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Abstract

Background: Genome-wide Association Studies (GWAS) are typically designed to identify phenotype-associated
single nucleotide polymorphisms (SNPs) individually using univariate analysis methods. Though providing valuable
insights into genetic risks of common diseases, the genetic variants identified by GWAS generally account for only
a small proportion of the total heritability for complex diseases. To solve this ? missing heritability ? problem, we
implemented a strategy called integrative Bayesian Variable Selection (iBVS), which is based on a hierarchical
model that incorporates an informative prior by considering the gene interrelationship as a network. It was
applied here to both simulated and real data sets.

Results: Simulation studies indicated that the iBVS method was advantageous in its performance with highest
AUC in both variable selection and outcome prediction, when compared to Stepwise and LASSO based strategies.
In an analysis of a leprosy case ? control study, iBVS selected 94 SNPs as predictors, while LASSO selected 100 SNPs.
The Stepwise regression yielded a more parsimonious model with only 3 SNPs. The prediction results demonstrated
that the iBVS method had comparable performance with that of LASSO, but better than Stepwise strategies.

Conclusions: The proposed iBVS strategy is a novel and valid method for Genome-wide Association Studies, with the
additional advantage in that it produces more interpretable posterior probabilities for each variable unlike LASSO and
other penalized regression methods.

Keywords: Biomarker discovery, Bayesian hierarchical modeling, Gene-based biomarkers, Bayesian variable selection,
Integrative biomarker identification
Background
Over the last decade, Genome-wide Association Studies
(GWAS) have identified genetic loci associated for a
variety of diseases [1-5]. Most studies aim to identify
single nucleotide polymorphisms (SNPs) individually
using univariate analysis methods [6]. Although current
GWAS analyses have provided valuable insights into
genetic risks of common diseases, the genetic variants
identified by GWAS generally only account for a small
proportion of the total heritability of complex diseases,
illustrating a problem commonly referred to as ? missing
heritability? [7,8]. Potential explanations for this problem
include the underestimation of the effects of alleles
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identified, the existence of gene-gene joint effects, the
contribution of rare variation, the possibility that
inherited epigenetic factors lead to correlated phenotypes
between relatives, and the possible overestimation of
heritability of the complex traits [7,9,10]. Many diseases
or phenotypes are likely caused by or associated with
multiple SNPs, each having small effects individually,
but collectively contributing a more significant genetic
effect [11]. Therefore, multi-locus SNP models would
offer one appealing solution in capturing the underlying
genotypic-phenotypic relationship [12-14].
A typical GWAS study measures thousands or millions

of SNPs, but the number of subjects is usually much
smaller. This is known as the P > >N problem [15,16]. One
solution to this problem resorts to dimension reduction by
identification of the optimal subset of predictors associated
with the outcome variable. Determining the best model
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:dyang@bayessoft.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Zhang et al. BMC Genetics 2014, 15:130 Page 2 of 11
http://www.biomedcentral.com/1471-2156/15/130
or selecting a subset of variables becomes an important
statistical task for this method. Bayesian variable selection
(BVS) provides a natural approach to solve this problem
[17,18]. Unlike penalized regression approaches, BVS
naturally produces easily interpretable measures of
confidence for variable selection, i.e., posterior selec-
tion probabilities. This is an appealing advantage in
GWAS because the primary goal of the analysis is to
identify the joint effect of SNPs, and to utilize these
identifications to learn about underlying biology. BVS
has been successfully applied to GWAS data; see the
discussion by Guan [19]. The flexibility of the BVS ap-
proach allows for straightforward extensions to analyze
both quantitative and qualitative data [20-23]. Alternative
techniques such as the single-SNP test, Stepwise regres-
sion, and LASSO (Least Absolute Shrinkage and Selection
Operator) were developed to address this statistical chal-
lenge. LASSO is a regression method that involves penal-
izing the absolute size of the regression coefficients, and
Stepwise is a classic scheme for sequentially adding to or
removing variables from the model. Many studies show
that BVS has better performance than these alternative
methods in other contexts [19,23-25].
Diseases with complex inheritance may be influenced

by multiple genes that interplay within genetic networks
or pathways [26,27]. Gene products interact with one
another and work collaboratively within interconnected
pathways explaining or associating with certain diseases.
This idea led to the concept of network-based molecular
biomarkers. Stingo et al. [28] proposed a Bayesian model-
ing strategy that addressed this concept by incorporating
biological information, which was based on the structure
or topology of regulatory gene-gene networks in the ana-
lysis of DNA microarray data. The method was further
generalized into a 2-step framework, STS (screening, then
selection) by our research team [29] where standard
methods were applied in the screening step to identify a
set of candidate genes which were further explored in the
selection step using the BVS strategy. In addition to these
two coherent steps, our strategy involves the mapping of
genotype data to gene-gene networks constructed from
various sources such as protein-protein interaction net-
works [30,31]. We call this strategy of Bayesian biomarker
discovery ? integrated BVS? or iBVS. A partial least squares
(PLS) g-prior for regression coefficients is also incorpo-
rated to solve the problem of non-positive deterministic
covariance matrix when the sample size is smaller than
the number of genes selected.
In this paper, we develop the strategy of iBVS for ana-

lyzing high dimensional GWAS data sets. The strategy is
built upon a three-level hierarchical model as seen in
Figure 1, where at the top level the PLS method is used
to summarize the joint effect of selected SNPs within
each gene. In the middle level, Markov Random Field
(MRF) is employed to model the selection of genes in
prediction of association with disease status. A focus of
this article is on discovering SNPs within specific genes
incorporating gene network information in GWAS under
case? control design. Identification and prediction per-
formance of this iBVS approach are then compared with
those of LASSO and Stepwise selection strategies through
simulation studies. We then apply iBVS to a GWAS data
set for the prediction of leprosy, a skin disease, among
Han Chinese.

Methods
We denote Y = (Y1,⋯ Yn) ' as independently observed bin-
ary outcomes in a GWAS data set, where n is the number

of subjects and Y i ? 1
0
if ith subject has target disease

otherwise

�
. Each

outcome is associated with a set of predictor variables,
which correspond to the genotype data. We denote xijk as
the genotype of the kth SNP of the jth gene on the ith sub-
ject, for i = 1,⋯, n, j = 1,⋯, J, k = 1,⋯, Pj, where Pj is the

number of SNPs mapped to the jth gene, and P ?
XJ
j? 1

Pj

denotes the total number of SNPs in the GWAS data set.
Let A and a be the major and minor alleles at a SNP. The
genotype may be coded according to different types of
genetic effects: additive with 0, 1, 2 coding for the geno-
types AA, Aa/aA, aa; dominant (with respect to the minor
allele) with 0, 1, 1 coding for AA, Aa/aA, aa; Recessive
(with respect to the minor allele) with 0, 0, 1 coding for
AA, Aa/aA, aa.

iBVS with hierarchical modeling for GWAS data
Figure 1 shows the proposed three-level hierarchical
model structure. iBVS for binary phenotypes is accom-
plished by introducing the latent variable vector Z to the
linear regression model. Each component Zi ~N(0, 1) is
defined such that

Y i ? 0;
1;

if Zi ≤ 0
if Zi > 0

:

�
In order to select genetic variants in both gene and

SNP level simultaneously, we introduce two binary
vectors, ξ = (ξ1,⋯, ξJ) and γ = (γ1,⋯, γP), to indicate
the selection of genes and SNPs respectively into a
model for predicting Zi, i. e,

ξj ? 1
0
if jth gene is selected

otherwise
j ? 1;⋯; J? ?

�
and

γp ?
1
0
if pth SNP is selected

otherwise
p ? 1;⋯;P? ? :

�



Figure 1 Hierarchical model structure and relationships among the stochastic nodes.
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For GWAS data with iBVS analysis, we propose the
following hierarchical model,

Zi ? T ξ;γ? ? β ξ;γ? ?
� �

i
? εi; εi eN 0; 1? ? ;

where β ξ;γ? ? ? βJ1;γ ;⋯; βJ ξj j;γ

� �
;T ξ;γ? ? ? T J1;γ? ? ;⋯;T J ξj j;γ? ?

� �
; ξj j

denotes the number of selected genes in predicting Zi;
T Jl ;γ? ? denotes the vector of the first PLS component of
XJl ;γ ; and Jl(l = 1,⋯, |ξ|) indexes the selected gene. Note
that XJl ;γ is a sub-matrix of X, consisting of only the col-
umns that correspond to selected SNPs in the selected
genes.

Prior specification
The indicator γ for SNP selection is assumed to follow
an independent Bernoulli prior distributions with the
same parameter π over all the γi values.

p γ? ? ?
YP
p ? 1

πγp 1? π? ? 1 ? γp0≤π ≤ 1

Choice of π reflects a user ? s prior belief in terms of the
numbers of causal SNPs out of P candidates.
Zellner ? s g-prior is commonly used for the regression

coefficient parameters β [32]. Yang and Song [33] gener-
alized the g-prior by modifying the matrix inverse to the
Moore-Penrose generalized matrix inverse. Since the
multicollinearity problem is commonly encountered in
GWAS data because of strong linkage disequilibrium
between SNPs, we took a similar prior as that of Yang
and Song,

β ξ;γ? ? jξ; γ eN 0; c T ′
ξ;γ? ? T ξ;γ? ?

� � ?� �
;

where T ′
ξ;γ? ? T ξ;γ? ?

� �?
denotes the Moore-Penrose gen-

eralized inverse of T ′
ξ;γ? ? T ξ;γ? ? . This idea was first adopted

by our research team for microarray gene expression
data [29].
To take into account the pathway membership infor-

mation for each gene as well as the biological relation-
ships between genes within pathways, we follow Li and
Zhang [34] and Stingo et al. [28] to use an MRF to de-
scribe the prior distribution on each component of the
gene selection indicator, i.e.,

p ξjjξi; i∈Nbj
� �

∝exp ξj μ ? η
X
i∈Nbj

ξi

0@ 1A0@ 1A
where μ and η are tuning parameters, and Nbj is the set
of neighbors of gene j within the selected pathway. The
corresponding multivariate form is given by:

P ξjμ; η? ? ∝exp μ1′Jξ ? ηξ′Rξ
� �

;

where 1′J is the vector consisting of J 1? s. We denote
matrix R to reflect gene-gene network topological structure,
where elements Rij = 1 if there is a direct edge between the
ith and jth genes, and Rij = 0 otherwise.
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Posterior distributions
The joint posterior distribution of θ = (γ, ξ, β(ξ,γ), Z) given
(Y, X) is

P γ; ξ; β ξ;γ? ? ;ZjY ;X
� �

∝
YN
i? 1

I Ai? ?
 !

� exp ?
Z ? T ξ;γ? ? β ξ;γ? ?
� �′

Z ? T ξ;γ? ? β ξ;γ? ?
� �
2

264
375

� exp ?
β′ξ;γ? ? T

′
ξ;γ? ? T ξ;γ? ? β ξ;γ? ?
2c

Ymξ

i? 1

λ
? 1
2

i

" #

�
YP
p ? 1

π
γp
p 1 ? πp
� �1 ? γp � exp μ1′Jξ ? ηξ′Rξ

� �

where I(Ai) is the indicator function and Ai is either
equal to {Zi : Zi > 0} or {Zi : Zi ≤ 0} corresponding to Yi = 1
or Yi = 0, respectively, and λ1;⋯λmξ

mξ≤J? ? are the non-
zero eigenvalues of T ′

ξ;γ? ? T ξ;γ? ?
� � ?

.
Since β is a nuisance parameter, we can integrate it out

to obtain the joint posterior distribution of (Z, ξ, γ|Y, X) as
follows:

P Z; ξ; γjY ;X? ? ∝
Yn
i? 1

I Ai? ?
" #

� 1

Σ ξ;γ? ?
		 		1=2 exp ?

Z′Σ ? 1
ξ;γ? ? Z

2

 !

�
YP
p ? 1

πp
γp 1 ? πp
� �1? γp � exp μ1′Jξ ? ηξ′Rξ

� �

with Σ ? 1
ξ;γ? ? ? cT ξ;γ? ? T ′

ξ;γ? ? T ξ;γ? ?
� � ?

T ′
ξ;γ? ? ? In . From this

posterior joint distribution, we can derive the posterior
conditional distributions

P Zjξ; γ;Y ;T? ? ∝N 0;Σ ξ;γ? ?
� �Yn

i? 1

I Ai? ? ;

which is a multivariate truncated normal distribution,
and

P ξ; γjT ;Z? ? ∝N 0;Σ ξ;γ? ?
� ��YP

p ? 1

πp
γp 1? πp
� �1 ? γp

� exp μ1′Jξ ? ηξ′Rξ
� �

:

Posterior inference via MCMC sampling
Markov chain Monte Carlo (MCMC) sampling is used
to generate samples for the posterior distribution of
the model parameters. The MCMC sampling proced-
ure consists of the following two steps:
I. Sample ξ and γ from P(ξ, γ|Y,T, Z): the selection
parameters (ξ, γ) are updated using a Metropolis-
Hastings algorithm which is modified from Stingo ? s
method [28] (details of the MCMC moves to update
(ξ, γ) are given in Additional file 1). The method
consists of randomly picking one of the following
moves: (1) change the inclusion status of SNP and
gene by randomly choosing from adding or removing
a gene and a SNP at the same time; (2) change the
inclusion status of SNP only by randomly choosing
from adding or removing a SNP.

II. Sample Z from P(Z|Y,T, γ, ξ): directly sampling from
this distribution is known to be difficult. In this
article, we follow the method given in Devroye [35]
to simulate samples from the univariate truncated
normal distribution P(Zi|Z− i,Y,T, γ, ξ), where Z− i is
the vector of Z without the ith element.

Simulation
Simulation studies were conducted to assess the perfor-
mances of iBVS, LASSO regression, and Stepwise regres-
sion using a proprietary set of MatLab codes, an R
package glmnet, and the R package lars. We simulated
three scenarios of varying different proportion of variance
of Z explained by the genetic factors, labeled as follows:
(1) H70: genes with network, 70% explained variance; (2)
H50: genes with network, 50% explained variance; and (3)
H30: genes with network, 30% explained variance.
For each scenario, 50 sets of genotypes without disease

status were simulated using software Hapgen2 [36]
based on the genotype data from Hapmap project (http://
hapmap.ncbi.nlm.nih.gov/). We subsequently generated
phenotypes corresponding to each scenario, with 400 indi-
viduals and 300 SNPs assorted into 22 genes for each data
set. The first 200 individuals were used to fit the iBVS
hierarchical model and to evaluate the performance of
identifying causal SNPs of the three methods, while the
other 200 individuals were used to assess the prediction
performance of each method. All the simulations were
run under the additive and dominant genetic model re-
spectively to check the model flexibility of the proposed
iBVS.
We simulated sets of phenotypes in the following way:

First, we specified 10 SNPs xj(j = 1 ? 10) as causal SNPs,
which were positioned within 5 genes. In order to add
network information to gene levels, a network was simu-
lated between the genes. We then conducted a precision
matrix Ω which contains the network relationship be-
tween the genes. If there is an edge between pth gene
and qth gene in the network, ωpq and ωqp would be
assigned with a non-zero value, otherwise 0. The vector
ti was generated from a multivariate normal distribution
with zero mean vector and covariance matrix Σ =Ω? 1.
Then the causal gene score Tk (k = 1 ? 5) was calculated

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
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by considering both genotype data and gene network in-
formation, Tik ?

X
SNP j∈gene k

bjxkj ? tik ; where bj ? s were care-

fully chosen to indicate different PLS configurations. We
subsequently simulated the latent phenotypes score for
each individual using zi = ∑ϕjTik + εi, εi ~N(0, 1). Finally,
binary phenotypes Yi for each individual was generated

using Y i ? 1
0

if zi≥0
if zi < 0

�
.

Application
We applied iBVS, LASSO and Stepwise approaches to
analyze a GWAS data set designed to identify genetic
variants associated with leprosy [37]. The genotype data
consisted of 492,109 SNPs from 706 cases and 514 con-
trols after removing genetically unmatched controls, to
obviate the need for correction for population stratifica-
tion. All subjects were Han Chinese from eastern China.
In order to select variables and assess the performance
of the three variable selection strategies, we randomly
divided the data set into two parts: a training set and a
testing set, each with 610 samples. The training set was
used for SNP selection, while the testing set for validating
the selection results and comparing the three methods.
The genotype was first coded under the additive gen-
etic model, and we re-coded the genotypes following
dominant genetic components and re-analyzed this
real data set to check the model flexibility under differ-
ent genetic effects.
Table 1 Average AUC values of iBVS, LASSO and Stepwise

Scenario Average AUC

iBVS LASSO Stepwise

H70 0.911 0.891 0.869

H50 0.894 0.882 0.853

H30 0.792 0.779 0.774
Results
Simulation studies
Performance of variable selection
The average area under the curve (AUC) was calculated to
evaluate the performance of casual SNP identification in
each scenario. For SSVS, the AUC is calculated using the

following formula [38,39]. AUC ? 1
nDnC

X
i∈D;j∈C

I γ i > γ j

n o
;

where D is the set of the causal SNPs and C is the set of
the non-causal SNPs; nD and nC are the number of causal
and non-causal SNPs, respectively.
For the LASSO method, a simple modification of the

Least Angle Regression (LAR) algorithm was imple-
mented that calculates the entire LASSO path, which
is an efficient way of computing the solution to any
LASSO problem especially when P≫N [40]. Using the
modified LARS algorithm, one may generate all
LASSO solutions corresponding to different values of
the penalty parameter. Selecting the active model at a
given iteration would give one LASSO solution corre-
sponding to a particular value of the penalty param-
eter. Hence, one can control the penalty parameter
using a cutoff for the number of iterations [38]. For
LASSO and Stepwise approaches, the following formula

was used to calculate the AUC: AUC ? 1
nDnC

X
i∈D;j∈C

I

si < sj

 �

; where s is the iteration at which the ith marker
enters the model [38].
Table 1 shows the averaged AUC of the three methods in

variable selection under the additive genetic model. It can
be seen that the AUC of the three methods all increase
monotonically by the proportion of variance of Z explained
by the genetic factors. Obviously, under scenario H70 and
H50, the iBVS has the highest averaged AUC (0.911 and
0.894) followed by Lasso (0.891 and 0.882), while the AUC
of Stepwise is relative low (0.869 and 0.853). The AUC of
iBVS drops to 0.792 with low explained variance (H30),
with LASSO and Stepwise both approximating 0.77. The
results revealed that iBVS has superior performance com-
pared with that of LASSO and Stepwise regression. Similar
trends can also be found under the dominant genetic
model (Additional file 1: Table S2).
Performance of outcome prediction
We subsequently assessed the prediction performance of
the three methods using the remaining 200 individuals.
Prediction performances were evaluated by considering
correctly/incorrectly predicted positive/negative outcomes.
We calculated specificity and sensitivity for thresholds from
0.01 to 0.99, with steps of 0.01. Then the ROC was plotted
using mean specificity and sensitivity for a given threshold.
For iBVS, we use a two-stage strategy. First the posterior
probabilities of all the SNPs were estimated by iBVS. The
top i SNPs (i = 1? 300) were subsequently fitted into a PLS
logistic regression model, and 10-fold cross-validation was
conducted to choose the optimal number of predictors
i. For LASSO and Stepwise approaches, the optimal
model was determined by a 10-fold cross-validation.
Figure 2 demonstrates the ROC of the three methods

in scenarios H70 and H50. One can see that the prediction
performance of iBVS was slightly greater than that of
LASSO, and had an obvious superiority to Stepwise
regression.
Application
We first conducted screening of all SNPs, one by one by
fitting the single-SNP logistic regression model with addi-
tive coding. By sorting on the p-values from the univariate



Figure 2 ROC curves of the three SNP selection strategies on the simulated data. Figure (a) depicts the ROC curves of the simulated data
in scenario H70, and Figure (b) depicts the ROC curves of the simulated data in scenario H50.
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analysis, we identified 100 genes, each containing at least
one SNP with P-value smaller than 0.0004. We subse-
quently extracted all of the SNPs in each significant gene
to comprise the joint effect of SNPs per one gene. The
100 genes selected above contained a total of 3,388 SNPs.
iBVS was applied using the above 3,388 SNPs. First,

we constructed the R matrix using the KEGG database
(details please see the Additional file 1). We subse-
quently specified prior distributions as described in the
Methods Section, with hyper parameters set as: π =
0.01, μ = ? 2, η = 0.8. Finally, the MCMC was conducted
to make posterior inferences with 10,000 iterations as
burn-in and 50,000 additional runs. Figure 3a shows the
posterior SNP selection probabilities via our iBVS strat-
egy with integrated biological priors.
A ten-fold cross-validation approach was employed to

set a cut-off for determining the optimal prediction
model. The top i SNPs were added into a PLS logistic
model one by one, to estimate the cross-validation error,
shown in Figure 3b. It can be seen that the smallest clas-
sification error appeared when the top 94 SNPs were se-
lected as predictors. The classification error stabilizes



Figure 3 Posterior selection probabilities of SNPs and result of cross-validation in leprosy training Data. Figure (a) depicts the posterior
SNP selection probabilities for the 3388 SNPs from the leprosy training data set. Figure (b) depicts the classification error in the conduct of
cross-validation on the training data set using the PLS logistic regression model with different selection of top SNPs.
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after 94 SNPs were selected into the PLS logistic model,
with some slight increase shown. Therefore the top 94
SNPs were selected as ? significant? predictors whose infor-
mation was listed in (see the Additional file 1: Table S1).
In addition, we ran LASSO and Stepwise regression on

this leprosy GWAS dataset, with the optimal model deter-
mined by 10-fold cross-validation. The LASSO selected
100 SNPs, which only included 24 SNPs selected by iBVS.
The Stepwise regression approach yielded a more parsi-
monious model with only 3 SNPs. Table 2 shows the de-
tailed information of 24 common SNPs selected by both
iBVS and Lasso. Specifically, the three SNPs selected by
Stepwise also had high corresponding posterior probabil-
ity in iBVS and relative large coefficient in LASSO, and
SNP rs9270984 is most significant in all three methods.
Finally, we assessed the ability of the three methods to
correctly predict binary responses (case versus control) of
the test data set. Figure 4a shows the ROC curves of the
three selected models under the additive genetic model,
while Figure 4b demonstrates that under the dominant
model. This indicates that iBVS has comparable perform-
ance to the LASSO model, but has an performance advan-
tage over the Stepwise regression method no matter what
the genetic model is.

Discussion
GWAS analyses typically approach data as a list of single
SNPs, a strategy which has yielded a catalog of susceptibil-
ity loci for complex diseases. However, the statistically sig-
nificant variants detected so far account for only a small
proportion of the total phenotypic variation. Gene-based
tests for association are increasingly being seen as useful
complements to GWASs, demonstrating several attractive
features compared with traditional SNP-based analysis
[12-14]. Beyond gene-based methods, there is an increas-
ing recognition of the potential contributions of pathway-
based analyses, in which variants in groups of genes within
specific pathways are considered together to predict the
phenotype [41-43]. In this paper, we followed an integra-
tive biomarker identification scheme to conduct a novel
hierarchical model incorporating a gene-gene network or
pathway information for SNP identification in GWAS via
the Bayesian inference paradigm.
Three scenarios of data sets were simulated, each

considering different proportions of variance of out-
come explained by genetic factors. Simulation results
show our iBVS method outperformed the LASSO and
Stepwise methods in identifying causal SNPs in each
scenario (Table 1). In addition, we also evaluate the
prediction ability of the three methods using additional
data sets, and show that iBVS had advantageous perform-
ance (Figure 2). The advantages of the proposed iBVS
strategy is verified when the real network is known and
explicitly employed through a prior specification with the
MRF distribution.
After applying iBVS to an actual GWAS dataset, a

panel of 94 SNPs were selected as predictors of leprosy.
The LASSO method selected 100 SNPs, which included
only 24 SNPs in common with iBVS. The Stepwise regres-
sion yielded a very parsimonious model with only 3 SNPs.
The results indicate that the iBVS method has comparable
prediction performance with LASSO, and advantageous



Table 2 Information of 24 common SNPs selected by both iBVS and Lasso

SNP Chromosome Position Gene Posterior probability Lasso coefficient Stepwise coefficient

rs9270984 6 32681969 HLA-DR? DQ 0.583 0.307 0.195

rs7595482 2 38106517 FAM82A1 0.329 −0.031 -

rs10133203 14 51425137 GNG2 0.311 −0.314 -

rs2517467 6 30997239 VARS2 0.283 0.237 0.148

rs3764147 13 43355925 C13orf31 0.272 0.227 0.114

rs1446297 2 38061737 FAM82A1 0.256 −0.208 -

rs2237585 7 94887754 PON2 0.187 −0.222 -

rs42490 8 90847650 RIPK2 0.135 −0.143 -

rs602875 6 32681607 HLA-DR? DQ 0.104 −0.090 -

rs16945848 15 60913837 TLN2 0.093 0.245 -

rs241409 6 32969898 LOC100294145 0.082 0.018 -

rs12817755 12 38585079 SLC2A13 0.08 −0.137 -

rs1343104 20 57607136 PHACTR3 0.075 −0.06 -

rs10502281 11 123261833 TMEM225 0.071 −0.105 -

rs2305100 13 43346934 CCDC122 0.066 0.001 -

rs447833 20 42696770 ADA 0.058 0.209 -

rs11632705 15 25141046 GABRG3 0.057 −0.043 -

rs17065164 13 43342706 CCDC122 0.051 −0.066 -

rs11900859 2 138039737 THSD7B 0.051 0.071 -

rs241443 6 32905093 TAP2 0.045 0.18 -

rs1897419 2 137473187 THSD7B 0.045 0.023 -

rs1805867 8 91100250 DECR1 0.043 −0.126 -

rs2517598 6 30188253 TRIM31 0.043 0.248 -

rs17110817 14 80120188 CEP128 0.04 0.005 -
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with Stepwise. Moreover, all the results are quite stable
under the different genetic models. Stepwise regression
searches the model space by adding or removing one SNP
at a time and therefore the searching is partial, leading to
convergence at a local optimum. The reason iBVS does
not outperform LASSO may be due to deficiencies in
pathway information from existing databases that do
not reflect complete signaling pathways. The performance
of iBVS can be improved by developing a stochastic infer-
ence of the gene-gene networks from the data and mer-
ging it into the current iBVS MCMC algorithm, which
remains a future goal. Compared with LASSO and other
penalized regression methods, which lack appropriate in-
terpretation, iBVS has an additional advantage in that it
produces posterior probabilities for each variable. This is a
particularly important advantage in GWAS because the
primary goal of the analysis is to identify the effect of
SNPs. Comparing to metrics like p-values, posterior prob-
abilities have clear interpretation. A reviewer of this article
suggested that many important traits are generally quanti-
tative and are often controlled by multiple genes in shared
biology pathways; our model could be naturally extended
to analyze quantitative data by removing the latent vari-
able Z from the hierarchical model.
Efficiency of stochastic algorithms often diminishes as

the total number of variables increases [19,21]. It would
be appealing to remove noisy data points or those with
lower quality before using a stochastic search. Therefore,
we first screened the total number of SNPs using a con-
ventional SNP-based model to filter the number of SNPs
included in the Bayesian hierarchical model. This set of
candidate SNPs and their associated genes is called the
? signature set ? in the sense that they are possibly signal-
ing SNPs/genes (in other words, causal or marker SNPs/
genes). We extracted all the SNPs in each significant
gene to comprise the joint effect of a gene, leaving the
weaker candidate genes out of the iBVS. The screening
step should be viewed as a general step not only for di-
mension reduction but for constructing a functional
context before conducting BVS.
A few issues regarding our model choices and compu-

tation should be highlighted. We mainly adopted the
perspective of subjective Bayesian analysis due to the
fact that we want to incorporate informative priors from



Figure 4 ROC curves from leprosy testing data set under additive and dominant genetic model. Figure (a) depicts the ROC curves of
testing data set with different SNP selection strategies (iBVS, LASSO, and Stepwise) under additive genetic model, and Figure (b) under dominant
genetic model.
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relevant scientific sources. Choosing an objective prior
that satisfies some fundamental principles as summarized
in Bayarri et al. [44] would be theoretically appealing in
future work. Another issue concerns computational bur-
den. With a large number of parameters in the model, the
inference is mainly based on Monte Carlo simulation,
which may take a prolonged time. Running over a single
computer with 3.3GH CPU computer and 8GB memory,
6 days were required to finish the leprosy data analysis.
With the advent of high-speed cluster computers and the
existence of cloud computing technologies, it is becoming
increasingly feasible to apply full iBVS methods for bio-
marker identification.

Conclusions
We proposed an iBVS method to analyze high dimensional
GWAS data sets based on a hierarchical model that incor-
porates an informative prior on networked gene interrela-
tionships. Simulation studies showed that our iBVS method
had better performance in both biomarker identification
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and disease prediction than LASSO and Stepwise models.
A leprosy GWAS analysis showed iBVS method demon-
strated a comparable performance with LASSO, and bet-
ter than Stepwise methods. iBVS did not outperform
LASSO, which may be due to deficiencies in existing sig-
naling pathway databases that are likely to be improved as
the knowledge base increases. In summary, the proposed
iBVS strategy is a valid method for GWAS, having an add-
itional advantage in the production of posterior probabil-
ities for each variable that are again subject to continued
refinement.
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