about 30% of Australian shrimp aquaculture production
(i.e. about 1,300 tons), while there is significant production
in Asian countries such as Indonesia and Vietnam [1].
Banana shrimp are readily bred in captivity without
artificial insemination (AI) and so are agreeable candidates
for selection. This contrasts the situation for black tiger
shrimp (Penaeus monodon), currently the dominant
aquacultured shrimp species in Australia, where breeding
pond reared animals is problematic and Al is required to
construct even limited pedigrees [2].

Banana shrimp, along with Litopenaeus vannamei, are
considered ‘white shrimp’ that are generally more tender
and preferred by some food sectors to counterpart species.
Increasing the redness of white shrimp is seen as desirable
by some industry sectors and promote premium pricing.
For example in Australia, highest scoring coloured shrimp
assessed using subjective colour scoring system are often
priced AU$2-4/ kg more than light-coloured shrimp [3].
Shrimp colour is largely dependent on the amount of
astaxanthin present in external tissues (the exoskeleton and
the epidermal layer) [4]. A common practice to improve
shrimp colour is through supplement of synthetic astax-
anthin in the diets [5]. Several other rearing and harvesting
factors (particularly pre- and post-slaughter conditions)
such as transportation, colour of holding containers,
handling, conditioning, fasting, killing method, chilling and
storage may have influence on shrimp colour [6]. In
contrast to the abundant evidence that shrimp colour can
be improved through manipulation of environmental
factors and husbandry practices, there has been a paucity of
scientific research in quantitative genetic aspects of shrimp
colour. Genetic variation in body colour within shrimp
species, strains or lines is not known, and genetic relation-
ships of body colour with morphometric traits have not
been estimated in all crustaceans. Indeed, it is unknown
whether there is genetic variance in banana shrimp for
colour or redness, and so whether it would be possible to
select on this trait. Moreover, it is unknown whether
selection for colour would have adverse effects on other
commercial traits such as body weight and length.

Therefore, the principal aim of our present study was
to examine the quantitative genetic basis of body colour
and its genetic associations with morphometric traits in
Banana shrimp F. merguiensis. To support this study, ten
highly polymorphic microsatellite markers were developed
for banana shrimp and they were used to construct the
pedigree for quantitative genetic analysis.

Methods

Experimental location

The study was approved by the animal ethics committee of
the University of the Sunshine Coast. The experimental field
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work was conducted at Seafarm, in Cardwell, North Queens-
land (latitude 18° 16" 0S, longitude 146° 1° 60E, altitude
0 m). The daily average temperature in Cardwell is between
14 and 32°C, with the minimum average of 19°C and the
maximum average of 29°C over the last 103 years (Australian
Bureau of Meteorology) [7]. The water temperature in cul-
tured ponds varies between 25°C and 32°C. The annual rain-
fall is 2129 mm, occurring mainly from December to April
with a peak in January, February and March.

Origin of the animals

The animals originated from a population mass selected
for length over 14 generations, which more recently had
gone through several rounds of intercrossing among the
long term lines. A detailed description of the population
is given in Knibb et al. [8]. In brief, six lineages (cohorts)
were formed in 2000 from twenty wild inseminated
females and they were bred in captivity for 14 or more
generations. The typical breeding cycle is given in
Knibb et al. [8]. Grow-out followed a standard commercial
practice. The shrimp were fed an amount equivalent to 3
to 5% of their live weight on a commercial dry pelleted
feed with 38% protein content four times a day (ie.
at 6:00a.m, 10:00 a.m., 3:00 p.m. and 6:00 p.m.). The
inital stocking density in each pond was 50 shrimp per
square meter of surface water. Water quality parameters
(temperature, pH, dissolved oxygen and total ammonia)
were also monitored once a week. After about 140 days of
grow out, the shrimp were sampled in this study.

Sample collection and measurements

Shrimp were sampled using a cast net (mesh size of 2 ¢cm)
in small batches averaging 80 animals from a grow-out
pond at eight different locations around the pond (East,
North, North Conner, North Walkway, South, South West,
Southern End and West). The harvested shrimp were then
transferred to aerated containers of uniform red colour
(0.7 x 0.5 x 1.5 m) at a very low density (20 shrimp per con-
tainer). Data recording was conducted within one to two
minutes of placing the animals in the tubs. Body traits mea-
sured on each individual were live weight (total live body
weight in gram), total body length (distance from rostrum
to tip of telson in c¢cm), head (cephalothorax) length (dis-
tance from eye orbit to the hind margin of the carapace,
cm), abdominal length (distance from the hind margin of
the carapace to tip of telson, cm) and abdominal width
(width of the second abdominal segment, cm). Recording
carcass weight trait included only tail (abdominal) weight
(weight of the tail segment, g) and was used to calculate
meat yield (expressed as percentage of tail weight to total
live weight, %). In addition to body and carcass traits, sex,
culture pond, sampling time and sampling location within
the pond were also recorded at measurements. The visual
assessment of body colour was scored subjectively as light
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or dark on individual raw (uncooked) shrimp. After
recording the data, the shrimp tail segments were
kept in separate plastic bags and labelled according to
our tag system for individual identification. All
shrimp were immediately stored in cold insulated ice
chests (3°C) and then transferred to a cold room
(-10°C) before cooking within six hours to measure
cooked colour and ‘flesh streaks” back. Shrimp were cooked
in a commercial facility for three minutes following
standard commercial practices. Cooked colour of individual
shrimp was recorded as light or red. The trait of ‘flesh
streaks’ on the back was described as mushy, soft and
chalky texture of the cooked shrimp and was recorded as
presence or absence on individual shrimp together with
cooked colour. In addition, hepatopancreas samples were
taken from individual shrimp following morphometric
measurement. Hepatopancreas samples were preserved in
RNA later and shipped to University of the Sunshine Coast.

Genotyping and pedigree construction

Ten microsatellite loci (GenBank Accession No’s: KM21
3743-KM213752) with consistent PCR amplification, clear
allelic variation, and clarity of electrophoretic signatures
were used to construct the pedigree in the present study
(Additional file 1). A detailed description of marker
development from the pooled genomic DNA of 20 F.
merguiensis individuals using GS-FLX Titanium chemistry
(Roche Applied Science; Mannheim, Germany) is given in
Knibb et al. [8,9].

Once validated in simplex, two multiplex PCR
pools, each containing 5 microsatellite primer pairs
(Pool 1: FMO002, FM004, FMO011, FM047, FMO057, and
Pool 2: FM001, FMO005, FMO014, FMO052, FM056) were
amplified using Qiagen Multiplex PCR Plus Kits (Qiagen,
Germany). Forward and reverse primers for each multiplex
pool were combined in a 10x primer mix using 1-3 uM of
each primer, dependent upon PCR product fluorescence
intensities. Reactions, with volumes adjusted to 10 pL, each
contained 1 pL of 10x primer premix, 3.0 pL of Qiagen
Multiplex Buffer (2x) buffer, 3.5 uL of DH,O, and 2.5 pL
of template gDNA (10 ng/pL). Amplification was
performed using an Eppendorf Mastercycler (Hamburg,
Germany) with cycling conditions as follows: initial
denaturation at 95°C for 5 min, followed by 35 cycles
of 94°C for 30 s, 57°C for 90 s, and 72°C for 30 s; with a
final extension at 68°C for 10 min. PCR products were
separated by capillary electrophoresis on an AB 3500
Genetic Analyser (Applied Biosystems). Fragment sizes
were determined relative to an internal lane standard
(GS-600 LIZ; Applied Biosystems) using GENEMARKER
v1.95 software (SoftGenetics; State College, USA) and
double-checked manually. Individuals with low or missing
peaks were amplified and genotyped a second time.
MICRO-CHECKER v2.2.3 [10] was used to look for evidence
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of large allele dropout, extreme stuttering and null
alleles, based on 1000 bootstraps and a 95% confidence
interval. Tests for HWE at each locus and genotypic
linkage equilibrium among pairs of loci were conducted in
FSTAT v2.9.3 [11]. Numbers of alleles and the observed and
expected heterozygosities of each locus were determined
using GENALEX v6.5 [12], while polymorphic information
content (PIC) was computed in CERVUS v3.0 [13].
Parentage assignment was completed using COLONY
software [14] with confidence scores of above 95%.
Our earlier study using both mtDNA and microsatellite
markers [9] showed the evidence of monogamy in this
banana prawn population. Thus the monogamy model
was assumed to construct the pedigree that included 60
full-sib groups, with the family size of 3 to 108 offspring.
A total of 1957 offspring out of 1998 were assigned to full
sib families. This previous study [9] also reported
pedigrees constructed using these microsatellite loci
contained very few errors when cross checked with
independent mtDNA sequence data. The number of
offspring per family is given in Figure 1. The pedigree data
file with phenotypes is available on request.

Statistical analysis

Data and exploratory analysis

Exploratory analyses were firstly performed to detect
possible errors and examine distribution of the data for
all traits studied. The sample statistics (skewness and
kurtosis values) for all body traits were close to zero
indicating that the data were normally (or approximately
normally) distributed. Transformations (e.g. square root
or logarithm) did not improve the distribution of the
data and hence all analyses for body traits were performed
on original scale of measurements. Analysis of variance
using linear fixed model was used to examine systematic
factors to determine the final statistical models for each
trait. All analyses were conducted in SAS 9.3 (SAS Inc) [15].

Linear mixed model

Genetic parameters for all traits studied were analysed
using linear general mixed model in ASReml [16]. The
model included the effects of sampling time (AM, PM),
operator (2 technicians), sex (female and male) and
sampling batch by location within the pond subclass
(Equation 1). The random term in the model was the
additive genetic effect of individual shrimp in the
pedigree. In the present study all families were pooled
early (as soon as hatching) and then raised communally;
thus the effect common to full-sib groups (c® was not
included in the final model. The logarithmic likelihood
ratio test showed that the ¢? effect of dam (a combination
of maternal, environmental and partially dominant effects)
was not significant for all body traits (Chi-square test with
one degree of freedom, P>0.05). This is consistent with
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Figure 1 Number of offspring per family assuming monogamy.
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our observations in yellowtail kingfish [17] and also in
other studies [18,19]. In a mathematical form, the model
is written as the following:

yijklmn =H + BL; + O] + Sk + Tl +ﬁm(Wm)
+ an+ eijkimn

(1)

where y;;; is the observation of an individual (traits
studied), # is mean and the effects of sampling batch
and location subclass (BL); (i=1 to 25), operators O;
(j=2), sex Sx (k=2, female and male) and sampling
time T, (/=2, AM and PM), and f5,,(W,,) is a linear
regression coefficient of weight fitted for body colour.
The additive genetic effect (a) is assumed a ~(0,Aafl)
where A, is the additive genetic (numerator) relation-
ship matrix among the animals that was calculated
directly from the pedigree, and e is the vector of residual
effects ~(0,102).

Under linear mixed model (Eq. 1), heritabilities for
morphometric traits and body colour were estimated from
a single trait model. Phenotypic and genetic correlations
were obtained from a series of bivariate analyses, using the
same statistical model as described above. Heritabilities for

5,2

body traits and colour were calculated as KW= poRw

where o2 is the additive genetic variance and (¢?) is
the residual variance. Genetic and phenotypic correlations
among traits were calculated as the covariance
divided by the product of the standard deviations of
traits: r = —2Z% — where oy, was the estimated additive

VAV
genetic or phenotypic covariance between the two traits,
and 0% and 0% are the additive genetic or phenotypic
variances of traits X and Y, respectively.

Threshold generalised linear mixed model (GLMM)

In addition to linear mixed model, body colour of raw
shrimp were measured in the form of ‘light’ or ‘dark as
binary traits (coded as 0 and 1) and were also analysed
using different threshold models with both logit and
probit link functions. Similarly for cooked shrimp, body
colour was measured as ‘light red’ or ‘dark red’. The
former model assumed that the data followed a binomial
distribution with a logit link functions (p = € /(1 + €%))
where p is the probability of dark (or red) colour recorded
at harvest and x is a linear predictor. The model fitted was
the same as equation 1, except operator for cooked colour
because only one technician recorded this trait. Means of
body colours were back-transformed from the logit scale
to the proportional observations. With GLMM sire model,
heritability was calculated using the variance of the logit
link function, which implies a correction of the residual
variance by factor /3.

2
2 403

T2 2 ?
ol +02%

where o2 is sire variance and 02 = 1.

Probit threshold model.

The threshold sire model is basically the same as
those described above. However, the probit link function
n=® '(p) is used, with inverse link p;, = ®(y) =

/ 1
/ V2r

T

2
X7 . . .
€ dx, where @ is the cumulative normal density

—oo

function, and p; denotes the probability of dark (or red)
colour for shrimp i. The Bernoulli distribution for a binary
trait for an individual shrimp with y;=1 (presence of
dark colour in raw shrimp and of red colour in cooked
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shrimp) and y; = 0 (absence) is the probability (y;|p:) = (py)
Yi(1-p)i .

Under probit threshold model, heritability was calcu-
lated as

2
2 403

52 2
oL+ 03

where ¢? is sire variance and ¢2 = 1.

For binomial observations, estimates of 4#” on the
liability scales (logit and probit) can be transformed
to observed (0/1) scale using the formula of Robertson
and Lerner [20] as follows:

ZZ

pr(1-p)

Wy =h;

where /2 is the heritability on the observed (0/1) scale,
I is the estimated heritability on the liability (logit or
probit) scale, p is a proportion of a given colour in
the data, and z is the height of the ordinate of normal
distribution corresponding to a truncation point applied
to p proportion of colour.

The same methodology as described above was applied
to estimate heritability for other binary traits (i.e. ‘flesh
streaks” and yellow hepatopancreas). Significance of the
heritability estimates was tested using z-score against a
large random normal distribution (e.g. Nguyen et al.) [21].

Results

Descriptors of the data

The unadjusted means, standard deviations and coefficients
of variation for body colour and morphometric traits are
shown in Table 1. The average body weight of the shrimp
at harvest was about 17 g, corresponding to a tail weight of
10 g and edible meat yield of 60.7%. The proportion of

Table 1 Number of data records (N), mean, standard
deviation (SD), minimum and maximum values for traits
studied

Traits Unit N Mean SD Min Max
Body weight g 1998 165 48 45 362
Body length cn 1998 139 14 92 160
Head length cm 1998 49 06 25 6.3
Body width mm 1979 127 16 40 174
Tail weight g 1997 100 100 29 25
Meat Yield % 1989  60.7 38 47.1 753
Dark colour (raw shrimp) % 1988 515 499 0 100

1998 163 369 0 100
1998 169 375 0 100
g 1998 165 128 0 100

Red colour (cooked shrimp) %
‘Flesh streaks' %

Yellow hepatopancreas

Basic statistics were estimated from about 2000 animals.
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cooked shrimp showing red colour was markedly lower
compared to the dark colour recorded in raw shrimp (16.3
vs. 51.5%). The incidence of ‘flesh streaks’ was 16.9%,
whereas it was only 1.65% for yellow hepatopancreas.

Sampling location, time, operator and sex effect

The effect of sampling location in the site locations
around the same pond was highly significant (P < 0.001)
for all traits studied, including body colour of both raw
and cooked shrimp (Figures 2 and 3). This was in part due
to the very large size of grow-out pond (over 1 ha), hence
environmental differences between sampling locations
were possible even likely, and shrimp may have schooled
according to size.

Banana shrimp females were substantially larger
(P<0.001) and heavier than males (Table 2). Conversely,
the meat yield proportion of males was about 2.2% greater
than that of females and the difference was statistically
significant (P < 0.001). Between sex difference was observed
for body colours of both raw and cooked shrimp (P < 0.05
to 0.001), that is, females had darker colour and a greater
proportion of red coloured animals than males (Table 3).

The odds ratio (OR) coupled with its confidence interval
obtained from generalised linear mixed model analysis
also indicated that the proportion of red colour in cooked
shrimp males was 46% less than in females (OR = 0.54,
P <0.01). However, the incidence of ’flesh streaks’ and
yellow hepatopancreas shrimp was not different between
the two sexes (P > 0.05) (Additional file 2 and Table 3).

Heritability

The heritabilities for weight, length, width and tail
(abdominal) weight were generally moderate to high,
ranging from 14 to 50% (Table 4). Body colour of uncooked
shrimp was moderately to highly heritable, but that of
cooked shrimp tended to be lower (0.03 — 0.18). However,
all the estimates had low standard errors and significantly
different from zero (P < 0.05 to 0.01, z-score = 2.7 to 4.2).

Heritabilities (h%) for body colour were estimated using
three different statistical models (Table 4). The linear
animal mixed model (LMM) h? (model 1) were low but
significantly different from zero (ranging from 0.03 to
0.18). For linear sire model, the heritability for body
colour of uncooked and cooked shrimp was 0.29 + 0.08
and 0.12 + 0.05, respectively (results not presented).

The generalised linear mixed model (GLMM) estimates
of heritability for liability to body colour measurements
used logit and probit models. The h* obtained from logit
model (model 2) were smaller than those from probit
model (model 3) for raw colour. However, note that they
cannot be directly compared because the estimates of
heritability from the logit model were on the logistic scale
whereas the ones obtained from the probit model were on
the underlying normal scale. As expected from the theory,
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the GLMM estimates of heritability for body colour of
raw and cooked shrimp on the original liability scale
were markedly higher than those from LMM (ranging
from 0.18 to 0.55 vs. 0.02 to 0.18, respectively). When
the estimates on logit and probit liability scales were
transformed to observable scale, heritabilities were
quite similar between the LMM and GLMM methods,
and statistically significant (P = 0.04 to <0.001, two tailed
z-score = 3.8 to 15.1).

As expected, the hertiabilities for all morphometric
traits were large, except for the meat yield which was
not significant (P > 0.05).

Correlations among morphometric traits and colour
The genetic correlations among body traits were all very
high (Table 5). The near unity genetic correlations
between body traits suggest that they are essentially
controlled by the same set of genes and hence can
be improved simultaneously in a selection program.
All phenotypic correlations among body traits were
consistent with genetic correlations and they ranged
from 0.49 to 0.99.

All growth related traits showed positive genetic correla-
tions with body colour of both cooked (0.74 to 0.84) and
uncooked shrimp (0.59 to 0.70) (Table 6). The phenotypic

Least Square Means for Sampling Location
With 95% Confidence Limits

0.20 +

0.15

0.10 +

Red Colour of Cooked Shrimp (x100%)

0.05 +

SamplingLocation

Figure 3 Percentage of red colour of cooked shrimp by sampling location.
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Table 2 Least squares means (+ s.e.) for body and carcass traits by sampling time, operator and sex

Effects Factors WT LG HL WD T™W My

Sampling time AM 17.6+0.65 143+£0.19 50+0.08 134 +0.28 10.6+040 60.2 £042
PM 1594039 13.7£0.12 4.8 +0.05 123£0.15 96+0.24 60.7 £0.25

Operator 1 163+0.20 13.9+0.06 50+0.02 126+ 0.07 102+0.12 628 +0.12
2 172+021 14.1 £0.06 48+0.03 13.1£0.08 99+0.13 581£0.13

Sex Female 1784020 142 +0.58 50+0.03 132+£0.07 10.7+0.12 59.8+0.13
Male 156+0.19 13.8 +£0.06 48+0.03 12.5+0.07 95+0.12 61.1+0.13

WT = Live body weight, LG = Total length, HL = Head length, WD = Abdominal width, TW = Tail weight, MY = Meat yield = 100 x (Tail weight/ Body weight).

correlations between body traits and colour were generally
consistent in sign with those obtained for the genetic
correlations, but they had significantly lower magnitude.
The standard errors of both the phenotypic and gen-
etic correlations were small but all the estimates were
statistically significant (Table 6).

Correlations among different measures of body colour
The genetic correlations between body colour of raw
and cooked shrimp are high and positive (0.64 + 0.20)
(Table 7), indicating that this trait (red colour) is likely
determined by the similar set of genes that give different
phenotypes when measured in different environment
(i.e. cooked vs. uncooked conditions). Interestingly body
colour of cooked shrimp also showed a negative genetic
correlation with ‘flesh streaks’ (-0.41 +0.36, P > 0.05), as
expected from our visual observation. The genetic
correlations between body colour measurements and
yellow hepatopancreas were associated with large standard
errors and not significantly different from zero (P > 0.05).
All the phenotypic correlations were consistent in sign but
they were of smaller magnitude compared with those
obtained for the genetic correlations.

Discussion

The central objective of the present study was to under-
stand if body colour of banana shrimp can be improved
by genetic selection. The estimates of heritability achieved
here suggest genetic improvement (by selective breeding)

is possible for body colour, a trait of commercial import-
ance in crustacean species, especially white leg shrimp
Litopenaeus vannamei that accounts for a very large
proportion (about 70%) of total crustacean production in
Asia and Latin America. By using the genetic parameters
estimates given in Tables 2 and 4, the predicted response
to direct selection for red colour of cooked shrimp would
be 8% per generation. Although body and carcass traits,
meat yield as well as the potentially pathogen related traits
of ’flesh streaks’ and yellow hepatopancreas were also
examined, our discussion below placed emphasis on
genetic basis of body colour and potential for future
genetic improvement programs of this novel trait in
banana shrimp and crustacean species.

Heritabilities

This is the first study reporting genetic parameters for
banana shrimp (F. merguiensis) and the first report of
heritabilities for colour in crustacean. We have found
there are large additive genetic variation observed
for body colour (h®>=0.03 - 0.55) and growth traits
(h* =0.14 — 0.50), suggesting there is very good potential
for genetic improvement of the traits studied in this popu-
lation. The greater heritability for body colour in uncooked
than cooked shrimp is an important finding since this
shows that selection for shrimp colour can be practised
on live breeding candidates. The improvement of cooked
shrimp colour seems to be difficult since this character
had a low heritability, perhaps due to large effects of

Table 3 Least squares means (LSM + s.e.), odds ratio (confidence interval, Cl) for risk factors involved in body colours,

‘flesh streaks’ and yellow hepatopancreas

Effects Levels RC cC FS YH
LSM Odds ratio (CI) LSM Odds ratio (CI) LSM Odds ratio (Cl) LSM Odds ratio (Cl)

Sampling time  AM 590+ 739 1 163+631 1° 242+009 1 108 +001 1

PM 476+ 458 157 (126 - 195) 103 +261 275(203 -371) 117 +003 243 (052-11.3) 0005 + 097 027 (0.12-64)
Operator 1 442 +223 1F 116+ 146 1 164 +002 1 002+085 1

2 622 +228 049 (040 - 058) 146+ 181 127 (099 - 162) 177 +002 091 (0.72-1.16) 0.10+510 0.0 (0.08-52)
Sex Female 561 +232 1 166+192 1 187 +002 1 0001 +0.15 1

Male 506+ 234 122(101-146) 101 +137 054 (042 -069) 155+ 002 125(098-160) 0008 +009 061 (30-1.26)

RC =Body colour of raw shrimp, CC = body colour of cooked shrimp, FS = ‘flesh streaks’ and YH = Yellow hepatopancreas.

fReference.
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Table 4 Heritability (+ s.e.) for traits of commercial
importance in banana shrimp

Traits Model h? h? back-transformed
Body weight 1 0.50+0.08
Body length 1 046 +0.07
Head length 1 0.14+0.03
Width 1 045+0.03
Tail weight 1 049 £0.08
Meat Yield 1 0.04+0.02
Colour of raw shrimp 1 0.18 +£0.05
1 0.11+003"
2 046+0.11 033£0.02
2 0.29+0.09" 0.21£0.03
3 0.55+£0.13 040+0.02
3 034+011" 0.24 £0.03
Colour of cooked shrimp 1 0.08+0.03
1 003+002"
2 040+0.13 0.18£0.01
2 018009 0.08 +£0.02
3 041+£0.13 0.18 £0.01
3 0.18+009" 0.08 £0.02
flesh streaks’ 1 0.03+0.02
2 0.11£0.06 0.05+£0.02
3 0.11+0.06 0.05£0.02
Yellow hepatopancreas 1 0.02+0.01
2 0.60 £0.36 0.04 £0.002
3 035+024 0.03 £0.002
Model 1 = Linear animal mixed model, Model 2 = threshold logistic model, and

Model 3 = threshold probit model. “Weight fitted as a linear covariate in the model.

environmental factors during cooking and storage as
well as measurement methods. However selection for
improving dark colour on live shrimp can improve
redness of cooked animals as indicated by the high
and positive genetic correlation between the two traits
(see discussion on “correlations” section). Unfortunately,
there are no prior genetic parameters reported for colour
in crustaceans to compare with the estimates of this
current study. In fish, heritabilities for flesh colour have

Page 8 of 12

been reported ranging from 0.09 to 0.32 [22-26]. Our
results indicate the improvement of shrimp colour
through direct selection or including colour with other
traits in breeding objectives is practically feasible. Alterna-
tively shrimp colour can be assessed perhaps more object-
ively and accurately, certainly more quantitatively using
specialised instruments. In Australia the existing pricing
systems reward producers for shrimp having higher colour
scores than light-coloured counterparts. This would give an
incentive to incorporate shrimp colour into practical
genetic improvement programs. A rough calculation
of economic benefit from one unit of improvement in
body colour is about AU$ 2.6 million for the national
sector ($2 increase per unit of improvement in colour x
1,300,000 kg = $2,600,000).

In addition to body colour, the large genetic variation
in morphometric traits for banana shrimp in our study
is consistent with those reported for other crustaceans
species, such as pacific white shrimp (P. vannamei) [27,28],
black tiger shrimp (P. monodon) [29], kuruma shrimp
(P. japonicus) [30], redclaw crayfish (C. quadricarinatus)
[31,32], and freshwater shrimp (Macrobrachium rosenbergii)
[33,34]. The estimates of heritability for body traits in other
species range from 0.20 to 0.60 [23,35-37]. Furthermore,
‘flesh streaks’ and yellow hepatopancreas also showed
significant genetic components (P < 0.05, z-score =2.09),
indicating that improvement for these characters can be
achieved through conventional selection to improve flesh
quality (i.e. reducing mushy, soft and chalky white texture)
and disease resistance against possible pathogens.

In the present study, animals were pooled soon after
hatching; hence, the maternal and common environmental
effects (c®) were not significant as tested using the logarith-
mic likelihood ratio. However, in pedigreed populations
where the c* effects are present, they should be included in
analytical model to avoid possible bias in genetic parameter
estimates.

Correlations

All quantitative traits measured in the current study
including body traits and colour were genetically correlated.
Among body traits, we found positive and high (almost
unity) genetic correlations which agrees well with findings

Table 5 Phenotypic (above) and genetic (below the diagonal) correlations among body and carcass measurements

Traits WT LG HL WD T™W My

WT 0.99 (0.01) 049 (0.02) 0.93 (0.01) 0.98 (0.01) —0.06 (0.03)
LG 0.99 (0.01) 0.51 (0.02) 0.88 (0.01) 0.92 (0.01) 0.02 (0.03)
HL 0.98 (0.04) 0.85 (0.08) 0.96 (0.04) 051 (0.02) 0.02 (0.03)
WD 0.99 (0.01) 0.99 (0.01) 0.95 (0.04) 0.93 (0.01) 0.01 (0.03)
W 0.99 (0.01) 0.99 (0.01) 0.99 (0.03) 0.99 (0.01) 0.13 (0.03)
MY —-0.19 (0.22) —-0.27 (0.21) —0.09 (0.25) -0.19 (0.22) -0.13(0.22)

Trait abbreviations given in Table 2.
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Table 6 Phenotypic (rp) and genetic (rg) correlations of body and carcass traits with colour and yellow hepatopancreas

and ‘flesh streaks’

Traits RC CcC YH FS
re e re e re rp ra rp

WT 0.66 (0.11) 0.28 (0.03) 0.84 (0.10) 0.20 (0.03) 0.85 (0.44) 0.13 (0.02) —0.50 (0.30) —0.11 (0.02)
LG 0.67 (0.11) 0.28 (0.03) 0.78 (0.12) 0.18 (0.03) 0.76 (0.64) 0.09 (0.02) —-0.98 (0.12) —-0.13 (0.03)
HL 0.59 (0.15) 0.16 (0.03) 0.74 (0.15) 0.08 (0.02) 0.59 (0.87) 0.04 (0.02) —-0.98 (0.12) —-0.13 (0.03)
WD 0.70 (0.11) 0.27 (0.03) 0.85 (0.11) 0.19 (0.03) 0.90 (0.34) 0.14 (0.02) —0.60 (0.31) —-0.11 (0.02)
W 061 (0.12) 0.27 (0.03) 0.84 (0.10) 0.20 (0.03) 0.99 (0.13) 0.18 (0.03) —0.53 (0.30) —-0.11 (0.02)
MY —0.54 (0.20) —0.01 (0.03) —0.05 (0.28) —-0.01 (0.02) 0.11 (048) 0.04 (0.02) —-0.12 (0.38) 0.05 (0.02)

Trait abbreviations given in Tables 2 and 3.
Standard errors in parentheses.

in Pacific white shrimp [38], freshwater shrimp M.
rosenbergii [33], salmonids [39], and tilapia [40]. This
suggests that all of the above body traits were closely
genetically correlated and are likely to be influenced
by similar sets of genes. The estimates of the genetic
correlations here also suggest that any one of these traits
tested could be used, on its own or simultaneously, to
improve overall growth performance of the animals without
a requirement for taking different measurements. However,
in practical selection programs live weight or body length is
recommended due to its greater heritability and the ease of
measurements relative to other body dimensions (e.g. body
width or carapace length).

The genetic correlations obtained in the present study
between morphometric traits and body colour also
allow the prediction of possible correlated changes
when selection is practised on one trait or another. Due to
the high and positive genetic correlations between weight
and colour of raw (uncooked) shrimp, it is predicted that
selection for increased harvest weight may result in
favourable changes in colour of the shrimp and vice versa,
that is, the animals selected for size become darker prior to
cooking, or animals selected for darkness become
heavier. Similarly, selection for higher weight would
be accompanied by favourable increase in red colour
of cooked shrimp. This is desired since red colour is
a commercially important trait for the marketing of
shrimp. Our results suggest that raw and cooked colours
are under control of similar sets of genes but the genotype

Table 7 Phenotypic (above) and genetic (below the
diagonal) between raw and cooked colour as well as with
yellow hepatopancreas and ‘flesh streaks’

Traits RC cc FS YH

RC -0.22+002 003+002"™  -004+002"
cC 0.64+0.07 -003+002™ —-001+002"
FS -035+£032™ -041+036™ —0.05+0.02
YH 074+086™ —-043+061™ —067+047™

" = non-significance.
Trait abbreviation given in Table 3.

by environment interaction may be important as indicated
by the significantly different from one genetic correlation
between the two traits. They thus may be considered
as genetically different traits in breeding programs.
Comparison of our correlation estimates to other
crustacean species is not possible due to unavailability
of this information in the literature. However, in fish
positive correlation between flesh colour and body
traits have been reported for salmon [23,25,41] and
tilapia [42]. The consistent results between body colour of
shrimp and flesh colour in fish is likely that similar
biological and metabolic pathways are involved in the
process of controlling colour expressions in fish muscle
and in exoskeleton (or hypodermal) tissues of shrimp.
Genetic control of shrimp colouration is generally not well
documented. Our estimates of the genetic correlations
between growth related traits and shrimp colour are the
first to indicate that indirect improvement in redness
colour of cooked shrimp may be achieved from selection
programs for high growth. It is however also necessary to
develop alternative selection strategies to achieve optimal
improvement in both performance and shrimp colour in
the breeding programs.

Environmental effects on body colour and performance
of banana shrimp

Besides the significant genetic effects observed, environmen-
tal factors are well known to influence animal phenotypes,
especially quality traits of economic importance in farmed
aquaculture species [43]. In the present study, we found the
sampling batch by location around the pond and sampling
time had significant impacts on body colour of both cooked
and uncooked shrimp, suggesting that without measuring
such effects, sampling from ponds, at least large ones, could
generate various biases in genetic parameter estimates.
Female banana shrimp also had greater proportion of red
colour after cooking than that evident in males. In fish,
between- sex differences in flesh colour were thought likely
due to sexual maturation effects [44] or due to the different
degree of gonad development [45]. Besides the sampling
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batch by location and sex effects, other environmental
factors have been reported to contribute to variation in
body colour of shrimp, including background substrate
colour of rearing environments, photoperiod, light intensity
and temperature [3,46], moulting [47], storage, chilling,
freezing and thawing process [6].

Furthermore, sex difference in growth traits was
also observed in banana shrimp where females were
about 21% heavier, on average, than males. This is
also observed in P. vannamei where the divergence
occurs at body weights of 10 to 17 g and females are
significantly larger than males for most body traits
including body weight (4.8%) and total length (1.2%)
[48,49]. Sex dimorphism in growth and carcass yield
have also been reported in many aquaculture species
such as giant freshwater shrimp M. roseinbergii [50],
tilapia O. niloticus [21], common carp [18], rainbow trout
[51] or Atlantic salmon [39].

The significant effects of environmental factors on
both shrimp colour and body traits shown in the present
study suggest that all significant systematic effects, even
the location of sampling in the pond, should be included
in statistical models to analyse quantitative traits in
genetic evaluation programs.

In summary, our study demonstrated there is a genetic
(heritable) component for body colouration in banana
shrimp, and hence there is potential for the improve-
ment of this trait by genetic means. The application of
DNA markers for parentage assignment can increase
efficiency of the breeding program for this species by
permitting communal rearing at a young age. With 10
‘high quality’ microsatellite markers, 97.5% progenies
were successfully assigned to single parental pair in our
present study at high confidence. Both experimental and
theoretical results show that by using 6—14 microsatellite
markers, progenies can be assigned to the parents with a
high degree of accuracy (90 to 99%) across aquatic animal
species [52]. The DNA technology for genetic tagging has
increasingly been applied in practical selective breeding
programs [19,53-55]. Parentage testing and pedigree
verification using DNA markers enables the conduct
of genetic improvement programs under commercial
production environments, without the need and cost
of dedicated facilities and dedicated single pair mating
design. This was demonstrated in our present study
for F. merguiensis.

Conclusions

In this study we indicated that microsatellite markers
were successfully developed for F. merguiensis and these
highly accurate pedigree assignment with high quality
makers [9] was effective in permitting the use of commer-
cial production ponds and samples for the estimation of
genetic parameters. The mixed model estimates of genetic
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parameters in the present study indicate that body colour
of the shrimp can respond effectively to selection. Selection
for dark colour on live shrimp is also expected to increase
redness of cooked animal. The genetic association of body
colour of raw and cooked shrimp with morphometric traits
were high and positive, suggesting that both body colour
and morphometric traits can be easily improved simultan-
eously in breeding programs for this species. Genetic
improvement of body colour in crustaceans is foreseen as a
sustainable alternative to the addition of feed additives to
animal diets due to consumers’ concerns regarding food
safety issues and there has been a growing public
interest in environmentally friendly products. The improve-
ment of colour by genetic means is expected to bring
about potential economic benefits to the shrimp sector
world-wide.
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