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Background
Secondarily aquatic tetrapods such as reptiles and mam-
mals provide textbook examples of convergent evolution 
in feeding and locomotion [1, 2]. Most such convergen-
ces are seen in carnivorous, hunting modes of life where 
Mesozoic marine reptiles, whales or pinnipeds have 
become top predators in their ecosystems [3]. Less famil-
iar are examples of massive filter feeders, the role taken 
today by numerous species of baleen whales and explored 
by giant Late Jurassic pachycormiform fishes [4]. In fil-
ter feeding, the baleen whales use baleen plates, loosely 
articulated rostral bones, large mouths and expandable 
throats [5], while the pachycormiform fishes evolved 
complex gill-arch and edentulous enlarged mouths: all 
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Abstract
Modern baleen whales are unique as large-sized filter feeders, but their roles were replicated much earlier by 
diverse marine reptiles of the Mesozoic. Here, we investigate convergence in skull morphology between modern 
baleen whales and one of the earliest marine reptiles, the basal ichthyosauromorph Hupehsuchus nanchangensis, 
from the Early Triassic, a time of rapid recovery of life following profound mass extinction. Two new specimens 
reveal the skull morphology especially in dorsal view. The snout of Hupehsuchus is highly convergent with modern 
baleen whales, as shown in a morphometric analysis including 130 modern aquatic amniotes. Convergences in the 
snout include the unfused upper jaw, specialized intermediate space in the divided premaxilla and grooves around 
the labial margin. Hupehsuchus had enlarged its buccal cavity to enable efficient filter feeding and probably used 
soft tissues like baleen to expel the water from the oral cavity. Coordinated with the rigid trunk and pachyostotic 
ribs suggests low speeds of aquatic locomotion, Hupehsuchus probably employed continuous ram filter feeding 
as in extant bowhead and right whales. The Early Triassic palaeoenvironment of a restrictive lagoon with low 
productivity drove Hupehsuchus to feed on zooplankton, which facilitated ecosystem recovery in the Nanzhang-
Yuan’an Fauna at the beginning of the Mesozoic.
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these filter-adaptations aim to retain small prey items 
within the oral cavity [6]. It had been suggested, however, 
that marine reptiles could not be filter feeders (suspen-
sion feeders) because they lack the key features of fishes 
and mammals that enable them to feed in this way, such 
as gill slits of fishes or baleen of whales [7]. However, fil-
ter feeding has already been suggested in the Late Cre-
taceous plesiosaur Morturneria [8] and the Late Triassic 
nothosauroid Paludidraco [9], both based on the con-
figuration of their dentitions and oral cavity. Further, 
some marine reptiles, despite not being regarded as filter 
feeders, used filtration while processing the food, such as 
Atopodentatus unicus and Henodus chelyops in the Trias-
sic [10, 11].

Here we present compelling evidence for filter feed-
ing in one of the earliest marine reptiles of the Mesozoic, 
Hupehsuchus nanchangensis, named by Young and Dong 
in 1972 [12] from the Nanzhang-Yuan’an Fauna (NYF) of 
southern China [13, 14]. The NYF is dated as Early Tri-
assic (late Olenekian, Spathian, 249.2–247.2  Ma) and it 
includes other, but rarer, ichthyosauriforms, eosaurop-
terygians and saurosphargiforms [14–17], but no fossils 
of fishes or invertebrate macrofossils [18]. In the NYF, 
hupehsuchians are the most diverse taxa, with five gen-
era (Hupehsuchus, Nanchangosaurus, Parahupehsuchus, 

Eohupehsuchus, and Eretmorhipis) [12, 18–23]. The NYF 
fossil community differs from that of the coeval Chaohu 
Fauna, in which large populations of invertebrates and 
fishes served as food resources for marine reptiles [24].

The feeding strategy of Hupehsuchus has been contro-
versial because its skull was poorly preserved. Hupehsu-
chus was first suggested as a filter-feeder by Carroll 
and Dong [25] based on its edentulous snout, but this 
hypothesis was rejected by Collin and Janis [7] because 
of its small narrow skull and relatively long neck. Motani 
et al. [26] studied the palate and mandible from the only 
specimen which preserved the skull in ventral view and 
suggested Hupehsuchus was a filter-feeding animal, com-
parable with pelicans and rorquals. These authors con-
sidered that the long neck and slender skull would not 
prevent filter feeding by Hupehsuchus [26].

In order to resolve this question, new skull specimens 
are required, especially examples that show the dor-
sal view of the snout. Here we report two specimens of 
Hupehsuchus nanchangensis that preserve the skull in 
dorsal view (Fig. 1), revealing that its cranial morphology 
is convergent with modern baleen whales.

Fig. 1  New specimens of Hupehsuchus nanchangensis
(A) Photograph of 2020-NYF-84-4. (B) Photograph of WGSC V26007. Scale bar = 5 cm
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Materials and methods
Specimens
The two new specimens of Hupehsuchus nanchangen-
sis, WGSC V26007 and 2020-NYF-84-4, are respectively 
housed at Wuhan Centre of China Geological Survey 
(WGSC) and Yuan’an Geology Museum (YGM). Both 
specimens were collected from the Lower Triassic Mem-
ber II of the Jialingjiang Formation (Lower Triassic) in 
Nanzhang and Yuan’an County, Hubei Province. The 
skeleton of WGSC 26,007 is preserved from the skull to 
the clavicle region, and 2020-NYF-84-4 is a nearly com-
plete skeleton (Fig.  1). The referred specimen WGSC 
V26000 was studied by Motani et al. [26] and identified 
as Hupehsuchus sp., distinguished from H. nanchangensis 
by a few minor differences in vertebral count, phalangeal 
formula, and longitudinal spacing of limb elements.

Geometric morphometrics and statistics
We compare the hupehsuchian and cetacean and other 
modern aquatic predator skulls using landmark analysis. 
Considering the better condition in 2020-NYF-84-4 with 
little displacement, as opposed to the broken tip of the 
rostrum and compressive damage observed in WGSC 
V26007 (Fig.  2A–D), we selected the skull of 2020-
NYF-84-4 for reconstruction (Fig.  3A) and landmark 
measurement. The modern sample comprises skulls of 
130 amniote species (15 mysticetes, 52 odontocetes, 23 

pinnipeds, 14 crocodilians, 25 birds, and one platypus, 
with detailed information provided in the Supplemental 
Information), which live in a variety of aquatic environ-
ments, including marine and riverine. We established 
a set of nine landmarks in the skull roof (Table 1), with 
reference to [27, 28]. These landmarks describe the basic 
outline of the skull roof, as well as the relative length and 
intermediate space of the rostrum (Fig.  3). Landmark 
placement was undertaken in software tpsUtil and tpsDig 
[29, 30]. All landmarks were aligned using a generalised 
Procrustes analysis (GPA) to remove the noise effects 
of size, position and rotation [31]. During the GPA, the 
landmarks were allowed to iteratively slide to minimise 
Procrustes distances between each specimen and the 
average shape [32]. The resulting set of aligned landmark 
coordinates was then subjected to principal component 
analysis (PCA) to examine critical components of shape 
variation. GPA and PCA were conducted in PAST [33]. 
The landmark data is provided in the see Supplemental 
Information for Table S2.

To verify the relationship between morphological con-
vergence and feeding performance, we compiled prey 
size classes from previous literature [2, 3, 34]. Relative 
prey sizes reflect the dietary sources and are calculated 
by dividing the maximum length of the longest prey spe-
cies by the maximum length of the predator [2]. McCurry 
et al. [2] divided prey size into four categories: <50%, 
50%~100%, 100%~150%, and > 150%. In marine trophic 
strcuture, some tiny organisms, such as zooplankton, are 
key sources of nutrition, so this study suggests that they 
should be classified separately. In addition, prey items 
that larger than the size of the predator would be grouped 
into another category of large prey. Four categories of 
prey size were defined in this paper: tiny, small, middle, 
and large (see Supplemental Information for Table S1). 
Taxa in the tiny class specially feed on zooplankton or 
fishes that are far smaller than them. Predators regarded 
as feeding on small class prey consume items ranging 
from zooplanktons or benthic invertebrates to small 
fishes and squid, whereas those in the middle class are 
usually fish and squid specialists. The large class repre-
sents apex predators that prey on tetrapods.

Results
Skull morphology
The new specimens of Hupehsuchus nanchangensis are 
exposed in dorsal view and display a strange snout struc-
ture in which the skeleton is divided into right and left 
crura surrounding a narrow median space (Fig.  2A–D). 
The intercrural space is exceptionally long and bordered 
by premaxillae and nasals. In 2020-NYF-84-4, the edge 
of the intercrural space is smooth in natural preserva-
tion, excluding the possibility that it was broken (Fig. 2A, 
B). In WGSC V26007, on the other hand, there is an 

Fig. 2  Comparison of the skull roof of Hupehsuchus nanchangensis and 
the modern baleen whale. (A) Reconstruction of skull roof of Hupehsuchus 
nanchangensis, based on the new specimens, 2020-NYF-84-4 and WGSC 
V26007. (B) Skull roof of an adult minke whale from [28] - used follow-
ing the attainment of appropriate copyright permission. The skull roofs 
are signed with 9-landmark configuration and descriptions seen in Table 1. 
The grey region is the paired nasals
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Fig. 3  The morphological details in skulls of Hupehsuchus nanchangensis
A-B. The cranial photograph and interpretative drawing of 2020-NYF-84-4 in dorsal view. Dashed lines indicate the long grooves that run along the labial 
margin. C-D. The cranial photograph and interpretative drawing of WGSC V26007 in dorsal view. Dashed line represents broken in specimen. E. The palatal 
view of the skull of referred specimen WGSC V26000, the black lines outline the groove-like depressions, and the grey regions highlight the bulges around 
the palatal margin
Abbreviations:bo: basioccipital; bp: basisphenoid; cb: ceratobranchial; eo: exoccipital; f: frontal; hy: hyoid; j: jugal; l: lacrimal; m: maxilla; mnd: man-
dible; n: nasal; op: opisthotic; p: parietal; pm: premaxilla; pob: postorbital; ptf: postfrontal; prf: prefrontal; q: quadrate; qj: quadratojugal; sp: splenial; sq: 
squamosal; so: supraoccipital; st: supratemporal; utf: upper temporal fenestra. Scale bars = 2 cm.
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incomplete gap, and the premaxillae show crushed inner 
margins, suggesting breakage of the intercrural space 
after burial (Fig.  2C, D). The premaxillae are elongated 
and gradually widen from the tip of the snout to the end. 
There are long grooves inside the premaxillae that run 
along the labial margin, continuously entering the maxil-
lae, as in Eretmorhipis carrolldongi [18] (Fig. 2A, B). The 
paired nasals with anterior forked processes contact each 
other only in their posteromedian portion because the 
intercrural space separates their anterior portions.

Several skull morphological characters are confirmed in 
the new specimens. The oval external naris is surrounded 
by the maxilla and nasal, and the premaxilla enters the 
external naris. As previously observed [35], the prefrontal 
contacts the postfrontal by a thin suture to prevent the 
frontal from entering the orbital margin. The upper tem-
poral fenestra is surrounded by the postorbital, parietal, 
postfrontal and squamosal, while the supratemporal is 
excluded from the upper temporal fenestra (Fig. 2A–D). 
The jugal has a short posterior process seen as an ances-
tral character in Ichthyosauromorpha [36]. The mandible, 
complete in 2020-NYF-84-4, is extremely slender with 
the pronounced retroarticular process showing a trape-
ziform shape (Fig. 2A, B). The mandible becomes narrow 
from the median region to the tip. Posteriorly, the man-
dible has two obtuse eminences on its dorsal margin to 
the coronoid process, forming a low shelf. This condition 
is different from that of Ichthyosauriformes, but reminis-
cent of the coronoid process and the articular condyle 
present in baleen whales [26, 37]. Anteriorly, the mandi-
ble forks into two processes at the tip, probably caused by 
separation of the dentary and splenial. The paired man-
dibles enclose the lower jaw region over a large range. 
Besides, the mandibular symphysis in 2020-NYF-84-4 is 
discrete without any breaks as observed before [26]. The 
separate mandibles that loosely articulate with the skull 
resemble those of modern rorqual whales, which are effi-
cient means to expand a large gular pouch [38]. Lateral 
palatal foramina, which provide an osteological correlate 
for inferring the presence of baleen in mysticetes, are not 
observed in the palate of WGSC V26000 (Fig.  2E), but 
the jaw margin has a series of oblique parallel shallow 

groove-like depressions, oriented from rostromedially to 
caudolaterally [26] (Fig.  2E). There are several bulges in 
the same orientation and between the grooves.

Landmark morphospace analysis
In the principal component analysis, most shape varia-
tion in the skull is summarised by the first two principal 
component axes (PCs), accounting for 67.2% and 17.5% 
of variation, respectively. PC1 reflects changes in rela-
tive length of the snout and PC2 highlights differences in 
maximal width of the skull. In the morphospace (Fig. 4A), 
odontocetes occupy the largest region and overlap with 
other groups, reflecting their high species richness and 
functional diversity. The second most dispersed group, 
the birds, nearly all have positive PC2 scores, but divide 
into two parts along the PC1 axis, with negative and posi-
tive scores. The mysticetes nearly all have negative PC2 
scores, overlapping part of the region of odontocetes 
exclusively. The crocodilians and pinnipeds show high 
levels of overlap, located in negative PC1 regions, except 
for Paleosuchus palpebrosus and Ommatophoca rossii. 
The morphospace of the last three groups is relatively 
restricted, reflecting the specialisation of these groups. 
Birds, odontocetes and (crocodilians/ pinnipeds) all 
occupy non-overlapping areas of morphospace.

The point for Hupehsuchus is located in the morpho-
space where the mysticetes overlap the odontocetes, 
indicating that its skull shape is similar to that of mod-
ern whales (Fig.  4A). Hupehsuchus shares the elongated 
snout and posterior movement of the nasals with mod-
ern baleen whales. In addition, the intercrural space in its 
palate is similar to the mesorostral groove in cetaceans, 
separating the premaxillae. The skull of Hupehsuchus is 
more similar to that of mysticetes than odontocetes in 
the elongated separated rostrum, the toothless snout, 
and concave braincase in the midline [39]. Differing from 
this, odontocetes have more posterior migration of the 
nasals, development of a more rounded braincase, and 
increasing facial asymmetry [40].

The morphological convergence between Hupehsuchus 
and mysticetes is matched by association with prey size 
(Fig.  4B). Almost all mysticetes prey on tiny-sized zoo-
plankton, whereas odontocetes, pinnipeds, and birds 
prey on small to middle-sized invertebrates, squids and 
fishes [34]. Odontocetes and crocodilians select prey over 
a wide size range, from small fish to large tetrapods, some 
reaching apex predatory niches, such as Orcinus orca 
and Crocodylus porosus [41, 42]. In the prey-size mor-
phospace (Fig. 4b), Hupehsuchus is located in the region 
overlapped by tiny and middle-size predators, which cor-
responds to its edentulous snout, slender mandible with 
flexural rigidity and living in an environment lacking 
fishes and crustaceans [14].

Table 1  List of landmarks used for the morphospace analyses 
depicted in Fig. 3, follow the reference [27]
9-landmarks in skull roof configuration
1,7 Anteriormost point of the premaxilla

2,6 Widest point of the skull

3,5 Posteriormost point of the skull

4 End of the skull in middleline

8 Anteromedial point of nasals (end of the 
beak in the middle line in birds)

9 Posteromedial point of nasals (the cranio-
facial hinge in the middle line in birds)
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Fig. 4  Morphospace of the skull roof in marine amniotes based on landmark analysis. (A) Distribution of key taxonomic groups. (B) Distribution of the 
ecomorphological guilds of predators based on prey size. The analysis includes nine landmark points, and the two-dimensional morphospace plots are 
based on the first two principal components, with Hupehsuchus placed in context of data from modern marine mammals
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Discussion
Morphological implications and comparison of the new 
skulls in Hupehsuchus
The new skulls reveal the existence of an intercrural space 
in the snout of Hupehsuchus nanchangensis, which is 
morphologically convergent with the mesorostral groove 
in modern rorquals, supported by the morphometric 
analysis [43]. Besides expanding a gular pouch through 
flexible and elongated mandibles, Hupehsuchus nan-
changensis increased the intercrural space in the snout 
to widen and enlarge the buccal cavity to adapt to filter 
feeding. Filter-feeding tetrapods require a large mouth to 
make predation efficient [44, 45]. In the evolution of mys-
ticetes, a wider and loose rostrum is a critical adaptation 
for filter feeding, which occurred before the existence of 
baleen [46]. During development, modern baleen whales 
show progressive elongation of the rostrum relative to 
the braincase and positive allometry of the skull, which 
is related to their need to develop a large buccal cavity 
to perform filter feeding [28, 46, 47]. Similarly, the filter-
feeding Cretaceous plesiosaur Morturneria seymourensis 
had a deeply arched palate with a midline keel to increas-
ing buccal cavity volume, convergent with baleen whales, 
like gray whales [8, 48, 49].

The intercrural space in Hupehsuchus nanzhangensis is 
comparable with a similar structure in Eretmorhipis car-
rolldongi, a hupehsuchian with small eyes, which might 
have been a predator that used non-visual senses [18]. 
However, there are several distinct osteological differ-
ences between these two species: the intercrural space 
in Hupehsuchus is exceptionally slender, surrounded by 
the premaxillae and the nasals, whereas in Eretmorhipis 
it is oval and only surrounded by the premaxillae; there 
is an isolated bone in the intercrural space of Eretmorhi-
pis, whereas the same bone is not found in Hupehsuchus; 
the snout length relative to the skull of Hupehsuchus is 
longer than in Eretmorhipis. Further, Eretmorhipis was 
a slow manoeuvring swimmer with a rigid body and tail 
coupled with large fan-shaped propulsive flippers, and 
small-sized eyes, suggesting non-visual prey detection 
[18]. Hupehsuchus had larger eyes and a slenderer snout 
than Eretmorhipis. The anatomy of both taxa suggests 
that Hupehsuchus was a better swimmer than Eretmorhi-
pis, which would imply different feeding strategies.

Some other Mesozoic marine reptiles show a similar 
space or foramen in the midline of the snout region, but 
this might have had a variety of functions. The Middle 
Triassic Atopodentatus unicus, with its pronounced ham-
merhead-shaped skull, has paired separated premaxillae 
with a slender rhombus-shaped space [11]. Its heterodont 
teeth, the chisel-shaped teeth in the straight anterior edge 
of the jaws, and the needle-shaped jaw ramus suggest 
that this unusual marine reptile was a seaweed grazer, the 
oldest record of herbivory in a marine reptile [11]. The 

edentulous Late Triassic ichthyosaur Shastasaurus lian-
gae (= Guanlingsaurus liangae) shows a very large inter-
nasal foramen in the skull roof [50, 51]. The feeding mode 
of this ichthyosaur has been debated; perhaps it was a 
suction feeder based on its short toothless snout, or per-
haps the slender hyobranchial bone excludes the affinity 
with suction feeding, suggesting it was a ram feeder [50, 
52, 53]. Further, in the Early Jurassic ichthyosaurs Ichthy-
osaurus communis and Leptonectes tenuirostris, the fora-
men in the skull roof midline moves posteriorly to the 
internasal and interfrontal region [54, 55].

The model of filter feeding in Hupehsuchus
Baleen is made from keratin, forming a soft and tough 
fibrous curtain dangling from the upper jaw in baleen 
whales, and used to filter engulfed water in the mouth 
and trap prey [56]. The origin of baleen in stem mysti-
cetes is contentious and researchers suggested several 
interpretations of the transition from raptorial feeding 
with teeth as in stem mysticetes to baleen-assisted filter 
feeding as in modern mysticetes [57–60]. However, the 
best explanation supported by current evidence on this 
transition is that the stem mysticetes passed through an 
intermediate stage with both teeth and baleen before 
complete loss of their teeth and becoming modern filter 
feeders with baleen [39, 57]. The lateral palate foram-
ina in the stem mysticetes, which are homologous with 
neurovascular structures that nourish and innervate the 
baleen apparatus in extant mysticetes, are associated 
with the presence of baleen in this hypothesis [61]. In 
Hupehsuchus, the grooves and bulges around the labial 
margins are reminiscent of the lateral palate foramina in 
mysticetes, suggesting the existence of soft tissues like 
baleen during the whole feeding process, and these pre-
sumably played an important role in filter feeding. In life, 
these grooves may have borne soft tissues for filter feed-
ing, which replaced the position of the dental alveoli, sim-
ilar to grey whales [62]. Although we cannot identify soft 
tissues in the fossils, these uneven structures would have 
been useful to strain the water expelled from the mouth 
cavity, completing the filtration. Therefore, we argue 
that the cranial structure of Hupehsuchus is convergent 
with modern baleen whales on the basis of three charac-
ters: the intercrural space in the snout, the slender and 
unfused lower jaws, and the grooves left by soft tissues 
around the palatal margins. Perhaps the diet of Hupehsu-
chus resembled that of modern mysticetes, which depend 
on the supply of zooplankton, such as shrimp-like arthro-
pods. The laminated limestone in the NYF indicates suf-
ficient zooplankton for Hupehsuchus [13, 14].

Although the modern baleen whales are all large filter 
feeders, they feed quite differently in terms of strategy 
and food preference [34, 49]. The balaenopterid whales, 
also known as rorquals, employ a lunge filter feeding style 
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in which they swim rapidly at a prey patch while opening 
their mouth to gulp the mixture of water and prey, then 
filter the water through the baleen plates and swallow the 
retained prey [44, 63, 64]. Rorqual whales have special-
ised anatomy and feeding performance to support their 
lunge feeding strategy to capture fish shoals and plank-
ton [38, 65, 66]. The balaenid whales, including bowhead 
and right whales, employ a skim filter feeding style in 
which they capture plankton from the water by swim-
ming slowly with their mouth open [67]. In another fil-
tering mode, the grey whale (Eschrichtius robustus) feeds 
mainly on benthic invertebrates that it ingests by swim-
ming along the seabed on one side, using lateral suction 
feeding to take in sediment plus prey [5, 68, 69].

Previously, Motani et al. [26] suggested that Hupehsu-
chus was a lunge feeder like pelicans or rorquals, based 
mainly on its slender and flexible mandible, and its pala-
tal structure which probably supported soft tissues as 
strainer. The cranial structure in this study reveals that 
Hupehsuchus is more like baleen whales than pelicans 
and employed filter feeding. Considering its paddle-
like limbs and high dorsal neural spines, Hupehsuchus 
was thought to have advantages for acceleration and 
manoeuvring, as in intermittent lunge filter feeders 
like rorquals [26]. But the rigid trunk without intercos-
tal space and three layers of dorsal dermal ossicles in an 
imbricate arrangement limited the aquatic locomotion 
by lateral axial undulation as anguilliform swimming 
which is common in early Ichthyosauromorpha [35, 
70]. The pachyostotic ribs in Hupehsuchus indicate the 
function of buoyancy control and swimming in shallow-
water inhabitants [71]. Thus, Hupehsuchus would have 
employed continuous ram filter feeding as in bowhead 
and right whales, rather than lunge filter feeding as in 
rorqual whales [72]. The NYF environment lacking fishes 
also indicates that Hupehsuchus could have fed only on 
zooplankton, unlike rorquals that feed on fishes [13, 14, 
18]. The hyoid bone in Hupehsuchus is not strong enough 
to support suction feeding as in grey whales [26, 53, 73]. 
Hupehsuchus would have continuously filter fed at slow 
swimming speeds, from dense patches of plankton at the 
surface or shallow water column. The mandible with a 
well-developed retroarticular process and rostral bones 
that accommodate the intercrural space improve the 
functional advantage of the volume of the oral cavity, 
which is efficient for filter feeding.

The evolution and implication of filter feeding in 
Hupehsuchus
Hupehsuchians and mysticetes specialize in a filter-feed-
ing strategy, but there is a major difference in the speed 
with which this unusual feeding mode evolved in the two 
clades. Whereas whales evolved 15 Myr after the end-
Cretaceous mass extinction (66  Ma), and filter-feeding 

adaptations in mysticetes long after that (34 Ma), marine 
reptiles diversified extraordinarily fast in the Early and 
Middle Triassic [74–77], acquiring a broad array of 
adaptations within as little as 5 Myr (Fig.  5). The diver-
sity of feeding guilds of Triassic marine ecosystems is 
comparable to that in the modern marine environment 
[78]. The cranial morphology of Mesozoic marine rep-
tiles reflects their feeding modes and is usually divided 
into brevirostrine and longirostrine types, reflecting 
short and long snouts, respectively. Brevirostrine marine 
reptiles included suction feeders which created sub-
ambient pressure in the mouth to capture prey, such 
as most eosauropterygians and thalattosaurs [79, 80]. 
Longirostrine marine reptiles, including almost all ich-
thyosaurs, are generally regarded as ram feeders whose 
acceleration and movement are used in prey capture 
[52, 53]. We now add to this diversity in Early Triassic 
feeding guilds the first confirmation of filter feeding in 
Hupehsuchus.

Secondary aquatic adaptation by Mesozoic reptiles 
and Cenozoic mammals provides many classic examples 
of convergent evolution, explained as adaptations to 
similar ecological niches [1, 81]. Constraints on locomo-
tion in the aquatic environment may have enhanced the 
repeated convergences in body plan. Many marine rep-
tiles and mammals evolved streamlined bodies and effi-
cient lift-based swimming, especially using propulsion 
from the dorsal fin in ichthyosaurs and modern dolphins 
[82]. Further, cranial and tooth morphology can reflect 
trophic convergence related to food resources, feeding 
strategies, and prey levels. Driven by filtering adapta-
tions, Hupehsuchus and baleen whales share convergen-
ces which are concentrated in their cranial morphology, 
such as the edentulous snout, the divided upper jaw and 
the mandible with a pronounced retroarticular process.

Hupehsuchus lived in the Early Triassic, and it was 
part of the rapid biotic recovery of complex marine eco-
systems after the end-Permian mass extinction [17, 83]. 
The NYF in which it occurs is characterized by its restric-
tive lagoonal paleoenvironment, high reptile diversity 
and absence of fishes and invertebrates [13, 14]. Per-
haps Hupehsuchus showed innovative skull morphology 
to adapt to filter feeding as a result of competition from 
other predatory marine reptiles such as ichthyosaurs and 
eosauropterygians, and as a means to benefit from a food 
resource that was not otherwise fully exploited.

Conclusion
The shape of the skull roof and snout of Hupehsuchus 
nanchangensis is highly convergent with modern baleen 
whales. The intermediate space in the snout and the 
unfused premaxillae of Hupehsuchus nanchangensis 
enabled it to enlarge the buccal cavity, a key requirement 
for an oral filter-feeding tetrapod. The remodelling of the 
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snout, with the flexible slender mandible, promoted its 
filter-feeding efficiency. Hupehsuchus was more probably 
a continuous ram filter feeder like extant bowhead and 
right whales, based on its low swimming speeds revealed 
by the rigid trunk. We found that the specialization is 
associated with prey size and contributes to the domi-
nance of Hupehsuchus in the Nanzhang-Yuan’an Fauna. 
What is remarkable is that, whereas it took some 30 Myr 
for whales to evolve filter-feeding adaptations, this was 
achieved in less than 5 Myr by Hupehsuchus in the Early 
Triassic.
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