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Abstract 

Background  Gene duplication is an important process for genome expansion, sometimes allowing for new gene 
functions to develop. Duplicate genes can be retained through multiple processes, either for intermediate periods of 
time through processes such as dosage balance, or over extended periods of time through processes such as sub-
functionalization and neofunctionalization.

Results  Here, we built upon an existing subfunctionalization Markov model by incorporating dosage balance to 
describe the interplay between subfunctionalization and dosage balance to explore selective pressures on duplicate 
copies. Our model incorporates dosage balance using a biophysical framework that penalizes the fitness of genetic 
states with stoichiometrically imbalanced proteins. These imbalanced states cause increased concentrations of 
exposed hydrophobic surface areas, which cause deleterious mis-interactions. We draw comparison between our 
Subfunctionalization + Dosage-Balance Model (Sub + Dos) and the previous Subfunctionalization-Only (Sub-Only) 
Model. This comparison includes how the retention probabilities change over time, dependent upon the effective 
population size and the selective cost associated with spurious interaction of dosage-imbalanced partners. We show 
comparison between Sub-Only and Sub + Dos models for both whole-genome duplication and small-scale duplica-
tion events.

Conclusion  These comparisons show that following whole-genome duplication, dosage balance serves as a time-
dependent selective barrier to the subfunctionalization process, by causing an overall delay but ultimately leading to 
a larger portion of the genome retained through subfunctionalization. This higher percentage of the genome that is 
ultimately retained is caused by the alternative competing process, nonfunctionalization, being selectively blocked 
to a greater extent. In small-scale duplication, the reverse pattern is seen, where dosage balance drives faster rates of 
subfunctionalization, but ultimately leads to a smaller portion of the genome retained as duplicates. This faster rate of 
subfunctionalization is because the dosage balance of interacting gene products is negatively affected immediately 
after duplication and the loss of a duplicate restores the stoichiometric balance. Our findings provide support that the 
subfunctionalization of genes that are susceptible to dosage balance effects, such as proteins involved in complexes, 
is not a purely neutral process. With stronger selection against stoichiometrically imbalanced gene partners, the rates 
of subfunctionalization and nonfunctionalization slow; however, this ultimately leads to a greater proportion of sub-
functionalized gene pairs.
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Background
Gene duplication is a very important process in the evo-
lution of genomes [1]. Many genes have undergone some 
type of duplication event in their history. The human lin-
eage together with other vertebrates had two rounds of 
whole-genome duplication during the chordate-verte-
brate transition [2, 3]. Plant phylogenies indicate many 
rounds of duplication events in their history [4–11]. 
Gene redundancy relaxes selection and makes faster evo-
lutionary exploration of sequence space and gene func-
tion space possible [1, 12]. Duplicate copies may lead to 
the development of beneficial fitness effects, including 
novel morphological traits [13, 14]. To understand the 
evolutionary processes that follow gene duplication is to 
understand a source of genome expansion, pathway com-
plexity, and functional innovation.

The process of gene duplication has been well stud-
ied in the past half century with two general categories 
of duplication events are small-scale duplication (SSD) 
events and large-scale events [15]. Small-scale duplica-
tion events affect relatively small sections of the genome. 
These errors usually occur during DNA replication or 
through transposition events [16]. Larger-scale dupli-
cation events include chromosomal or whole-genome 
duplication (WGD). These typically originate from non-
disjunction events in meiosis and/or hybridization [17], 
and are typically rarer than their small-scale counterpart 
but can be beneficial [18, 19].

Genes that originate from whole-genome duplication 
and small-scale duplication events follow different pat-
terns of retention [4, 20–24]. These different patterns 
occur because of their initial effect on the genome and 
cell function. Specifically, duplications and subsequent 
processes may affect the stoichiometric balance of gene 
products. Protein subunits often have a hydrophobic sur-
face that are buried in a protein complex and function to 
aid in the binding of the complex. However, when subu-
nits are not bound in their prospective protein complex, 
these hydrophobic surface areas are solvent exposed, so 
they will seek out a hydrophobic environment to bury 
into. The interactions caused by this force may lead to 
deleterious effects. Because duplicate copies often lead to 
higher expression, these copies can influence the stoichi-
ometry of protein-complex subunits. Therefore, selection 
acts to maintain the stochiometric balance by removing 
expression of redundant copies to avoid these mis-inter-
actions and aggregation of the gene products [25, 26].

Small-scale duplication events happen frequently, but 
they immediately interfere with the stoichiometric bal-
ance, so they tend not to be highly favorable, so selec-
tion favors the loss of these duplicated genes [23, 27, 28]. 
Large scale duplication events are more likely to include 
genes and their interacting partners, so there is selective 

pressure to keep the additional copies to avoid nega-
tively affecting the stoichiometric balance [20, 29, 30]. 
Gene dosage balance describes the tendency for dupli-
cated gene copies to be retained for an intermediate time 
immediately following the whole-genome duplication 
event [31–33]. This is thought to be why there is an ini-
tially fast gene loss rate of duplicate copies after small-
scale duplication events, but a slower initial gene loss rate 
in larger duplication events, followed by a faster loss rate 
once the stoichiometric balance is affected [30, 33–42], 
unless this is counterbalanced by functional changes that 
affect fitness [33, 43, 44]. Fernández et al. [45] have also 
noted that beyond the increased waiting time for sub-
functionalization enabled by dosage balance, that the two 
processes can interplay to affect fitness.

Nonfunctionalization, the process of making one of the 
copies of a gene no longer functional, is the most com-
mon fate of duplicated genes [1]. This is because there 
is a lot of opportunity to gain an early stop codon or 
some other loss of function mutation (for example, non-
sense, frameshift), and the other copy can continue the 
ancestral function [39]. Of the genes that are ultimately 
retained for a long time, it is likely these extra copies have 
some sort of benefit or that they subfunctionalized; oth-
erwise, probability dictates that random function degrad-
ing mutations would take over in a few million years [15, 
46], either through neutral or selective processes. For 
duplicated copies that have generated a fitness advantage, 
there are a few generally accepted ways these gene cop-
ies can be beneficial. First, there is a small chance that it 
is beneficial to have extra copies of the same functionally 
exact gene as a way of upregulating that gene [47, 48], 
but that is likely not true for the vast majority of retained 
genes [49]. Other processes include regulatory neofunc-
tionalization, coding function neofunctionalization, or 
specialization after subfunctionalization [1, 34, 50–52]. 
For genes that first subfunctionalize, it is also believed 
that subfunctionalization can be an intermediate step to 
ultimate neofunctionalization, in a process called sub-
neofunctionalization [53, 54]. This is supported by the 
observation that duplicate genes that are retained over 
long evolutionary time periods do show patterns consist-
ent with both neofunctionalization and subfunctionaliza-
tion [55].

An important research question in the field is, “what 
makes some genes have large numbers of duplicates 
while other genes exclusively exist as singletons?”. One 
of the leading theories to explain this phenomenon is the 
gene duplicability hypothesis, that certain types of genes, 
whether that “type” is categorized by GO terms or by the 
complexity of its interaction network/pathway, are more 
likely to benefit from extra copies of these genes [56, 57]. 
This benefit may be because they may be more likely 
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to gain new functions or it is favorable and mutation-
ally accessible to specialize [46, 56, 58, 59]. Additionally, 
dosage balance may play a role in retention of the extra 
copies, especially depending on what kind of duplication 
event has occurred in genome history and when. Dupli-
cated genes in dosage balance can also have effects on 
the expression of and interactions with other genes and 
their protein products across the genome. Such trans-
acting effects can contribute to the selective landscape of 
the evolution of individual gene duplicate pairs in paral-
lel to changes in the gene itself and its regulatory regions 
[60–64]

As previously suggested, as a whole-genome duplica-
tion event ages and is under the influence of gene dosage 
balance, the probability of retaining duplicate gene cop-
ies decreases [33, 34, 46, 57, 65]. Therefore, gene dosage 
balance is one important reason why retaining or losing 
duplicate gene copies after a whole-genome duplication 
event is a time-heterogeneous process. However, the 
dynamics and constraints of this process have not been 
fully explored. Previous attempts at modeling the effect 
that gene dosage balance has on duplicate gene copy 
retention were less mechanistic, utilizing survival analy-
sis described by an increasing hazard function of dupli-
cated and redundant gene copies [33, 34]. This type of 
model is a mathematical description of the observed phe-
nomenon, it does not actually model the underlying bio-
logical process itself at the level of detail described here 
and therefore would not enable discovery of the effects 
of the process on the dynamics that are not obvious from 
data fitting.

Here, building upon an existing framework for sub-
functionalization proposed by Force and Lynch [46] and 
developed as a full model by Stark et al. [59], we propose 
an alternative time-homogeneous model. This new model 
joins a chemical thermodynamic model with a population 
model to explore the selective pressures on the retention 
of duplicated genes through subfunctionalization when 
genes are influenced by dosage balance effects. Our model 
incorporates an element of fitness that depends on the 
stoichiometric balance. This fitness parameter models 
selective effects on gene duplicate retention through sub-
functionalization. Subfunctionalization is typically con-
ceptualized as a neutral process because each necessary 
function continues to be performed by one of the copies. 
We explored how losing functional expression of one of 
the copies affects the stoichiometric balance between that 
gene product and the other gene products. We expect 
that if a gene is sensitive to dosage balance effects, losing 
expression of one of the duplicate gene copies in a spe-
cific tissue or developmental stage will negatively affect 
the stoichiometric balance of gene products in that tissue 
or developmental stage, causing selection to act against 

both subfunctionalization and nonfunctionalization. We 
expect selection to act against any process that nega-
tively affects the stoichiometric balance of gene products, 
including subfunctionalization because it would cause 
imbalance in specific expression domains, but even more 
so for nonfunctionalization because it affects the balance 
in all expression domains simultaneously. We built a mod-
eling framework that produces this behavior by modeling 
the underlying process.

Methods
Calculating the sum concentration of exposed 
hydrophobic residues across expression domains
To ultimately model dosage balance, we are interested 
in estimating the magnitudinal effect that stoichiomet-
ric imbalance has on the fitness of each state of duplicate 
gene pairs. We model a heterodimer, with subunits A 
and B, which are transcribed and translated from Gene 
A (GA) and Gene B (GB) respectively. The heterodim-
er’s binding interface is formed by one binding site on 
each subunit, and the binding site consists of a patch 
of exposed hydrophobic residues. We expect there to 
be some concentration of unbound subunit A ([A]free), 
unbound subunit B ([B]free), as well as subunits A and B 
in their bound form as a heterodimer ([AB]) in a cell. The 
reaction that yields the bound form can be seen in Eq. 1. 
All parameter and variable symbols, definitions, and val-
ues are described in Table 2.

The equilibrium constant (Keq) for the reaction in 
Eq. 1 is based upon free energy differences. Quantitative 
data that is measurable for this kind of reaction include 
the Keq, the total concentration of the A subunit from 
the expression of GA ([A]total), and total concentration 
of the B subunit from the expression of GB ([B]total). We 
can use this quantifiable information to calculate [A]free, 
[B]free, [AB] and ultimately the concentration of patches 
of exposed hydrophobic residues ([hp]) (Eqs.  2, 3, and 
4). The total concentration of a subunit is the sum of the 
concentration of subunits in the unbound form and the 
concentration of subunits in the bound form (Eqs. 3 and 
4).

We can solve for the concentration of patches of 
exposed hydrophobic residues ([hp]) based on the above 

(1)A+ B ↔ AB

(2)[hp] = [A]free + [B]free

(3)[A]total = [A]free + [AB]

(4)[B]total = [B]free + [AB]
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information by plugging in the [AB] solution above into 
the quadradic equation to get [A]free and [B]free in terms 
of Keq, [A]total, and [B]total, which are known (Eq. 5). Once 
we can solve for [AB] we can calculate [hp] for each regu-
latory domain.

The conceptualize the stoichiometric imbalance “load” 
to be the sum of [hp] across each regulatory domain. 
Therefore, we assume the fitness of each state is inversely 
proportional to the sum of hydrophobic patches across z 
regulatory domains. Because of this relationship, we cal-
culate fitness (f) using an inverse function, with the rela-
tionship between the sum of hydrophobic patches per 
cell and the corresponding fitness penalty scaled by w 
(Eq. 6).

Loss of expression of duplicate copies causes stoichio-
metric imbalance. The imbalance of gene products intro-
duces a fitness consequence. We want to use see how 
the fitness consequences affects the probability of fixing 
such a loss mutation in a population. We use an existing 
framework to calculate the probability of fixing muta-
tions (g) [66], plugging Eq. 6 into the fitness terms, with 
the relative fitness of the current state being fi and the 
relative fitness of the next possible state being fj and Ne 
being the effective population size (Eq.  7). We will use 
this calculation to calculate the rates between states in 
our Markov chain in the next section.

Continuous‑time Markov chain
We define a continuous-time Markov chain {X(t), t ≥ 0}
(

Figure1a
)

 for our Subfunctionalization + Dosage 
(Sub + Dos) Model that is similar to that of the Stark et al. 
[59] model we refer to as, the Subfunctionalization-Only 
(Sub-Only) Model (Fig. 1b). We use the same state space,

 and state i ∈ {0, 1, . . . , z− 1} each represent a set 
of duplicate gene pairs where one duplicate copy has 
that number of nonfunctional regulatory regions. 
State S represent a duplicate gene pair that has been 

(5)[AB] =
(Keq[A]total + Keq[B]total + 1)± (− Keq[A]total + Keq[B]total + 1

2
− 4Keq(Keq ∗ [A]total ∗ [B]total))

2Keq

(6)f =
1

(1+ w
∑

1→z [hp]z)

(7)g =
1−

fi
fj

1−
fi
fj

Ne
=

1−
1+(w

∑

1→z [hp]z)j
1+(w

∑

1→z [hp]z)i

1−
1+(w

∑

1→z [hp]z)j
1+(w

∑

1→z [hp]z)i

Ne

(8)A = {0, 1, . . . , z− 1} ∪ {S, Y},

subfunctionalized and State Y represent a duplicate gene 
pair where one copy has been lost (pseudogenized). Both 
State S and Y are absorbing states.

Like that of the Sub-Only Model [59], our Sub + Dos 
Model is also based on the mechanics of regulatory 

subfunctionalization, the assumption that knock-out 
mutations occur at a constant rate and are independ-
ent of each other, and that selection ensures that at least 
one copy of each regulatory region is retained. Also, like 
Stark et al. [59] model, we assume a haploid genome to 
avoid the complication of recombination. Results would 
be at least partially readily extendable to the diploid case 
with a natural model for the role of dominance resulting 
from the explicit link with underlying biochemistry. This 
makes the model more readily extendable from haploid 
to diploid cases than purely statistical genetics models 
that are naïve to the underlying biochemical processes 
that generate patterns of dominance. The model does 
not deal with recombination between alleles or context-
dependent allele behavior in a diploid setting. Duplicates 
are assumed to be fixed in the genome. It might be noted 
that during the early phases of duplication in a haploid 
setting, the duplicates can behave like alleles in a diploid 
population.

In contrast with the Sub-Only Model [59], our 
Sub + Dos Model incorporates dosage balance affects by 
assuming that the process of losing a regulatory func-
tion is non-neutral and that the probability of fixing a 
loss is not simply 1/Ne. Instead, we assume that fitness is 
inversely proportional to the magnitude of dosage imbal-
ance introduced by the loss. We estimate dosage imbal-
ance stoichiometrically through the concentration of 
exposed hydrophobic residues ([hp]) (Eq.  6). Therefore, 
the relative fitness of each state of duplicate gene pairs is 
inversely proportional to the sum of [hp] across expres-
sion domains.

We use the fitness of each state, that incorporates the 
fitness penalty associated with loss of expression, to cal-
culate the probability of fixation [66] (Eq. 7) and use that 
to calculate the rate of transition between states (equa-
tion set 11). Because the fitness of each state is only 
affected by the sum of [hp], the probability of fixing a loss 
mutation is therefore determined by the concentration of 
exposed hydrophobic residues that loss introduces. We 
chose to model the effect of dosage balance in this way 
because is consistent with expected underlying mecha-
nisms [26, 67].
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Fig. 1  Markov model for the fate of retention of duplicate copies after gene duplication. In this example, the gene of interest (GOI A) has been duplicated 
into two copies, GOI A1 and GOI A2. Both copies of GOI A have been duplicated with all four of their regulatory domains upstream of the gene. Each 
regulatory domain acts as an enhancer for tissues 1–4. The state space includes the two copies with full redundancy (State 0), transient unresolved states 
(States 1–3), and absorbing states (States Y, S) indicated by neon colors. The absorbing states include nonfunctionalization of one of the gene copies 
(State Y) and subfunctionalization that leads to the retention of both copies (State S). The neon colors represent which copy is permanently retained 
and what function(s) it preforms. The light green parts indicate unresolved portions of the gene. The parts of the gene that are dark grey indicate that 
part being knocked-out through mutation. The parts of the gene that are light grey indicate parts of the gene that are no longer functional because of 
mutations that occurred in other parts of the gene. Note that for both part a and b, the rate equation for State 1 → State S is equal to the rate equation for 
State 1 → State 2 AND the rate equation for State 2 → State S is equal to the rate equation for State 2 → State 3. a Subfunctionalization + Dosage Model. 
The formulas for the rates between states are calculated using a fixation probability equation [66], which uses the relative fitness of the current state (fi) 
and the next state (fj), and the effective population size (Ne). The rates also incorporate the number of regulatory domains (z), the nucleotide length of the 
regulatory domains (lr), the nucleotide length of the coding region (lc), the loss of function nucleotide mutation rate (ub, uh). b Subfunctionalization-Only 
Model [59] for the fate of retention of duplicate copies after gene duplication. The formulas for the rates between states are calculated the effective 
population size (Ne), the number of regulatory domains (z), Poisson rate at which null mutations are fixed in each of the z mutable regulatory regions for 
each gene (ur, Eq. 10), and the Poisson rate at which null mutations fix in the coding regions (uc, Eq. 9)
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Additionally, we expanded the parameters set from 
those in Stark et al. [59] for the Sub-Only model to better 
reflect empirical data. We conceptualize the Poisson rate 
at which null mutations fix in the coding regions (uc) and 
the Poisson rate at which null mutations are fixed in each 
of the z mutable regulatory regions for each gene (ur) as 
being calculated by specific types of mutations that lead 
to the loss of function and the opportunity for those 

mutations that can be empirically measured. We cal-
culate the rate of loss of a regulatory domain (ur) as the 
product of the nucleotide rate of certain mutations that 
impair transcription factor binding (ub) and the nucleo-
tide length of regulatory regions (lr) (Eq. 10). We calculate 
the rate of loss of the coding region (uc) as the product of 
nucleotide rate of mutations that lead to a non-functional 
mRNA or peptide chain (uh) and the nucleotide length of 

Fig. 1  continued
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coding region (lc) (Eq. 9). However, in this paper we do 
not explore the effects of changing the rates of mutations 
that impair transcription factor binding and those that 
lead to a nonfunctional protein for simplicity. Instead, we 
make the reasonable assumption that both rates of loss of 
function would be caused by similar types of mutations, 
including but not limited to mutations that directly affect 
transcription factor binding and mutations that affect the 
phasing of DNA binding sites, therefore having compara-
ble nucleotide mutation rates. However, in application of 
our model, these rates can easily be different from those 
employed here.

Therefore, the generator matrix for the Subfunctionali-
zation + Dosage Markov Chain is defined to be Q = [qij], 
where the matrix form of Q is shown in Table 1. The non-
zero off-diagonals are given by qij (equation set 11). A 
defense for these transition rates can be found in Stark 
et  al. [59] in conjunction with our above argument on 
the changes. Because Q is the generator/transition rate 
matrix, the rows sum to 0. To accomplish this, all other 
i,jth entries are 0 except the diagonals, which are zero 
minus the sum off the defined row terms. Again, where 
S and Y are absorbing states with S referring to the Sub-
functionalization State, and Y referring to the Pseu-
dogenization/Nonfunctionalization state.

We define the probability matrix as P = [pij]. For each 
generation, P is calculated by exponentiating e to the 
product of time in the number of generations and Q.

Probability distribution calculations
The computer program, written in C++, can be found 
at https://​github.​com/​aewil​son96/​Wilson_​Liber​les_​
2022, calculates the probability distribution of states for 
a pair of genes for each generation following a whole-
genome duplication event. Because of the nature of 
Markov Chains, we can directly calculate the probabil-
ity distribution from the generator matrix; therefore, 
there is no need to run simulations over time. The cal-
culation for the rate of transitioning from one state to 

(9)uc = (uh · lc · Ne)/Ne = uh · lc

(10)ur = (ub · lr · Ne)/Ne = ub · lr

(11)

qij =















































2 ∗ g0,Y ∗ Ne ∗ uh ∗ lc, if i = 0, j = Y

2 ∗ z ∗ g0,1 ∗ Ne ∗ ub ∗ lr, if i = 0, j = 1

gi,Y ∗ Ne ∗ uh ∗ lc, if 1 ≤ i ≤ z − 2, j = Y

(z − i) ∗ gi,j ∗ Ne ∗ ub ∗ lr, if 1 ≤ i ≤ z − 2, j = i + 1

(z − i) ∗ gi,S ∗ Ne ∗ ub ∗ lr, if 1 ≤ i ≤ z − 2, j = S

gz−1,Y ∗ Ne ∗ ub ∗ lr + g ∗ Ne ∗ uh ∗ lc, if i = z − 1, j = Y

gz−1,Y ∗ Ne ∗ ub ∗ lr, if i = z − 1, j = S.

the other, includes the probability of fixation (g, Eq. 7), 
the effective population size (Ne), the nucleotide rate of 
loss of function mutations (ub and uh), the length of the 
coding sequence (lc), and the length of the regulatory 
domain (lr, enhancer, promoter, silencer). The prob-
ability of fixation calculation [66] utilizes the relative 
fitness of the current state (fi) and the relative fitness 
of the next possible state (fj). To determine the relative 
fitness of each state, our method assumes an inverse 
relationship between the summation of the concentra-
tion of exposed hydrophobic patches summed across 
expression domains and fitness (Eq. 6). Using the equi-
librium constant (Keq), the concentration of hydro-
phobic residues ([hp]) is calculated for when the total 
concentration of gene A products and gene B prod-
ucts are in stoichiometric balance, and for when they 
are in a 1:2 ratio, which is the expected imbalance for 
a pair of gene homologs if one copy is not functionally 
expressed (Eq. 6). Then, for each state, these values are 
summed across expression domains, being the summa-
tion of both (1) the product of unaffected domains and 
the concentration of hydrophobic patches when they 
are in stoichiometric balance and (2) the product of the 
affected domains and the concentration of hydrophobic 
patches when they are stoichiometrically imbalanced.

Small-scale duplication events work a little differently 
than whole-genome duplication events. These events 
cause immediate stochiometric imbalance and losing 
a copy of the duplicated gene is expected to repair the 
balance. Because of this difference, the concentration of 
hydrophobic residues is expected to be greater imme-
diately after the duplication event, and nonfunction-
alization/pseudogenization becomes the state with the 
highest fitness because it repairs the stoichiometric bal-
ance quickest, therefore having the highest probability 
of fixing. Additionally, losing redundancy and subfunc-
tionalizing are still more favorable states than the totally 
redundant State 0. This is different than in the whole-
genome duplication case, because for whole-genome 
duplication events, losing expression in anyway yields 
a lower fitness (because of the higher concentration of 
hydrophobic residues); therefore, these dosage effects 
slow progression through the states towards the absorb-
ing states. In small-scale duplication events, this progres-
sion is faster when dosage balance effects act.

All of the figures that show the Subfunctionaliza-
tion + Dosage (Sub + Dos) Model have 4 regulatory 
regions/domains (z), a scalar of 1.0 (w), a nucleotide 
mutation rate that affects transcription of a functional 
coding strand of 2.5 × 10–8 nucleotide mutations per 
generation (uh), a nucleotide mutation rate that affects 
transcription binding to regulatory region/domain of 
2.5 × 10–8 nucleotide mutations per generation (ub), 

https://github.com/aewilson96/Wilson_Liberles_2022
https://github.com/aewilson96/Wilson_Liberles_2022
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Table 2  The list of symbols and definitions for parameters and variables, which are used and/or defined in Eqs. 1–11

Potential ranges for each parameter are listed, as well as the range used in the production of the figures provided

Parameters and Variables Symbol Realistic range based on empirical data Range used in provided figures

Poisson rate of nucleotide mutations that 
interfere with transcription binding

ub 1.0 × 10–8–2.5 × 10–8 nucleotide mutations 
per generation [70]

2.5 × 10–8 nucleotide mutations per 
generation

Poisson rate of nucleotide mutations that 
interfere with production of a functional 
peptide sequence

uh 1.0 × 10–8–2.5 × 10–8 nucleotide mutations 
per generation [70]

2.5 × 10–8 nucleotide mutations per 
generation

Length of coding region lc 5.0 × 104 nucleotides [71] 5.0 × 104 nucleotides

Length of enhancer lr 50 bp to 1.5 kbp [72] 775 nucleotides

Subfunctionalization-Only Model poisson 
rate at which null mutations fix in the coding 
regions [59]

uc – Equation 9, loss of function mutations per 
generation

Subfunctionalization-Only Model poisson 
rate at which null mutations are fixed in each 
of the z mutable regulatory regions for each 
gene [59]

ur – Equation 10, loss of function mutations per 
generation

Number of regulatory regions/domains (pro-
moters/enhancers/silencers)

z  < 20 regulatory regions 4 regulatory regions

Effective population size Ne 1.4 × 104 individuals 1 × 102–1.4 × 106 individuals

Time in generations since duplication event t 5.0 × 103–1.4 × 104generations 5.0 × 103–1.0 × 104generations

Equilibrium constant Keq 1.0 × 106–1.0 × 1014 mol/mL [73, 74] 1.0 × 104–1.0 × 1012 mol/mL

Scalar on the relationship between the num-
ber of hydrophobic patches per cell and the 
corresponding fitness penalty

w – 1.0

Heterodimer of interest AB – Equation 1

Gene that codes for subunit A in heterodimer 
AB

GA – –

Gene that codes for subunit B in heterodimer 
AB

GB – –

Subunit of heterodimer of interest, gene 
product of GA

A – Equation 1

Subunit of heterodimer of interest, gene 
product of GB

B – Equation 1

Concentration of the heterodimer of interest 
that is in its bound form

[AB] –

Total concentration of subunit A, likely to be 
estimated by transcription data

[A]total 1 × 10–6–1 × 10–10 mol/mL
[75, 76]

2.5 × 10–6 mol/mL

Total concentration of subunit B, gene prod-
uct of GB, likely to be estimated by transcrip-
tion data

[B]total 1 × 10–6–1 × 10–10 mol/mL
[75, 76]

2.5 × 10–6 mol/mL

Concentration of subunit A in the unbound 
form

[A]free – Equation 3, in mol/mL

Concentration of subunit B in the unbound 
form

[B]free – Equation 4, in mol/mL

Concentration of exposed hydrophobic 
patches

[hp] – Equation 2, in mol/mL

Current state i – –

Next possible state j – –

Fitness of state f – Equation 6

Fitness of current state fi 1.0 Equation 7

Fitness of next possible state fj – Equation 7

Probability of fixation of mutation g – Equation 7 [66]

Subfunctionalization, an absorbing state S – Equations 8 and 11

Pseudogenization/nonfunctionalization, an 
absorbing state

Y – Equations 8 and 11
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5.0 × 104 nucleotide long coding regions, and 775 nucle-
otide long regulatory region/domains. The equivalent 
parameters used for all figures that show the Subfunc-
tionalization-Only (Sub-Only)[59] Model is 4 regulatory 
regions/domains (z), 1.25 × 10–3 mutations per gen-
eration that affects transcription binding to regulatory 
region/domain(ur = ub ⋅ lc), 1.9375 × 10–5 mutations per 
generation that affect transcription of a functional cod-
ing strand (uc = uh ⋅ lr). Figures 2, 3, 4, and 5 all used a Keq 
value of 1.0 × 1010 mol/mL. Figure 6 used a range of Keq 
values including 1.0 × 104; 1.0 × 106; 1.0 × 109; 1.0 × 1012 
(mol/mL). For all figures, the concentration of total A 
was 2.5 × 10–6  mol/mL immediately after duplication. 
The same is true for concentration of total B, except for 
Fig.  3b, because that models a small-scale duplication 
event, where B was not duplicated so the concentration 
of total B used was 1.25 × 10–6 mol/mL. The figures show 
anywhere between 2.0 × 103 and 1.0 × 104 generations 
after the duplication event, chosen based on figure clar-
ity. The effective population size chose for each figure 

was 1.4 × 105 individuals for Figs.  2 and 3. For Figs.  4, 
5a–e and 6, we used a range of Ne’s from as low as 100 to 
as much as 1.0 × 107.

All computer software is available on Github at https://​
github.​com/​aewil​son96/​Wilson_​Liber​les_​2022.

Expected impact of parameter choices
We wanted to use parameter values that existed in a real-
istic range in order to show the magnitude of the effect 
that dosage balance has on the rate of subfunctionaliza-
tion. To obtain biologically realistic values, we conducted 
a literature search for values that were equal to our 
parameters, or a proxy that would be on a similar order 
of magnitude as our parameters (see Tables 2 and 3). We 
chose these values to perform our calculations because 
they represented close proxies and had good evidence for 
them; however, it is expected that the general behavior 
shown in the results section holds true regardless of the 
values used. The logical argument for this expectation is 
as follows.

Fig. 2  Distribution of Duplicate Gene Pairs across States over 5000 generations, represented as a percentage. The purple line is the percentage 
of gene pairs that are completely redundant. The dark blue line is the percentage of gene pairs in State 1 with one of the copies having lost one 
expression domain. The gray line is the percentage of gene pairs in State 2 with one of the copies having lost two expression domains. The yellow 
line is the percentage of gene pairs in State 2 with one of the copies having lost three of four expression domains. The orange line is the percentage 
of gene pairs where the expression domains have been subfunctionalized. The green line is the percentage of gene pairs where one of the copies 
have been completely nonfunctionalized/pseudogenized. The red box is a zoomed in graph of the percentage of gene pairs in State 1, State 2 and 
Subfunctionalized. The blue box is a zoomed in graph of the percentage of gene pairs in State 2 and State 3. The red arrow indicates where 3.5% is 
on the y axis. The blue arrow indicates where 0.12% is on the y axis

https://github.com/aewilson96/Wilson_Liberles_2022
https://github.com/aewilson96/Wilson_Liberles_2022
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Fig. 3  a The percentage of gene pairs that have been subfunctionalized over 5000 generations after a Whole-genome Duplication Event. The 
blue line is the Subfunctionalization-Only Model. The orange line is the new Subfunctionalization + Dosage Model. The red box shows the graph 
zoomed in to 700 generations and 0.1% gene pairs. The red star represents where the two lines cross, prior to the star, Sub-Only Model has a higher 
percentage of gene pairs that are subfunctionalized, while after the star, the Sub + Dos model has a higher percentage of gene pairs that have been 
subfunctionalized. b The percentage of gene pairs that have been subfunctionalized over 5000 generations after a Small-Scale Duplication Event. 
The blue line is the Subfunctionalization-Only Model. The orange line is the new Subfunctionalization + Dosage Model. The red box shows the 
graph zoomed in to 700 generations and 0.1% gene pairs. The blue star represents where the two lines cross, prior to the star, Sub-Only Model has a 
lower percentage of gene pairs that are subfunctionalized, while after the star, the Sub + Dos model has a lower percentage of gene pairs that have 
been subfunctionalized
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The z values are equal for the rate calculations for both 
the Subfunctionalization-Only Model [59]and Subfunc-
tionalization + Dosage Model. As shown in Eqs.  9 and 
10, uc is equivalent to uh ⋅ lc, and ur is equivalent to ub 
⋅ lr. Additionally, uh, lc, ub, and lr > 0, because the muta-
tion rate would always be positive, and the length of the 
regions will be positive. Therefore, uc and ur > 0.

So, we can ignore uc and ur from Sub-Only Model 
and uh ⋅ lc and ub ⋅ lr from Sub + Dos Model because 
they are equal. The only difference in the rate calcula-
tion of the Sub + Dos Model from the Sub-Only Model 
is g ⋅ Ne equals 1 in the Sub-Only equation (because Ne 
⋅ 1/Ne = 1), but Sub + Dos calculates g as the probability 
of fixation from the relative fitnesses of each state [66]. 

Fig. 4  The percentage of gene pairs that have been subfunctionalized over 2000 generations after a whole-genome Duplication Event for 6 
different effective population sizes (Ne) for the new Sub + Dos Model. Note that as the effective population size increases, so does the efficacy 
of selection, and that leads to the pattern where there is a longer delay for subfunctionalization to occur, but will ultimately lead to a higher 
percentage of subfunctionalized duplicate gene pairs. Also note that with the largest Ne shown is so delayed, that it hasn’t even begun to 
subfunctionalize for the number of generations shown, however will ultimately surpass the others in the percentage of subfunctionalized gene 
pairs

(See figure on next page.)
Fig. 5  A comparison of the effect that Ne has on the resulting percentage of gene pairs that have subfunctionalized after a whole-genome 
duplication event for the Subfunctionalization-Only Model and the Subfunctionalization + Dosage Model. The blue lines are the 
Subfunctionalization-Only Model and the orange lines are the Subfunctionalization + Dosage Model (a) Subfunctionalization-Only Model over 
7000 generations for 3 different effective population sizes (Ne). Note that the percentage of subfunctionalized genes is the same at any given 
time because the effective population size does not affect the rate of subfunctionalization in this model. b Over 7000 generations for 3 different 
effective population sizes (Ne) for our Subfunctionalization + Dosage Model. Note that as the effective population size increases, so does the 
efficacy of selection, and that leads to the pattern where there is a longer delay for subfunctionalization to occur, but will ultimately lead to a 
higher percentage of subfunctionalized duplicate gene pairs. c Over 6000 generations comparing the Subfunctionalization-Only Model to our 
Subfunctionalization + Dosage Model with effective population sizes (Ne) = 1000. The red star represents where the two lines cross, prior to the 
star, Sub-Only Model has a higher percentage of gene pairs that are subfunctionalized, while after the star, our Sub + Dos model has a higher 
percentage of gene pairs that have been subfunctionalized. d Over 6000 generations comparing the Subfunctionalization-Only Model to our 
Subfunctionalization + Dosage Model with effective population sizes (Ne) = 100,000. The red star represents where the two lines cross, prior to 
the star, Sub-Only Model has a higher percentage of gene pairs that are subfunctionalized, while after the star, our Sub + Dos model has a higher 
percentage of gene pairs that have been subfunctionalized. e Over 5000 generations comparing the Subfunctionalization-Only Model to our 
Subfunctionalization + Dosage Model for two effective population sizes (Ne) = 1000 (lighter colored lines) and Ne = 100,000 (darker colored lines). 
For each Ne value, initially the Sub-Only model has a higher percentage of gene pairs that are subfunctionalized, but eventually our Sub + Dos 
Model has a higher percentage of gene pairs that have been subfunctionalized
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Fig. 5  (See legend on previous page.)
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So therefore, the important factor is how the behavior of 
rate = 1 is different than g ⋅ Ne.

Because in whole-genome duplication events, [hp] will 
increase to some extent with the introduction of more 
imbalance, even if it is fractionally small, the fitness of the 
next state will always be lower than that of the current 
state. A number larger than 1 to the Ne

th power, given 
the Ne

th power is larger than 1 (which is a reasonable 
assumption for population sizes), will also be larger than 
1. Therefore, the rate of transitioning to the next state 
will always be less than 1 for the Sub + Dos Model, given 
these assumptions, so it will always have a smaller rate 
than the rate in the Sub-Only Model. Note that having 
more introduced imbalance will always make the fitness 
of that state lower relatively, so nonfunctionalization will 

be less favorable than subfunctionalization for z ≥ 2, so 
the rate of nonfunctionalization will be even lower than 
the rate of subfunctionalization in the Sub + Dos Model.

Therefore, we should expect to see the same pattern 
presented by our results after a whole-genome duplica-
tion events for parameters that abide by our assump-
tions. To summarize, these assumptions include that the 
nucleotide mutation rate is positive, the length of the 
nucleotide regions is positive, subfunctionalization and 
nonfunctionalization are neutral in the Sub-Only model, 
subfunctionalization and nonfunctionalization receive a 
fitness penalty associated with the extent of imbalance 
the state introduces, and the population size is greater 
than 1.

Fig. 6  The percentage of gene pairs that have been subfunctionalized over 10,000 generations with an effective population size (Ne) of a 1,000,000 
b 10,000 after a Whole-genome Duplication Event for 4 different equilibrium constants (Keq) for our Subfunctionalization + Dosage Model. Note that 
as Keq increases, so does the strength of selection, and that leads to the pattern where there is a longer delay for subfunctionalization to occur but 
will ultimately lead to a higher percentage of subfunctionalized duplicate gene pairs
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Results
Figure  1a shows the state space and transition rates for 
the Subfunctionalization + Dosage-Balance Model. Fig-
ure  1b shows the Subfunctionalization-Only Model 
taken from Stark et  al. [59], which has the same state 
space, but different transition rates. There are several 

similarities between the transition rate calculations for 
these two models. One similarity is that they both have 
the same opportunity for a new mutation to occur (muta-
tion rates) because the state space is the same. The main 
difference is how the probability of fixation is calculated. 
The Sub-Only model combines several parameters into 

Table 3  Parameters that change for the Subfunctionalization + Dosage Model for each figure

The Subfunctionalization-Only Model shares the same time parameter for the corresponding figure

Figure number Keq (mol/mL) Ne (individuals) Time (generations) [A]total immediately 
after duplication
(mol/mL)

[B]total 
immediately 
after 
duplication
(mol/mL)

2 10,000,000,000 140,000 5000 0.0000025 0.0000025

3a 10,000,000,000 140,000 5000 (zoomed in 700) 0.0000025 0.0000025

3b (Small-Scale) 10,000,000,000 140,000 5000 (zoomed in 700) 0.0000025 0.00000125

4 10,000,000,000 100; 1,000; 10,000; 
100,000; 1,000,000; 
10,000,000

2000 0.0000025 0.0000025

5a (Sub-Only) 10,000,000,000 100; 1,000; 10,000 7000 0.0000025 0.0000025

5b (Sub + Dos) 10,000,000,000 100; 1,000; 10,000 7000 0.0000025 0.0000025

5c 10,000,000,000 100,000; 1,000 6000 0.0000025 0.0000025

5d 10,000,000,000 100,000; 1,000 6000 0.0000025 0.0000025

5e 10,000,000,000 1,000; 100,000 5000 0.0000025 0.0000025

6 10,000; 1,000,000; 
1,000,000,000; 
1,000,000,000,000

10,000; 1,000,000 10,000 0.0000025 0.0000025

10,000,000,000 100; 1,000; 10,000; 
100,000; 1,000,000; 
10,000,000

2000 0.0000025 0.0000025

Fig. 7  Concentration of hydrophobic surface area for different ratios of interacting partners. Concentration of hydrophobic surface area is shown 
on a log scale, as well as equilibrium constant values (Keq). When the Keq values are larger, and the ratio of interacting partners ([A]total/[B]total) is 
closer to one, the sum of [A]free and [B]free is smaller. Similarly, when the Keq values are smaller, and the ratio of interacting partners ([A]total/[B]total) 
is further from one, the sum of [A]free and [B]free is larger. This is possibly explained by the fact that overall exposed hydrophobic patches would be 
lower if A and B are in balance and are tight binders
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one parameter, with the probability of fixing a mutation 
(ur or uc) as being the product of the allele frequency in 
the population (1/Ne), the population size (Ne), the rate 
of nucleotide mutation rate (ub or uh), and the length of 
the region in question (lr or lc). Because there is one allele 
per individual as both models assume haploidy, 1/Ne and 
Ne cancel out and are therefore not included in their rate 
calculations. Because of the cancelation of parameters, 
the Sub-Only Model’s ur and uc can be directly compared 
to the product of the nucleotide mutation rate (ub or uh), 
and the length of the region in question (lr or lc) in the 
Sub + Dos Model. Therefore, for the purpose of com-
parison, we assumed their ur to be equal to ub ⋅ lr and uc 
to be equal to uh ⋅ lc. This expansion of parameter space 
was necessary to properly mirror the complexity of the 
biological processes involved in dosage compensation 
and allows us to input empirical information into the 
rate equations. While the Sub + Dos is also a haploid 
model, it uses the relative fitnesses of each state to cal-
culate the probability of fixation [66]; therefore these val-
ues are included in the rate calculations. These fitnesses 
are correlated with the total concentration of hydropho-
bic residues, which are a representation of the amount 
of imbalance each state introduces between interacting 
partners.

Our results show that with more imbalanced interact-
ing partners, there is an increased concentration of cel-
lular exposed hydrophobic patches, which would lead to 
more spurious deleterious reactions occurring (Fig. 7). In 
addition, we found that with smaller Keq, we also see this 
increased concentration of exposed hydrophobic patches 
because of the lower affinity, leading to more gene prod-
ucts to exist in the unbound state, also leading to more 
spurious deleterious interactions (Fig.  7). Also notably, 
the more imbalanced the partners are, the bigger the dif-
ference is between [hp] values with a small versus large 
Keq. For Fig.  7, stoichiometric imbalance is presented 
as a percent distance away from the 1:1 ratio, where the 
ratios were scaled where 0% was a 1:1 ratio and 100% 

imbalanced is the ratio with the largest magnitude, there-
fore the furthest from 1:1. If [A]total ≥ [B]total, we used 
[B]total/[A]total as the ratio and if [B]total > [A]total then, we 
used [A]total/[B]total as the ratio.

The parameters used for the Sub + Dos Model across 
all figures are 4 regulatory regions/domains (z), fitness 
scalar of 1.0 (w), 2.5 × 10–8 nucleotide mutations per 
generation (uh and ub), coding region 50,000 nucleo-
tides long (lc), and regulatory region 775 nucleotides 
long (lr). The equivalent parameters used for the Sub-
Only Model across all figures are 4 regulatory regions/
domains (z), 1.25 × 10–3 coding region mutations per 
generation (ur = ub ⋅ lc), and 1.9375 × 10–5 regulatory 
region mutations per generation (uc = uh ⋅ lr). Table  3 
lists the parameters that are not the same through-
out all the figures. Figure  2 shows the percentage of 
gene pairs in each state over 5000 generations for the 
Sub + Dos Markov model using parameter values 
found in Table  1. The Markov model begins in a fully 
redundant state and two absorbing states are possi-
ble, nonfunctionalization and subfunctionalization. As 
expected, under this modeling framework using these 
parameters, > 99% of redundant genes nonfunctionalize 
and a small fraction subfunctionalize.

Figure  3a shows 5,000 generations after a whole-
genome duplication event. When using equivalent 
parameters, the initial rate of subfunctionalization 
parameters is higher with the Sub-Only Model than in 
the new Sub + Dos Model after a whole-genome duplica-
tion event. However, as indicated by a star, a transition 
occurs and the equilibrium level of subfunctionalization 
is much higher with the Sub + Dos model. Table 4 shows 
the frequencies of different states over time under the 
different models.

Alternatively, Fig.  3b shows 5000 generations after a 
small-scale duplication event. It shows how the com-
parison of the behaviors between models would change 
after a small-scale duplication. Again, here we show that 
the initial subfunctionalization rate is faster with the 

Table 4  Comparison of the resulting percentage of genes in each state for Sub-Only Model and Sub + Dos Model is shown below for 
400 Generations and 4,000,000 Generations following whole-genome duplication

Percentage of genes in each state 400 Generations
Sub-Only

4,000,000 
Generations
Sub-Only

400 Generations
Sub + Dos

4,000,000 
Generations
Sub + Dos

State 1: fully redundant (transient) 34.58% 0% 52.19% 0%

State 2: Loss of 1 enhancer (transient) 2.805% 0% 3.283% 0%

State 3: Loss of 2 enhancers on one copy (transient) 0.03559% 0% 0.03486% 0%

State 4: Loss of 3 enhancers on one copy (transient) 0.0001927% 0% 0.0001603% 0%

State S: Subfunctionalized (absorbing) 0.04339% 0.2557% 0.04053% 0.4687%

State Y: One copy pseudogenized (absorbing) 62.54% 99.74% 44.46% 99.53%
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Sub + Dos model, but is eventually overtaken by the Sub-
Only model, which is in fact, the opposite as it is after a 
whole-genome duplication event. This pattern is intui-
tive because dosage balance is initially preserved after a 
whole-genome duplication event, but not after a small-
scale event, making the fitness of losing a mutation after 
a small-scale event more favorable.

The results obtained in Fig.  2 are dependent upon 
choices of parameters (Table  3). A range of parameter 
values exploring the effects of Ne (and thereby selection) 
(Fig. 5b–e, Additional file 1: Fig. S1) and of equilibrium 
binding constants (Fig. 6) were explored. Figure 4, shows 
how the Sub + Dos model changes for 6 different Ne val-
ues between 100 and 1.0 × 107 individuals over 2000 gen-
erations. These results show that as the Ne increases, so 
does the efficacy of selection, resulting in a longer delay 
for subfunctionalization to occur but eventually leading 
to more subfunctionalized gene pairs, and this holds true 
when compared to the Sub-Only model (Fig. 5b–e, Addi-
tional file 1: Fig. S1). This effect, a longer delay but ulti-
mately more subfunctionalized pairs, was also observed 
for increasing binding affinity.

Discussion
When dosage balance effects are added to a model for 
subfunctionalization, this leads to increased retention 
after whole-genome duplication events after an ini-
tial delay in the rate of subfunctionalization. Consist-
ent with observations on differential retention patterns 
for smaller-scale duplication, the opposite trends are 
observed, with a reduction in the probability of terminal 
subfunctionalization.

It should be noted that while most duplicate genes 
are lost and are lost relatively quickly from genomes, 
this process is slowed down in whole-genome duplica-
tion events relative to small-scale duplication events in 
genomic data [3, 30] and is slowed down for duplicates 
that are dosage balanced [55, 68, 69]. The model has tun-
able parameters for the selective strength that will affect 
the absolute levels of retention, but the qualitative effects 
are observable over broad ranges of parameterization.

Dosage balance as a process generates a time-depend-
ent selective barrier to subfunctionalization and to non-
functionalization. The dynamics of this process involve 
delayed terminal subfunctionalization, but subfunc-
tionalization at higher rates in the end. Because this 
is selective and is dependent upon Ne, it emerges that 
subfunctionalization of genes when dosage balance pro-
cesses are acting is not a purely neutral process. This is a 
finding that has not previously been described in the lit-
erature to our knowledge.

While we have not independently varied w, the 
selective scalar, this becomes convoluted with Ne in 

determining selective effects and variation in w would 
be expected to mirror variation in Ne. Variation in Keq 
reveals that higher Keq values, that favor subunits in their 
bound form, also leads to increased delay but higher rates 
of terminal subfunctionalization, because it increases the 
selection against imbalanced proteins because fewer sub-
units are in the unbound state when in balance.

In this study, we have assumed that gene expression 
levels of each duplicate remain constant. Ascencio et  al. 
[49] found that in fact and as expected, gene expression 
evolves as a co-evolutionary process after gene duplica-
tion. While this was not modeled for the sake of simplicity, 
changing gene expression as a stochastic process could be 
added to the model to examine the dynamics under those 
scenarios. Further, the interactions that were modeled 
were those that reflected a heterodimer that forms a sta-
ble interaction. The extension to trimers and higher order 
heterocomplexes is possible, and is expected to yield simi-
lar results, but no longer enables simple analytical transi-
tion probabilities of the type described here. Additionally, 
the main findings are expected to hold true for any gene 
that is sensitive to dosage balance effects. Another simpli-
fying assumption was the expression in only two tissues. 
Stark et al. [59] explored the role of the number of tissues 
expressed in the dynamics of subfunctionalization without 
dosage; that complexity could also be ported over to this 
model, with clear expectations of the resulting dynamics. 
An increase in the number of independent tissue expres-
sions increases the rate of nonfunctionalization relative to 
subfunctionalization and therefore would be expected to 
increase the selective effect of the dosage barrier.

Another component that has been ignored to date is 
the deus ex machina process of neofunctionalization. 
Adding neofunctionalization, depending upon the asso-
ciated assumptions about functional redundancy, has 
the potential to change the dynamics described here. 
The addition of neofunctionalization will create a fuller 
mechanistic model for duplicate gene fates, but is beyond 
the scope of the study here. There is complexity in identi-
fying reasonable assumptions for the mutational process 
leading to neofunctionalization, which is why this is not 
as straight forward as it might appear.

While other levels of biological complexity in the under-
lying population genetics and molecular evolutionary pro-
cesses are conceivable to model (including trans-effects), 
it is important to recognize the change in dynamics and 
process associated with just adding dosage balance to the 
characterization of the subfunctionalization process.

Conclusions
The complex dynamics of the interplay between sub-
functionalization and dosage balance leads to oppo-
site expectations for the timing and probabilities of 
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retention for genes that encode proteins that function 
as multimeric complexes compared to those that func-
tion as monomers or homomultimers between whole-
genome duplication and smaller-scale duplication. 
For proteins that function in multimeric complexes, 
retention following whole-genome duplication events 
through subfunctionalization is expected to be a non-
neutral process.
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