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Abstract

Background: How to map quantitative trait loci (QTL) with epistasis efficiently and reliably has been a persistent
problem for QTL mapping analysis. There are a number of difficulties for studying epistatic QTL. Linkage can impose a
significant challenge for finding epistatic QTL reliably. If multiple QTL are in linkage and have interactions, searching
for QTL can become a very delicate issue. A commonly used strategy that performs a two-dimensional genome scan
to search for a pair of QTL with epistasis can suffer from low statistical power and also may lead to false identification
due to complex linkage disequilibrium and interaction patterns.

Results: To tackle the problem of complex interaction of multiple QTL with linkage, we developed a three-stage
search strategy. In the first stage, main effect QTL are searched and mapped. In the second stage, epistatic QTL that
interact significantly with other identified QTL are searched. In the third stage, new epistatic QTL are searched in pairs.
This strategy is based on the consideration that most genetic variance is due to the main effects of QTL. Thus by first
mapping those main-effect QTL, the statistical power for the second and third stages of analysis for mapping epistatic
QTL can be maximized. The search for main effect QTL is robust and does not bias the search for epistatic QTL due to a
genetic property associated with the orthogonal genetic model that the additive and additive by additive variances
are independent despite of linkage. The model search criterion is empirically and dynamically evaluated by using a
score-statistic based resampling procedure. We demonstrate through simulations that the method has good power
and low false positive in the identification of QTL and epistasis.

Conclusion: This method provides an effective and powerful solution to map multiple QTL with complex epistatic
pattern. The method has been implemented in the user-friendly computer software Windows QTL Cartographer. This
will greatly facilitate the application of the method for QTL mapping data analysis.
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Background
Epistasis is an important, yet difficult, question to study
in quantitative genetics. The difficulty mainly lies in the
biological complexity of epistasis of quantitative trait loci
(QTL). There could be interactions among multiple QTL.
Some interacting QTL could be in linkage, and some may
even have little or no main effect. Relatively small sample
size in many QTL mapping experiments adds to the chal-
lenge. All these complexities post serious challenges for
mapping QTL epistasis accurately and reliably.
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There are several strategies proposed in the literature
to tackle QTL epistasis. One strategy is to extend an one-
dimentional genome scan to a two-dimensional genome
scan to search for QTL with or without epistasis in pairs
[1], or to a multi-dimensional genome scan to search
for the best fitting model [2]. These methods are gener-
ally targeted to search for a few QTL, and tend to work
well in relatively simpler genetic situations. In more com-
plex situations with a moderate number of interacting
QTL, these methods can be inadequate. A potential prob-
lem for a simple two-dimensional genome scan is that
the searched signals for “epistasis” could be due to other
QTL effects either in linkage or more complex epistatic
pattern creating a bias in the inference of QTL and epis-
tasis. The statistical power for finding epistasis also can
be relatively lower if other segregating QTL effects are not
controlled in the model. For a multi-dimensional search,
beside the increased computational demand, a key issue is
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an appropriate evaluation of the signal to noise ratio in the
model selection. Manichaikul et al. [3] proposed a model
search based on identifying sequentially a pair of inter-
acting QTL with model selection based on a penalized
LOD score with separate penalties on main and interac-
tion effects to address the signal-to-noise ratio. However, a
two- or multi-dimensional search for QTL epistasis is not
necessarily more powerful, and actually can be less power-
ful, than other alternative approaches, such as sequential
search [4]. Bayesian approaches have also been proposed,
see [5-7] among others. Several of these approaches use
reversible jump algorithm to account for varying size of
the model space. Yi [7] avoids this by restricting to a single
fixed dimension composite space. This requires an esti-
mate of the upper bound on the number of QTL and prior
specifications of the inclusion probabilities of main and
interaction effects based on prior expected numbers of
main-effect and epistatic QTL. This requires some initial
computation using other methods and raises the issue of
sensitivity to priors.
In this study, we report an approach that has the capac-

ity to map multiple QTL with complex epistasis and has
a clear and efficient procedure to evaluate the signal-to-
noise ratio to guide the model selection. The approach
breaks the search problem into several stages: the first
stage is targeted to search for QTL that have significant
main effects; the second stage for QTL that interact sig-
nificantly with the main effect QTL, and the third stage
for additional epistatic QTL that may not have signifi-
cant main effects. Similar ideas of seaching QTL main
and epistatic effects in stages have also been proposed
previously by [8-10] in different forms.
There are good justifications for this sequential process.

In the examination of genetic models with linkage and
epistasis, Wang and Zeng [11] showed that the main and
epistatic effects of QTL can be partitioned into separate
components that are independent even with linkage in
a backcross population. This suggests that the main and
epistatic effects of QTL can be searched for at different
stages without significant risk of introducing bias for later
search stages. Since most genetic variation is due to main
effects, it would be prudent to search for main effect QTL
first. It is relatively easier and robust to map main effect
QTL. After main effect QTL are mapped that explain the
majority of genetic variation, the statistical power in the
subsequent search for epistatic QTL is increased, as the
residual variation of the statistical model is reduced. Also
computationally, this sequential strategy is much more
efficient than a multiple dimensional search.
Critically important to any search procedure is an

appropriate and efficient evaluation of sampling variation
of a test statistic. An effective procedure must account
for issues of multiple testing across the genome and the
fact that many factors (such as genome size, genetic map

density, informativeness of markers, and proportion of
missing data) can affect the distribution of the test statis-
tic. Using data-based empirical distributions is the most
effective way to take these factors into account. One
widely accepted approach is the use of sequential per-
mutation tests in the context of a nested sequence of
models [12,13]. These involve a high computational bur-
den and have drawbacks that might limit robustness in the
multiple-QTL model. Broman and Speed [14] proposed a
modified BIC criterion using a permutation-based factor
that increases the penalty on the size of the model over
the standard BIC criterion. They propose a factor that cor-
responds to a genome-wide LOD threshold for interval
mapping for finding one QTL. This approach was gener-
alized in [3] by imposing penalties based on number of
QTL and number of interaction terms where the interac-
tion penalty factor is based on a permutation test using a
two-dimensional scan for two interacting QTL assuming
the null hypothesis of no QTL.
Ideally one would like to use a permutation-type test for

the given model at hand at each step of admitting new
QTL or interactions to the model. A main ingredient of
our proposed method is the adoption and extension of the
score-statistic-based re-sampling procedure of [15]. The
score statistic re-sampling has several advantages. The
procedure is data and model based and takes the sam-
pling variation in the relevant search space into account.
It is more computationally feasible than permutation pro-
cedures while providing the advantages of using empirical
test statistic distributions. It is also important to note that
it is adaptable to the varying models and null hypotheses
arising in different stages.
We report the details of this sequential search strat-

egy and a simulation study to examine its properties
and performance. The simulation study includes genetic
architecture reflecting the complexity of epistatic inter-
actions along with realistic sample size and heritablity.
We demonstrate that the method can identify QTL with
epistasis with good power and low false positive. We also
address the issue of the precision of the position esti-
mates for the QTL. The procedure has been implemented
in Windows QTL Cartographer [16] which is available at
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.

Methods
Model
We use a multiple interval mapping (MIM) model.
Assuming m putative QTL in a backcross population, the
MIM model is defined by

yi = μ +
m∑
k=1

akxik +
∑

k �=l∈{1,...,m}
δklγklxikxil + εi.

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
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Here yi is the phenotypic trait value for individual i for i =
1, . . . , nwhile xik is a coded variable denoting the genotype
of putative QTL k using the Cockerham scale:

xik =
{ 1

2 if genotype of QTL k for individual i is homozygous

− 1
2 if genotype of QTL k for individual i is heterozygous

The variable xik is unobserved, but its conditional prob-
ability can be analyzed given observed marker geno-
types and specific positions for the QTL [17]. Parameters
include the mean (μ), the marginal effects of the putative
QTL (ak ’s), the epistatic effects of QTL (γkl ’s), and the vari-
ance (σ 2) of the residual effects εi, assumed to be normally
distributed with mean zero. We use only a subset of all
QTL pairs where the indicator variable δkl takes the value
one if QTL k and QTL l interact and takes the value zero
otherwise.
Since the genotypes of an individual at the putative

QTL are not usually observed (but marker genotypes are),
the model contains missing data and thus the likelihood
function of the data given the model is a mixture of 2m
normal distributions. We assume there is no crossover
interference and also that double recombination events
within an interval between markers are very rare and can
be ignored. The mixing proportions are the probabili-
ties of each multi-locus genotype conditioned on marker
data [17]. When m is large, the number of possible mix-
ture components (QTL genotypes) can become very large
and hence many of the mixing proportions can be very
small. In a practical implementation of MIM, a selection
procedure is adopted to choose a subset of ‘significant’
mixing proportions for evaluation and normalize so that
the sum of the probabilities equals 1. A conditional expec-
tation/maximization (EM) algorithm is used to estimate
parameters. The MIM model was developed in a series of
papers [17-20].

Model search andmodel selection
The model selection is in three stages: (1) search for
main effect QTL along with interaction effects among
the main effect QTL, (2) search for epistatic QTL with
significant interaction with a main effect QTL, and (3)
two-dimensional search for other epistatic QTL pairs
(where neither QTL has significant main effect). At the
end of each stage, we optimize the model using backward
elimination and optimization of position.
A key ingredient in model selection is choosing appro-

priate test statistics and corresponding threshold values.
We extend the use of the score statistic re-sampling pro-
cedure introduced in [15]. The score statistic is an approx-
imation to the full likelihood ratio test. The score statistic
can be approximated by a sum of independent random
vectors, which enables a re-sampling approach, weighting
each term by a random normal variable. The distribution

of the re-sampled statistics are used to derive genome-
wide thresholds. The stages involve forward searches for
positions of QTL to add to themodel, testing for admitting
interaction parameters, and backward elimination phases.
The forward searches for positions along the genome
require a genome-wide threshold for an empirical distri-
bution of maximum score statistics. Testing for admitting
or deleting additional interaction parameters given that
QTL are identified or deleting QTL in the model do not
involve a genome search and thus we use a pointwise
threshold for testing of significance. (See Additional file 1
for further details.)
We first describe some common parameters and ter-

minology used. For determining threshold values, we use
0.05 (95%) as the significance level. For a given identified
QTL, we define its QTL window as the set of positions
within 10 cM to the right or left of the QTL position or
until a marker is reached. The genome-wide searches are
done using a grid of 1.0 cM for Stages 1 and 2 and 5.0
cM for Stage 3 (two-dimensional search), excluding posi-
tions in the windows of QTL already in the model. In
the discussion below, the term main QTL refers to a QTL
position that has statistically significant main effect. The
term epistatic QTL refers to a QTL position that has no
or small main effect but statistically significant interaction
effect with another QTL position.

Stage 1: Main QTL and interactions amongmain QTL
An MIM genome-wide search for QTL with main effects
is performed, incorporating the search for interaction
among main QTL. Preliminary results showed that incor-
porating significant interaction parameters in the search
improves the power to detect main QTL as well as the
power to detect epistasis. After a new QTL is added to
the model, the score statistic for each pairwise interac-
tion between the new QTL and the QTL already in the
model is computed. The interaction parameter with the
maximum score statistic is chosen and the score-statistic
re-sampling point-wise threshold is used to test whether
to include the interaction parameter in the model. The
process is repeated with the new model until there are
no more significant interaction parameters that can be
added. Backward elimination is then performed on main
and interaction parameters. If a QTL is eliminated due to
insignificant main effect, any interaction parameters asso-
ciated with that QTL are also eliminated. To optimize the
position of a QTL in the model, score statistics for substi-
tute positions in a 1cM grid of the associatedQTLwindow
are computed and the position with the maximum score
statistic is selected as the optimized position of the QTL.

Stage 2: Epistatic QTL interacting withmain QTL
Assume that all significant main QTL, along with sig-
nificant interactions among those main QTL, have been
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found. The next stage searches for other QTL whose main
effect may be undetectable but whichmay have significant
interaction with one or more other identified QTL. Since
QTL with main effects large enough to be detected are
already in the model, further contributions to the genetic
variance should be due mostly to interaction parameters.
Thus the significance test in further searches focuses on
interaction parameters.
For each main QTL in the model, positions in the

genome grid (avoiding positions that are within QTL win-
dows for QTL in the model) are searched. Consider the
full model obtained from adding a main effect param-
eter corresponding to the position and an interaction
parameter corresponding to epistasis between the pro-
posed QTL at the position and the main QTL. The score
statistic is computed where the reduced model sets to
zero the interaction parameter between the proposed new
QTL and the main QTL. The position with the maximum
score statistic is identified and the associated p-value for
this observed maximum score statistic is computed from
the corresponding genome-wide re-sampled distribution.
The position and the main QTL corresponding to this
minimum p-value is computed. In testing for significance,
a Bonferroni adjustment for the number of main QTL in
the model is performed. If the adjusted p-value is signifi-
cant, a new QTL at the position and an interaction term
between the new QTL and the main QTL is added to the
model.
Once a new QTL and interaction parameter are added

to the model, searches are performed for other signifi-
cant interaction parameters between the new QTL and
the previously existing QTL. The procedure is the same as
described in Stage 1 for interaction parameters. Including
additional interactions before proceeding will avoid falsely
detecting a new QTL position that tries to account for an
interaction with a QTL already in the model.
The Stage 2 procedure is repeated with the new model

until no more significant epistasis can be found. This pro-
cess however will not find all epistatic QTL since there
may be otherwise undetectable QTL pairs that have sig-
nificant interaction with each other (hence the need for
Stage 3).
Before proceeding to Stage 3, the Stage 2 model is opti-

mized. The first step is optimization of the positions of
the QTL. To optimize the position of an identified QTL,
positions in the corresponding QTL window are scanned.
For each substitute position, the score statistic with the
reduced model is obtained by setting equal to zero the
parameter corresponding to the main effect of the QTL at
the position as well as all effect parameters corresponding
to the interaction with this QTL. The position with the
maximum score statistic is selected to be the optimized
position of theQTL. After optimizing positions, backward
elimination is performed as described in Stage 1, except

that it is performed first on interaction terms and then on
main QTL effects for which no interaction effects are left
in the model.

Stage 3: Interacting QTLwith little or nomain effect
There may still be undetected epistasis due to possible
epistatic QTL pairs, neither of which have a detectable
main effect. For this situation a two-dimensional search is
performed.
The grid spacing for the two-dimensional search is 5.0

cM, excluding positions in the windows of QTL already
in the model. For each position pair in the grid, the
main effect parameters for and the interaction param-
eter between the two proposed QTL are added to the
model, considered to be the full model. In computing
the score statistic, the reduced model corresponds to
setting the interaction parameter equal to zero. The (two-
dimensional) genome-wide threshold for the maximum
score statistic re-sampled distribution is computed. If the
observed maximum score statistic is above the threshold,
the two new QTL and corresponding interaction param-
eter are considered for addition to the model. However,
before adding these to the model, the new positions are
optimized. This is done by first fixing one of the QTL
positions and, using a 1.0 cM grid, finding the best posi-
tion (based on maximum score statistic) for the second
QTL. The position of the second QTL is then fixed and
the position of the first QTL is optimized. After admitting
a new pair of QTL into the model along with the corre-
sponding interaction parameter, searches for significant
interactions between the new QTL and QTL in the model
(as described in Stage 2) are performed. The Stage 3 pro-
cedure is repeated until no new significant main QTL can
be found.
For the final model, an optimization is performed at the

end of Stage 3: first optimizing positions of the QTL, then
performing backward elimination on interaction effects,
and then performing backward elimination on main QTL
that have no interaction effect.

Measures of model fit
We investigate several measures of model fit for the sim-
ulation study. Two primary measures, both for QTL and
for epistasis, are false positive rate (FPR) and power to
detect. These measures require a definition of “misiden-
tified” QTL and a definition of when a simulated QTL is
“detected”.
After a final model is determined (for a replicate), each

simulated QTL is paired with the nearest QTL on the
same chromosome identified in the model. An identified
QTL is said to be a misidentified QTL if it is not paired
with a simulated QTL; otherwise it is said to be a cor-
rectly identified QTL. A simulated QTL Qk is said to be a
detected QTL if it is paired with an identified QTL.
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An identified interaction parameter between two iden-
tified QTL is said to be a correctly identified interaction
if each of the identified QTL are correctly identified with
a corresponding simulated QTL and the corresponding
interaction between the simulated QTL is included in the
simulated model; otherwise, it is said to be amisidentified
interaction. A simulated interaction between simulated
QTL Qk and Ql is said to be a detected interaction if there
is a correctly identified QTL paired with Qk and a cor-
rectly identified QTL paired with Ql and the interaction
term between these identified QTL is included in the final
model.
It is important to note that our FPR computations are

based on individual QTL identification and not on correct
model size identification. Our method is not designed to
control for a prescribed false positive rate. The FPR mea-
sures obtained from the simulations are used to evaluate
the performance of the method and to give a practical,
empirical sense of expected false positives.
False Positive Rate for QTL:

FPR = # of misidentified QTL over all replicates
total # of QTL identified in all replicates

False Positive Rate for Interaction Parameters:

FPRI = # of misidentified interactions over replicates
total # of identified interactions over replicates

Power to Detect QTL: For each simulated QTL Qk ,
compute

P(Qk) = # of replicates in which Qk is detected
total # of replicates

Power to Detect Interaction Parameters: For each simu-
lated interaction Ik,l between Qk and Ql, compute

P(Ik,l) = # of replicates in which Ik,l is detected
total # of replicates

Position Estimates: For each simulated QTL Qk , the use
of LOD-support-intervals as confidence intervals for the
position estimates is investigated. Manichaikul et al. [21]
showed that, for interval mapping with oneQTL, LOD-1.5
support intervals gave appropriate coverage as 95% confi-
dence intervals. LOD-z support intervals for z = 1, 1.5, 2
are investigated.
A LOD-z support interval around an identified QTL is

the longest contiguous interval of positions in which a
LOD score is within z of the maximum LOD. (The posi-
tion of the QTL is adjusted to correspond to themaximum
LOD score.) The LOD profile for an identified QTL is
calculated by comparing the full model with the reduced
model where the main effect parameter for the identified
QTL and interaction effect parameters with the identified
QTL are set to zero. In the case of more than one iden-
tified QTL on a chromosome or if the QTL position is

near the end of the chromosome, the LOD support inter-
val may have an endpoint determined by the position of
a neighboring identified QTL or by the end of a chromo-
some even if the LOD score has not dropped the specified
amount.
For each simulated QTL Qk :

Position estimate for Qk = average of position
estimates for Qk over replicates for which Qk is
detected.
LOD-Support-Interval Coverage = the percentage of
replicates for which Qk is declared detected that Qk
is in the LOD-z support interval of the associated
identified QTL.
LOD-Support-Interval Width : = average over
replicates of the width of the LOD-z support interval
when Qk is declared detected and Qk is in the LOD-z
support interval of the associated identified QTL.

The simulation results provide evidence for whether the
LOD-support-interval can be interpreted as a confidence
interval. In this case, the width of the LOD-support-
interval can be interpreted as a measure of the precision
of the position estimate.
Parameter Estimates: Given a final model for a replicate,
parameter estimates are computed. For a simulated QTL
(or interaction), any replicate for which the simulated
QTL (or interaction) is not detected is deleted from con-
sideration. For this subset of replicates associated with
the simulated QTL (or interaction), we compute the mean
of the effect size parameter estimates and the observed
standard deviation from this mean.

Simulations
Simulations were performed for backcross populations.
Some initial simulations were done to assess the basic
behavior of the use of the score statistic and associated
thresholds. These are described in the Results section.
For the simulations, genetic architectures were chosen

that were complex enough to highlight the main issues.
Architecture 1 was used as a control case to assess the
basic performance of the stages. Architecture 2 modi-
fied this basic architecture to more closely simulate a
practical situation. Detailed information is included in
Tables 1 and 2 in the Results section. Both architectures
contained 8 QTL on 9 chromosomes where each chromo-
some was 110 cM with 12 markers placed every 10 cM.
Eight interactions among the QTL were simulated. Two
of the chromosomes contained two QTL each (to include
linkage effects).
For Architecture 1, overall heritability in the broad sense

was h2 = 0.8 with additive component 0.5 and epistatic
component 0.3. There were four QTL with detectable
main effect (equal effect sizes) and the eight interaction
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Table 1 Observed statistical power of QTL additive and epistatic effect detection and effect estimation from simulation with architecture 1

QTL Chr:cM Eff Pw11 Pw12 Pw21 Pw22 Pw31 Pw32 EffE PosE Cov Width

1 1:47 1.41 100.0 98.3 100.0 100.0 100.0 100.0 1.32 (.02) 44.09 (.60) 100 9.30

2 1:80 1.41 99.0 99.0 100.0 100.0 100.0 100.0 1.47 (.13) 79.96 (.25) 91.6 3.99

3 2:49 0.00 11.3 0.0 87.3 11.7 100.0 100.0 0.24 (.07) 45.24 (.59 ) 92.6 10.20

4 3:22 1.41 100.0 100.0 100.0 100.0 100.0 100.0 1.41 (.22) 21.99 (.69) 90.0 5.50

5 3:78 0.00 10.3 0.3 88.3 88.3 88.3 88.3 0.02 (.02) 76.93 (.33) 99.3 9.96

6 6:5 0.00 13.3 0.0 11.7 11.7 100.0 100.0 -0.04 (.06) 7.50 (1.1) 92.6 12.74

7 7:70 1.41 100.0 100.0 100.0 100.0 100.0 100.0 1.41 (.03) 69.91 (.31) 100.0 5.07

8 9:63 0.00 12.7 0.0 88.3 88.3 88.3 88.3 0.07 (.04) 63.25 (1.1) 100.0 7.93

FPR 0.124 0.000 0.030 0.024 0.038 0.037

#QTL (std 1.18) 5.10 3.99 6.97 6.15 8.08 8.06

EPIS Q1:Q2 Eff Pw11 Pw12 Pw21 Pw22 Pw31 Pw32 EffE

1 1:2 1.77 90.3 89.3 91.7 96.0 96.0 96.3 1.90 (.38)

2 2:4 1.77 94.7 91.7 92.3 92.3 92.3 92.3 1.68 (.49)

3 2:7 -1.77 95.7 93.3 93.3 93.3 93.3 93.3 -1.64 (.44)

4 3:6 1.77 0.0 0.0 11.7 11.7 100.0 100.0 1.79 (.08)

5 4:5 -1.77 0.7 0.0 88.0 88.0 88.0 88.0 -1.35 (.50)

6 4:8 1.77 3.0 0.0 88.3 77.7 77.7 77.7 1.42 (.76)

7 5:7 1.77 1.0 0.0 88.0 88.0 88.0 88.0 1.36 (.51)

8 7:8 -1.77 3.0 0.0 88.3 88.3 88.3 88.3 -1.74 (.63)

FPR 0.316 0.001 0.160 0.031 0.053 0.036

The upper panel shows the results for QTL additive effects and the lower panel shows the results for QTL epistatistic effects. Total heritability (h2) is 0.8 with the additive component 0.5 and the epistatic component 0.3.
Chr:cM is the QTL chromosome and cM position. Q1:Q2 is the interacting QTL pair. Eff is the simulated effect. Pw11 is the observed statistical power from Stage 1 forward search, Pw12 is that from Stage 1 after optimization
and elimination; Pw21 is from Stage 2 forward search, Pw22 is from Stage 2 after the final step of backward elimination of QTL; Pw31 and Pw32 are from the similar steps in Stage 3. EffE is the average effect size estimate and
PosE is the average position estimate. (Standard deviations are in parentheses.) Cov is the percent coverage for LOD-1 support interval and Width is the average width in cM of the LOD-1 support interval. FPR is false positive
rate. #QTL row records average number of QTL found.
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Table 2 Observed statistical power of QTL additive and epistatic effect detection and effect estimation from simulation with architecture 2

QTL Chr:cM Eff Pw11 Pw12 Pw21 Pw22 Pw31 Pw32 EffE PosE Cov Width

1 1:47 1.42 99.3 88.5 88.5 88.5 88.5 100.0 1.27 (.16) 47.1 (1.1) 99.3 8.9

2 1:80 0.76 89.7 89.1 96.0 96.0 96.0 84.5 0.69 (.30) 81.7 (1.1) 100.0 15.3

3 2:49 -0.04 7.1 0.0 0.0 0.0 48.1 48.1 -0.11 (.12) 54.6 (1.8) 97.8 21.6

4 3:22 -0.46 64.9 53.1 54.1 54.1 61.9 61.9 -0.37 (.29) 23.9 (0.7) 100.0 8.4

5 3:78 0.04 6.1 0.0 54.0 54.0 61.8 61.8 0.01 (.04) 78.2 (0.6) 100.0 11.6

6 6:5 -0.06 8.2 0.0 0.0 0.0 47.8 47.8 -0.08 (.08) 2.4 (0.9) 100.0 15.8

7 7:70 0.83 100 100 99.9 99.9 99.9 99.9 0.68 (.04) 69.2 (0.7) 99.0 13.3

8 9:63 0.13 11.1 0.0 54.0 54.0 54.0 54.0 0.01 (.03) 61.5 (2.9) 99.5 16.5

FPR .08 0.0 0.0 0.0 .004 .004

#QTL (std 2.36) 4.20 3.38 4.47 4.47 5.60 5.60

EPIS Q1:Q2 Eff Pw11 Pw12 Pw21 Pw22 Pw31 Pw32 EffE

1 1:2 0.49 15.9 0 0 0 0 0 - -

2 2:4 0.99 20.9 0 0 0 0.7 0 - -

3 2:7 -0.82 45.8 23.6 23.7 12.9 12.9 8.6 -0.08 (.28)

4 3:6 -1.63 0 0 0 0 47.8 47.8 -0.59 (.62)

5 4:5 -1.31 0 0 53.9 53.9 61.7 61.8 -1.17 (.92)

6 4:8 1.14 0.7 0 53.9 53.9 53.9 54.0 0.79 (.73)

7 5:7 0.98 0.5 0 48 20.8 23.5 23.5 0.23 (.41)

8 7:8 -0.98 1.7 0 53.9 53.5 53.5 53.5 -0.52 (.49)

FPR .313 .123 .125 .013 .079 .030

The upper panel shows the results for QTL additive effects and the lower panel shows the results for QTL epistatistic effects. Total heritability (h2) is 0.6 with additive component 0.375 and epistatic component 0.225. Chr:cM
is the QTL chromosome and cM position. Q1:Q2 is the interacting QTL pair. Eff is the simulated effect. Pw11 is the observed statistical power from Stage 1 forward search, Pw12 is that from Stage 1 after optimization and
elimination; Pw21 is from Stage 2 forward search, Pw22 is from Stage 2 after the final step of backward elimination of QTL; Pw31 and Pw32 are from the similar steps in Stage 3. EffE is the average effect size estimate and PosE
is the average position estimate. (Standard deviations are in parentheses.) Cov is the percent coverage for LOD-1 support interval and Width is the average width in cM of the LOD-1 support interval. FPR is false positive rate.
#QTL row records average number of QTL found.
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effect sizes were equal. Two other QTL were assigned
zero main effect but had interaction with main QTL. Two
other QTL were assigned zero main effect with interac-
tion with each other and not with any other QTL. For
Architecture 2, the simulated positions of the QTL and
the chosen interactions were the same as in Architec-
ture 1. To more closely simulate a practical situation,
the heritability was lowered to h2 = 0.6 (with addi-
tive component 0.375 and epistatic component 0.225).
In addition, the effect sizes (main as well as interac-
tion) were chosen to be variable, maintaining the struc-
ture of four main QTL with four much smaller effect
size QTL, two of which interacted with the some of the
main QTL, and two of which interacted only with each
other with large interaction effect (same positions as in
Architecture 1).
For each simulation the sample size was 300 individu-

als. For Architecture 1, 300 replicates were used and, for
Architecture 2, 1000 replicates were used. For each repli-
cate, 1000 resampling steps were used in computing score
statistic thresholds. The trait values were generated with a
residual error following the standard normal distribution
N(0, 1).

Instruction for using the procedures in Windows QTL
Cartographer
A completely new Multiple Interval Mapping (MIM)
method has been implemented in Windows QTL Cartog-
rapher (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).
This new MIM method uses the search strategy and sta-
tistical test developed from this study. The method has
a number of procedures that perform different functions
and can be used interactively for practical data analysis.
These procedures include the following components.

1. MIM forward search procedure: This is an automatic
QTL search procedure that is intended for
generating an initial MIM model for further analysis
only. QTL is searched sequentially based on its main
effect and added into the model subject to a
score-statistic test with a genome-wise threshold.
Upon detecting a new QTL, interaction effects of the
new QTL with the previously identified QTL are
tested and added into the model using a
score-statistic test with a point-wise threshold.

2. Optimizing QTL positions with or without
interaction effects: This procedure optimizes
position estimate of each QTL in turn. When the
option with interaction effects is chosen, both the
main effect of the QTL and interaction effects with
other QTL are used for optimizing the estimate of
position. Otherwise, only the main effect of the QTL
is used for optimizing the QTL position.

3. Search for New QTL:

(a) QTL with main effects: This procedure
searches for a new QTL based on a
score-statistic test on the main effect with a
genome-wise threshold.

(b) QTL with interaction effects:

i. Search for interaction effects among
identified QTL: This procedure
searches for significant interaction
effects among identified QTL using a
point-wise threshold.

ii. Search for new QTL that have
significant interaction effects with
identified QTL: This procedure
searches for a new QTL based on its
interaction effect with an identified
QTL. A one-dimensional genome
scan is performed to search for the
best position for a new QTL that has
an interaction effect with any
identified QTL. This interaction
effect is tested by a score-statistic
test subject to a threshold that takes
into account the search space
(genome-wide with multiple
identified QTL).

iii. Search for new QTL in pair that
have significant interaction effects:
This procedure performs a
two-dimensional genome scan that
searches for the best positions for a
pair of new QTL that have
significant interaction effect(s). The
interaction effect(s) are tested based
on a threshold that takes into
account the search space (the
two-dimensional genome-scan).

4. Testing QTL effects:

(a) Testing QTL main effects: This procedure
tests for significance the main effects of QTL
in the current MIM model. If a QTL main
effect is not significant at a genome-wise
significant level, the QTL will be eliminated
from the model. The procedure can be used
only for those QTL that do not have
interaction effects with other QTL to avoid
eliminating QTL that have weak main effects
but significant interaction effects with other
QTL.

(b) Testing QTL interaction effects: This
procedure tests for significance the
interaction effects of QTL in the current
MIM model. If an interaction effect is not

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
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significant at a point-wise significant level,
the interaction effect will be eliminated from
the model.

5. Estimating QTL effects: This procedure produces test
statistics (log-likelihood ratio test statistic and score
statistic) and empirical p-value of the score statistic
for each QTL effect in the current MIM model.

6. Producing summary output: This procedure
produces a comprehensive report of information of
the current MIM model in two output files. One
output file includes estimates of QTL number,
positions, main and interaction effects, R2 value of
the model (an estimate of the broad-sense
heritability) and partition of the R2 value into the
variance components due to individual QTL main
and interaction effects and the covariance
components due to a pair of QTL effects (due to
linkage disequilibrium), Equation (19) of [20]. It also
includes estimates of QTL genotypes and genotypic
values of the trait for each individual, Equation (14)
of [20]. The other output file includes information
for generating the log-likelihood profile of each QTL
in the MIM model in a graphic which displays
automatically. The log-likelihood profile for each
QTL utilizes the combined information of the main
effect of that QTL and interaction effects of the QTL
with other QTL in the model.

For practical data analysis, we recommend use these
procedures in the following way.

• Procedure 1 can be used to search for an initial model.
• Procedure 2 can be used next to optimize QTL

position estimates. Procedure 2 can be used
repeatedly when the model structure is changed by
adding or removing a QTL during the model fitting
process.

• Before searching for new QTL, current QTL effects
should be checked by first using procedure 4(b), then
4(a).

• Procedure 3(a) can be used to search for new QTL
based on main effects. This procedure can be used for
multiple times in conjunction with procedure 2 until
no new QTL based on main effects can be found.

• Procedure 3(b)(1) can be used to search for
significant interaction effects among identified QTL.

• Then procedure 3(b)(2) can be used to search for
additional QTL that have significant interaction
effects with the other identified QTL. If an additional
QTL is identified, procedure 2, 4(b) and 4(a) can be
used to optimize the model and check the model
again.

• Only after other procedures have been used
repeatedly, i.e. QTL that have significant main effects

or have significant interaction effects with the main
effect QTL have already been identified and fitted in
the model, should procedure 3(b)(3) be used to
search for additional new QTL that have significant
interaction effects only. Procedure 3(b)(3) should be
used only in the last stage to minimize the risk of
mapping epistatic QTL in wrong positions due to
other unaccounted linked QTL effects. This point
cannot be overemphasized enough.

• Procedure 6 can be used to generate a report for a
MIM model.

Results
The model selection is in three stages: (1) search for
main QTL along with interaction effects among the main
QTL, (2) search for epistatic QTL with significant inter-
action with a main QTL, and (3) two-dimensional search
for other epistatic QTL pairs (where neither QTL has
significant main effect). At the end of each stage, we
optimize the model using backward elimination and opti-
mization of position. Without optimization, succeeding
stages will tend to identify extraneous QTL or interactions
that would be difficult to eliminate later. The completion
of each stage then minimizes the residual variance and
potential bias, thus increasing the power of detection for
the next stage.
Tables 1 and 2 describe the simulated architectures

(Architecture 1 and Architecture 2 respectively) and dis-
play the final power, FPR and estimate results as well as
corresponding intermediate results of power at each stage
of the model selection. The top half of the table describes
the architecture and results for QTL additive effects. The
bottom half of the table describes the architecture and
results in a similar manner for interaction effects between
QTL Q1 and Q2.
The overall stability of the model selection process can

be assessed from the sequence of FPR and power (Pw) for
both architectures. The backward elimination and opti-
mization stages are critical. The Stage 1 forward search for
QTL and epistasis generated a high FPR (for both main
QTL and epistatic parameters) (column Pw11) which
was considerably reduced by the elimination/optimization
phase with minimal impact on power (Pw12 column).
This indicates that the standard two-dimensional forward
search strategy would almost certainly perform poorly.
Equally important to note is that further genome-wide
searches (Stages 2 and 3) to account for epistasis did not
introduce substantial increases in FPR even though there
were many chances to detect false interactions. These
results supported the model selection philosophy of pro-
ceeding in stages.
The overall effectiveness of the model selection process

can be seen in several ways. Stage 2 detected QTL that
have little or no main effect but interact with main QTL
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(QTL 5 and 8) and Stage 3 found QTL pairs that have
strong interaction but little or no main effects (QTL 3
and 6), as they were designed to do. An equally important
observation is that the power to detect QTLwas increased
by the detection of more epistasis. This can be seen most
clearly in the increase in power from Stage 2 to Stage 3
for QTL 4 and 5 in Architecture 2. This is also the case
for the increase of detecting QTL 2 at Stage 2 due to the
interaction between QTL 2 and 7 in Architecture 2.
The final FPR was well within the nominal significance

level of 0.05. Model selection was not designed to con-
trol FPR; however, the FPR results were meant to give a
practical, empirical sense of expected false positives. The
results also suggested that a larger α significance level
could be used to increase power while still maintaining
an acceptable level of FPR. We compared final FPR and
power results for Architecture 2 using α = 0.2 with pre-
vious results using α = 0.05, and FPR is still maintained
below 0.05 while the dection power is improved (results
not shown).
Model size was another measure of stability of the pro-

cedure. For Architecture 1, the average number of QTL
found at each stage of the process was as expected –
for stage 1, 4 QTL with main effect were detected; for
stage 2, 6 QTL with main effect or interacting with main
QTL were detected; for stage 3, the number of simu-
lated QTL (8) were detected (see #QTL row in Table 1).
Additional evidence was that 77% of the 300 replicates
identified 8 QTL and 84% of the replicates identified 8
interaction terms (the number of simulated interaction
terms).
Another indication of effectiveness of the method was

the assessment of confidence in position estimates. There
is evidence in the literature that LOD support intervals
can function as confidence intervals [21]. Coverage is the
percentage of the replicates for which a simulated QTL is
declared detected. The last two columns (Cov andWidth)
in Tables 1 and 2 record the LOD-1 interval coverage
and width in cM respectively. The high coverage provided
strong evidence that the LOD-support-interval can be
interpreted as a confidence interval and that the width of
the LOD-support-interval can be interpreted as ameasure
of the precision of the position estimate.
Results also gave some insight into effects of linkage and

multi-interactions. For example, in Architecture 1 results
(where simulated effects were equal), QTL 5 and 8 were
detected due to interactions as are QTL 3 and 6, since
they have zero main effect. The power to detect QTL 3
and 6 was very high whereas the power to detect QTL 5
and 8 was lower. For QTL 3 and 6, there was only one
interaction (3,6). On the other hand, QTL 5 and 8 each
interact with two other QTL (4 and 7) so the effects were
harder to disentangle. Another indication of the effect of
multi-interactions was the somewhat lower LOD coverage

for QTL 4 (Architecture 1) as QTL 4 interacts with three
other QTL.
Interval mapping for detecting one QTL using the like-

lihood ratio statistic and permutation threshold is well
established in the literature [15]. In a sperate simulation of
the null model of no QTL, the score procedure for select-
ing the first QTL behaved as expected with respect to
Type 1 error, as that for the permutation test (Figure 1),
reinforcing the comparison results of [15]. Of couse, in
this study we extended the score statistic for all the three-
stages and multiple steps within the statges. It turns out
that score thresholds are very similar at different steps of
search process for QTL as shwon in Figure 2 for stage 1,
demonstaing that the score statistic genome-wide thresh-
old mainly depends on genome size and not on model size
(QTL number).

Discussion
Mapping QTL with epistatic effects efficiently and reliably
has been a persistent problem for QTL mapping analy-
sis. There are a number of problems for studying epistatic
QTL. Sample size for many QTL mapping experiments is
generally relatively small for an ideal study of QTL epista-
sis. Linkage can impose a significant challenge for finding
epistatic QTL reliably. If multiple QTL are in linkage and
have interactions, searching for QTL can become a very
delicate issue.
One strategy for analyzing QTL epistasis is to perform

a two-dimensional genome scan for a pair of QTL with
epistasis [1,3]. There are two potential problems for this
strategy. If there are multiple QTL in linkage and with
complex interaction patterns, a two-dimensional search
can yield some apparent “epistatic QTL” at wrong posi-
tions. Also the statistical power for the search is likely to
be low as the genetic variance due to other unmapped
QTL is in the residual and not fitted in the model.
To tackle the problem of complex interaction of mul-

tiple QTL with linkage, we experimented with a number
of search strategies (unpublished) and finally settled on
a three-stage search strategy. In the first stage, the main
effect QTL are searched and mapped. The significant
epistatic effects of identified QTL are also estimated. In
the second stage, epistatic QTL that interact significantly
with other identified QTL are searched. In the third stage,
new epistatic QTL are searched in pairs.
There are a number of justifications for this search

strategy. First by the principle of least squares in the par-
tition of variance, the most genetic variance is due to
the marginal or main effects of QTL. Thus by first map-
ping those QTL, the statistical power for the second and
third stages of analysis for mapping epistatic QTL can
be maximized. Also, by the property of the orthogonal
genetic model, the main and interaction effects of QTL
are uncorrelated even with linkage in the backcross and
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Figure 1 Comparison of score statistic and threshold with likelihood ratio statistic and permutation threshold. A, compares threshold
values (y-axis) across significance levels α (x-axis) with score threshold indicated by the dotted curve and permutation threshold indicated by the
solid curve. B, compares the likelihood ratio profile (solid) and score statistic profile (dotted) for one replication; the solid and dotted horizontal lines
represent the permutation threshold and score threshold (α = 5%), respectively.

recombinant inbred populations [11]. This means that
epistasis does not necessarily bias the search of main
effect QTL in the first stage of analysis. This is clearly
observed in our simulation study. Statistically the main
effect QTL are relatively easier to be identified and can
be effectively searched through a stepwise procedure.
After exhaustively searching for main effect QTL, the
task of searching for epistatic QTL can become rela-
tively easier, more powerful and robust. Again, we first
take care of those epistatic QTL that interact with the
main effect QTL, because they are relatively easier to be

identified. Only after all other QTL have been exhaustively
searched, should an attempt be made at the last stage to
search for QTL that do not have significant main effects,
but significant interaction effects. Failure to exercise this
precaution can lead to the identification of spurious
epistatic QTL that could be due to other unmapped QTL
effects.
One observation made in our simulation study is the

critical importance of performing backward elimination
of non-significant spurious QTL at the end of each
stage before proceeding to the next stage. Without this
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Figure 2 Score threshold as QTL are added to the model (averaged over replicates). The x-axis represents the number of QTL in the model
being tested. Each line represents a significance level α: from top to bottom, α = 0.01, 0.02, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

procedure, false positive QTL detection can be signifi-
cantly increased.
A major component of the new method is the use

of a score-statistic re-sampling procedure for empirically
estimating thresholds for model selection [15]. This pro-
cedure is data-based, model-based, computationally effi-
cient, and flexible for different search procedures. It takes
into account the data structure and the search space at dif-
ferent search stages for different combinations of param-
eters. Thus it provides dynamic and relevant criteria for
model selection during the search process.

Conclusions
We have developed a new QTL mapping method that can
effectively map multiple QTL with complex linkage and
interaction patterns. The simulation study demonstrated
the capability of the new method in identifying complex
epistatic QTL reliably and powerfully while keeping false
positive identification at a low level. The method has been
implemented in Windows QTL Cartographer V2.5 that is
freely distributed for general QTL mapping data analysis
[16]. The method as implemented has a number of pro-
cedures that perform different functions and can be used
interactively in practical data analysis. We include the
instruction on how to use the procedures in the Methods
section.

Additional file

Additional file 1: Supplementary Methods [15,19].
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