
MacNeil et al. BMC Ecol Evo          (2021) 21:123  
https://doi.org/10.1186/s12862-021-01839-0

RESEARCH

Plankton classification with high‑throughput 
submersible holographic microscopy 
and transfer learning
Liam MacNeil1*  , Sergey Missan2, Junliang Luo3, Thomas Trappenberg3   and Julie LaRoche1*   

Abstract 

Background:  Plankton are foundational to marine food webs and an important feature for characterizing ocean 
health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk 
volumes—opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside tech-
nical hurdles to automate classification from large datasets. However, a limited number of deployable imaging instru-
ments have been coupled with the most prominent classification algorithms—effectively limiting the extraction of 
curated observations from field deployments. Holography offers relatively simple coherent microscopy designs with 
non-intrusive 3-D image information, and rapid frame rates that support data-driven plankton imaging tasks. Classifi-
cation benchmarks across different domains have been set with transfer learning approaches, focused on repurpos-
ing pre-trained, state-of-the-art deep learning models as classifiers to learn new image features without protracted 
model training times. Combining the data production of holography, digital image processing, and computer vision 
could improve in-situ monitoring of plankton communities and contribute to sampling the diversity of microbial 
eukaryotes.

Results:  Here we use a light and portable digital in-line holographic microscope (The HoloSea) with maximum opti-
cal resolution of 1.5 μm, intensity-based object detection through a volume, and four different pre-trained convo-
lutional neural networks to classify > 3800 micro-mesoplankton (> 20 μm) images across 19 classes. The maximum 
classifier performance was quickly achieved for each convolutional neural network during training and reached 
F1-scores > 89%. Taking classification further, we show that off-the-shelf classifiers perform strongly across every deci-
sion threshold for ranking a majority of the plankton classes.

Conclusion:  These results show compelling baselines for classifying holographic plankton images, both rare and 
plentiful, including several dinoflagellate and diatom groups. These results also support a broader potential for 
deployable holographic microscopes to sample diverse microbial eukaryotic communities, and its use for high-
throughput plankton monitoring.

Keywords:  Holographic microscopy, High-throughput imaging, Deep learning, Convolutional neural networks, 
Plankton, Classification workflow, Deployable microscope
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Background
Plankton are an integral component of the global ocean. 
Plankton abundance and composition can be coupled to 
environmental conditions and yield important insights 
into aquatic food webs (e.g., [1, 2]). Often hugely diverse 
and occupying numerous trophic modes in surface ocean 
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ecosystems, classifying plankton composed in a water 
mass is challenging, error prone, and a bottleneck of 
time and costs. Recent developments in imaging instru-
ments allow biological contents to be visualized directly 
from bulk volumes at high image resolution, without dis-
integrating cell structures [3]. Imaging instruments have 
used a variety of optical methods including flow cytom-
etry [4], shadowgraphs [5], holography [6], among others. 
Several such devices have imaged plankton size classes 
that collectively encompass autotrophs and heterotrophs, 
spanning four orders of magnitude in size from 2 μm to 
10 cm [3, 7, 8]. The high sampling frequency from digi-
tal imaging also opens new ecological challenges explor-
ing microbial eukaryotic diversity [9], alongside technical 
challenges to automate classification from spatial and 
temporally dense datasets (e.g., [10, 11]).

Digital holography is based on the diffracted light field 
created by interference from objects in a sample which 
is illuminated by a coherent light (e.g., a laser): That 
interference pattern is recorded by a digital sensor and 
composes a hologram [12]. Since their inception [13], 
holographic microscopes have been applied widely at 
micrometre scales to observe, for example, particle dis-
tributions [14], coral mucus production [15], and to dif-
ferentiate cancerous pancreatic cells from healthy ones 
[16]. Holographic microscopes have advanced consider-
ably with improving computational techniques for digital 
reconstruction and focus enhancement [17]. Digital in-
line holographic microscopy (DIHM) with a point-source 
laser is a simple, lens-free implementation of Gabor-style 
holography that can capture a 3-D sample using a com-
mon path optical configuration, whereby both reference 
and interfered light waves copropagate and are recorded 
by a digital camera [18]. DIHM has several advantages 
for biological studies including a simple design with a 
larger depth of field than conventional light microscopy, 
allowing rapid imaging of larger volumes and 3-D numer-
ical refocusing with no required staining of cells [19, 
20]. Due to its simplicity, DIHM can easily be incorpo-
rated into various cell imaging configurations including 
amplitude and phase images [21] and to date, numerous 
studies have used holography to image marine plankton 
[8, 22–25]. There is increasing interest to use its advan-
tages towards automating classification of plankton and 
particulates from water samples (e.g., [26–28]). A review 
of holographic microscopes for aquatic imaging can be 
found in Nayak et al. [29].

Plankton exhibit substantial morphological variation 
within and between major groups, are often imaged at 
different orientations, appear partially occluded, or dam-
aged. Extracting features from plankton images origi-
nally relied on handcrafted feature descriptors, which 
are label-free and train classifiers like support vector 

machines or random forest efficiently [30]. But detect-
ing features based on predefined traits rapidly reaches 
its limits. Instead, deep learning algorithms have gained 
popularity for their state-of the-art performance and, at 
least in part, because they require no domain specific 
knowledge or impose descriptors for pattern recognition, 
rather features are learned during training [31]. Deep 
learning involves representing features at increasing 
levels of abstraction and for image tasks, the most suc-
cessful models have been convolutional neural networks 
(CNNs): a layered neural network architecture, with lay-
ers equating to depth, and where convolutions substitute 
as feature extractors [32]. These CNNs learn features 
through sequential layers connected to the local recep-
tive field of the previous layer and the weights learned 
by each kernel [32]. For plankton, CNNs have improved 
the classification stage of automation efforts [33, 34]. But 
the natural imbalance in plankton datasets and frequent 
drifts in class distributions [35] render accuracy bench-
marks for performance biased towards majority classes 
and poor evaluation metrics (e.g., [36, 37]).

Achieving state-of-the-art classification at scale often 
requires large training datasets for CNNs, but generic 
features can be extracted from pre-trained models and 
repurposed—termed transfer learning—such that CNNs 
have a baseline that can recognize features unspecific to 
any image, similar to Gabor filters or color blobs [38]. 
Transfer learning has achieved classification benchmarks 
equivalent to traditional feature descriptors (e.g., [39]). 
Large plankton image datasets do exist—some containing 
several million labelled images across hundreds of classes 
(e.g., [40])—but there is a current lack of easily deploya-
ble plankton imaging devices capable of rapidly sampling 
several litres. Holographic microscopy combined with 
computer vision, could bridge high throughput in-situ 
data production with increasingly automated classifica-
tion and enumeration of major plankton groups.

The purpose of this study is to show whether species of 
micro-mesoplankton can be detected in-focus from volu-
metric samples, classified with deep learning algorithms, 
and to evaluate classifiers with threshold-independent 
metrics—which, to date, are rarely considered for imbal-
anced plankton classification tasks.

Methods
The HoloSea: submersible digital in‑line holographic 
microscope (DIHM)
General DIHM designs for biological applications are 
reviewed in Garcia-Sucerquia et al. [6] and Xu et al. [20]. 
A similar submersible DIHM, the 4-Deep HoloSea S51 

1  http://4-​deep.​com/

http://4-deep.com/
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(92 × 351 mm, 2.6 kg), first introduced by Walcutt et al. 
[41], was used here to image plankton cells. Its principal 
advantage is a simple lensless, in-flow configuration with 
0.1  mL per frame and high frame rates (> 20  s−1) that 
support a maximum flow rate > 130 mL min−1. Housed in 
an aluminum alloy casing, the HoloSea uses a solid-state 
laser (405 nm) coupled to a single mode fiber optic cable 
acting as a point source to emit spherical light waves 
through a sapphire window. As light waves travel through 
the sampled volume, both the waves scattered by objects 
and reference waves copropagate until they interfere at 
the plane of the monochrome camera sensor (CMOS) 
to form an interference pattern (i.e., a 2048 × 2048 hol-
ogram). The camera is aligned 54  mm away from the 
point source and recorded holograms are stored as 
PNG images for further numerical reconstruction and 
analyses.

Numerical hologram reconstructions
Hologram reconstruction from point-source holography 
was first proposed by Kreuzer et  al. [42], and its prin-
ciples are well described [19–21]. The workflow from 
reconstruction to object focusing are shown in Fig. 1. In 
order to recover the information about objects within 
holograms at the specific focal distance from the point 
source, wave front intensity was digitally reconstructed 
based on a Helmholtz-Kirchhoff transformation [43] in 
4-Deep Octopus software.2 Each hologram was recon-
structed at multiple z-distances from the point source 
using a 50 μm step size through the sample volume. To 
detect regions of interest (ROIs) in each reconstructed 

plane, we used 4-Deep Stingray software3 with a glob-
ally adaptive threshold algorithm based on Otsu [44]. 
During the detection step, ROIs could also be discrimi-
nated based on their size, for our purposes, we defined 
a range of two orders of magnitude (20–2000  μm) to 
encompass micro-mesoplankton. Detected ROIs were 
clustered together across multiple z-planes based on the 
Euclidian distances between their centroids using the 
Density Based Spatial Clustering with Applications of 
Noise (DBSCAN) algorithm [45]. Each resultant cluster 
contained the same ROI tracked at multiple consecutive 
z-planes within the volume. To identify the plane con-
taining an in-focus object within each cluster, we used 
Vollath’s F4 autocorrelative algorithm [46]—the object 
with the highest correlation score between pixels was 
then stored in our database and the rest of objects within 
the cluster were discarded.

Holographic image dataset
The plankton for our experiments (Table  1) included 
monocultures grown in artificial seawater and 500  mL 
surface (1  m) water samples from Bedford Basin com-
pass buoy station (44° 41′ 37″ N, 63° 38′ 25″ W). Mono-
culture samples were grown under f/2 nutrient replete 
and the recommended temperature and light condi-
tions (Bigelow Laboratories, Maine, USA). Samples were 
pumped through the sample chamber using a peristaltic 
pump and recorded at 10 fps. The resulting image dataset 
was augmented by rotating each image horizontally, ver-
tically, and translated to enlarge the number of training 
images, and hence the learnable features threefold [47]. 
All images were scaled to 128 × 128 pixels preserving the 

Fig. 1  The workflow for imaging, detecting, and selecting in-focus objects. Volumes are recorded in the microscopes sample space and the 
interference pattern is reconstructed to create a hologram. Plankton objects are first detected as ROIs across 300 reconstructed planes (i.e., 
z-distances) of a hologram corresponding to the 15 mm sample space. The plane containing an in-focus object is calculated via autocorrelation and 
Vollath’s F4 algorithm

2  http://4-​deep.​com/​produ​cts/​octop​us-​softw​are/ 3  http://4-​deep.​com/​produ​cts/​sting​ray-​softw​are/

http://4-deep.com/products/octopus-software/
http://4-deep.com/products/stingray-software/
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aspect ratio of the source images. Classes were randomly 
split approximately 50:10:40 for training, validation, and 
testing, respectively. Training and validation samples 
were divided into five stratified k-folds, where each fold 
retains the proportion of classes in the original training 
set [48]. We included a “noise” class to filter holographic 
artefacts [49].

Convolutional neural networks (CNNs)
The plankton detected in our holograms were classi-
fied with four different CNNs: VGG16 [50], InceptionV3 
[51], ResNet50V2 [52], and Xception [53]. In terms of 
model depth, VGG16 is the shallowest, InceptionV3 and 
ResNet50 are near equal, while Xception is the deepest. 
Each uses convolutions as feature extractors but with dif-
ferent model architecture (See Additional file 1: Table S1). 
Due to the modest size of our plankton dataset, we used 
a transfer learning approach where each model was pre-
trained on ~ 1.4 M images binned into over 1000 classes 
from the ImageNet dataset [54]. Pre-trained models have 
already learned generalizable features from the ImageNet 
dataset—which includes animals, sports objects, com-
puters, and other classes very different from plankton—
that provides a powerful baseline for feature recognition 
[38]. Classification was implemented in the Python deep 
learning toolbox Keras [53], which is accessible as a core 
component of the Tensorflow package [55].

Each model was applied in two different ways, first as 
a feature extractor by only retraining the deepest model 
layers to preserve the pre-tuned weights [38], and sec-
ondly by maintaining the first 10–20 layers and retraining 
the remaining layers. The second method was explora-
tory and involved freezing the first 10 layers in VGG16, 
and the first 20 layers for the other deeper models, which 
have presumably already learned generic features. We 
used dropout for each method at a probability of 0.3 to 
prevent overfitting [56] and added a Softmax classifier to 
transform the fully connected vector into a probability 
distribution specific to 19 classes [57]. Our images were 
preprocessed according to each CNNs requirements [58], 
and the greyscale color channel was repeated for each 
colored channel (i.e., RGB) that the models observed 
from ImageNet.

Prediction bias from our class imbalances, where the 
most abundant class was nearly three times greater than 
the least abundant, was offset by maintaining class pro-
portions during training using stratified k-folds [59]. 
Combining the predictions on the validation and test 
sets from each fold, for each model, created an ensem-
ble of networks to evaluate prediction variance [60]. 
Training was repeated for 20 epochs for each fold, where 
an epoch represents an entire pass of the training set. 
Training specifications included a batch size of 32, and 
momentum values of 0.9 in batch normalization layers of 
ResNet50, InceptionV3, and Xception [61]. The learning 

Table 1  Taxa identity, size ranges, and total number of images

Cell sizes are taken from apical cell length measurements, using 25 examples for each class

Class Taxonomic group Size (µm) Strain Examples

Alexandrium tamarense Dinoflagellate 20–80 CCMP1771 201

Ceratium fusus Dinoflagellate 50–350 Environmental 56

Ceratium lineatum Dinoflagellate 80–230 Environmental 44

Ceratium longpipes Dinoflagellate 200–340 CCMP1770 378

Ceratium sp. Dinoflagellate 140–230 Environmental 64

Chaetoceros socialis Diatom 40–360 CCMP3263 102

Chaetoceros straight Diatom 30–120 CCMP215 325

Chaetoceros sp. Diatom 30–430 CCMP1690 114

Crustacean Animal 180–640 Environmental 13

Dictyocha speculum Silicoflagellate 30–105 CCMP1381 185

Melosira octagona Diatom 80–460 CCMP483 173

Noise Artefact – – 150

Parvicorbicula socialis Choanoflagellate 25–85 Environmental 36

Prorocentrum micans Dinoflagellate 30–120 CCMP688 1074

Pseudo-nitchzia arctica Diatom 35–150 CCMP1309 33

Rhizosoenia setigera Diatom 200–530 CCMP1330 306

Rods Morphological 60–280 – 396

Skeletonema costatum Diatom 60–130 CCMP2092 157

Tintinnid Ciliate 90–310 Environmental 20
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algorithm minimized the log loss (cross-entropy) func-
tion through backpropagation using the Adam optimizer 
[62]—the learning rate was set at 0.01 and reduced by 
a factor of 10 if the loss function failed to improve by 
1e−3 after five epochs. Holographic reconstructions, 
object detection and classification were implemented in 
the NVIDIA CUDA GPU toolkit [63] using a NVIDIA 
GeForce GTX960 GPU with 16 GB of RAM.

Validation measures
Classification performance was evaluated using three 
broad families of metrics: Thresholding, probabilistic, 
and ranked. To extend each metric to our multi-label 
problem, we binarized classes (one vs. all) to mimic mul-
tiple binary classification tasks. Thresholding measures 
are estimated from the quantity of true positives ( tp ), 
true negatives ( tn ), false positives ( fp ), and false nega-
tives ( fn ) observed during training and testing. These 
measures assume matching class distributions between 
training and test sets, which we satisfied in each stratified 
fold. Accuracy is simply defined by the total proportion 
of correct predictions, whereas precision is defined by 
the proportion of correctly predicted positives ( tp ) to all 
predicted positives ( tp+ fp ), also known as the predictive 
positive value (1).

The recall defines the proportion of correctly predicted 
positives ( tp ) to all positive examples ( tp+ fn ), it is equiv-
alent to the true positive rate (2).

The balanced score between precision and recall can be 
represented by the F1-score, calculated using a harmonic 
mean (3) [64].

Ecologically meaningful plankton classifiers predict 
few false positives and a high proportion of true posi-
tives across all classes [65]. This priority favors precision, 
because high precision scores imply few false positives, 
and the F1-score as the relative balance between preci-
sion and recall, as such, high F1-score contains fewer 
false positives and false negatives across all labels [65]. 
Although both metrics are more sensitive than accuracy 
to the performance of minority classes, each only summa-
rizes classifier performance at a single decision threshold: 
The predicted probability of an image belonging to a class 

(1)Precision =
tp

tp+ fp

(2)Recall
(

Sensitivity
)

=
tp

tp+ fn

(3)F1 = 2 ∗
(Precision ∗ Recall)

(Precision+ Recall)

is converted to a label only when it surpasses a fixed, and 
often arbitrarily defined threshold [66]. To overcome this, 
we generated precision-recall curves at every decision 
threshold to visualize their trade-off—in other words, 
the relationship between the fraction of correctly pre-
dicted true positives (predictive positive value) and the 
true positive rate [67]. Precision-recall curves are robust 
for imbalanced classification because they are unaffected 
by the increasing true negatives after labels are binarized 
[68]. To summarize classifier performance for each class 
across every decision threshold, we computed the aver-
age precision of each class (4), where Rn and Pn are recall 
and precision at the nth threshold, respectively [48].

Average precision is analogous to a non-linear inter-
polation of the area under each precision-recall curve 
(AUC-PR) [69]—as a rank measure, the AUC is closely 
related to statistical separability between classes [64, 67]. 
For a specific class, the performance baseline when eval-
uating AUC-PR is defined by the ratio of positives (P) to 
negatives (N ) in the test set y = P

P+N  , and is equal to the 
probability of a positive example being correctly classi-
fied over a negative example [68]. The baseline is there-
fore different for each class.

Results
Holographic data
In total, > 17,000 holograms comprising > 70  GB of data 
were produced from our samples. Reconstructed by 
Octopus software, holograms had the highest intensity in 
the central axis which attenuated at the hologram edges 
(Fig.  1). Hologram intensity was reconstructed in the 
order of eight milliseconds for a 2048 × 2048 hologram. 
The numerical holograms reconstruction, ROI clustering, 
and autofocusing that compose our multi-stage detection 
steps generated 3826 in-focus plankton objects from 19 
classes (Fig.  2). In total, the full workflow amounted to 
approximately 44 h of computational time dominated by 
in-focus detection (> 95%), and the remainder by classifi-
cation. Six classes were generated from the environmen-
tal samples including C. fusus, C. lineatum, Ceratium 
sp., Crustaceans, P. socilais, and Tintinnids. The remain-
ing classes derived from monoculture and represented 
individual plankton species. In total, the environmen-
tal classes were less abundant than classes derived from 
pure cultures. The size of plankton objects ranged from 
20 to 640 μm, with the majority smaller than 200 μm and 
belonging to microplankton (Table 1). The classes proved 
highly imbalanced with the greatest difference between 
mesoplankton Crustaceans containing 13 images, and the 
microplankton dinoflagellate P. micans containing 1074 

(4)Average Precision =

∑

n

(Rn − Rn−1)Pn
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images (Table 1). After augmentation, the CNN training 
data contained 7215 samples which when subdivided into 
stratified folds contained 5772 images for training and 
1443 images for validation.

Overall classification
The classification source code is publicly available on 
Github [70]. The feature extraction and retraining meth-
ods produced indistinguishable performance results 
across classification metrics, so we will consider only the 
feature extraction results here. For feature extraction, the 
overall classification performance based on the accuracy, 
precision, recall, and F1-score are reported in Table  2. 
The InceptionV3 model achieved the lowest precision 
values at 83% and F1-score of 81%. All the remaining 
three models performed comparably reaching precision 
scores > 88%, and F1-scores > 87%. The Xception model 
consistently outperformed every other to achieve preci-
sion and F1-scores of 89%. The underlying classification 
performance for each taxon is described below by their 
AUC-PR. Each model clearly achieved maximum pre-
cision, recall, and F1-scores quickly—in five or fewer 
epochs—while the mean and standard deviation for pre-
dictions across epochs was generally low (< 2.5%). The log 
loss error showed similar model behaviour overall, with 
error minima in fewer than five epochs and Xception 
obtaining the lowest error.

Taxa‑level classification
The AUC-PR values for each class are reported in 
Table 3. The precision-recall curves for each model (See 
Additional file 1: Figures S4–7) broadly showed that the 
highest AUC-PR values and therefore the 11 highest 
ranked classes included the dinoflagellates A. tamaranse 
and all four Ceratium taxa, along with diatoms for all 
three Chaetoceros taxa and M. octagona, the silicoflagelle 
D. speculum., and our noise class. Both Xception and 
ResNet50 ranked the rarest class of Crustaceans highly. 
As the best classifier, Xception even ranked rare taxa C. 
lineatum (0.91) and Crustacean (0.86) higher than the 
Chaetoceros straight morphotype (Fig.  2), despite con-
taining less than a seventh of examples. Classification 
performance deteriorated for the remaining seven taxa 

Fig. 2  Amplitude images reconstructed and detected from specific focal planes for each plankton class. From top left to lower right: Alexandrium 
tamarense, Ceratium fusus, Ceratium lineatum, Ceratium longpipes, Ceratium sp., Chaetoceros socialis, Chaetoceros straight, Chaetoceros sp., Crustacean, 
Dictyocha speculum, Melosira octagona, Parvicorbicula socialis, Prorocentrum micans, Pseudo-nitchzia arctica, Rhizosolenia setigera, Rods, Skeletonema 
costatum, Tintinnid. All images are segmented to 128 × 128 pixels and scale bars represent 50 µm

Table 2  Average performance of each model across folds for 
each threshold metric on the test set

Threshold metrics (%)

Model Accuracy Precision Recall F1-Score

Feature 
extrac-
tion

VGG16 88.2 ± 1.2 88.4 ± 1.5 88.1 ± 0.9 87.8 ± 1.0

InceptionV3 82.2 ± 1.8 83.7 ± 2.4 81.1 ± 2.2 81.7 ± 1.4

ResNet50V2 88.2 ± 1.1 88.6 ± 1.3 88.1 ± 07 87.9 ± 0.9

Xception 90.1 ± 1.6 89.8 ± 0.9 90.7 ± 0.4 89.8 ± 0.7
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to ranking only marginally better than random for the 
choanoflagellate P. socialis, and the diatoms including P. 
arctica. and S. costatum, as well as the Rods morphotype 
and the ciliate Tintinnids. The dinoflagellate P. micans 
was the only taxa that was unanimously ranked worse 
than random in each model—that is, AUC-PR values 
below their class baseline—despite it containing nearly 
three times as many examples as the next most abundant 
class. No clear difference in classification performance 
occurred between size classes.

Discussion
This work demonstrates the usefulness of DIHM 
equipped with a workflow for volumetric hologram 
reconstruction, objection detection and autofocusing to 
classify plankton images using off-the-shelf CNNs. In 
general, plankton size did not obviously affect classifica-
tion, but the sharpest images and most resolvable features 
were ranked higher, except for the dinoflagellate A. tama-
rense, which was likely well recognized as the only visu-
ally circular species in the dataset. In the highly ranked 
dinoflagellates, apical and antapical horns in C. fusus and 

C. lineatum and the spines in C. longpipes and Ceratium 
sp. resolved clearly and were conspicuous features. The 
dinoflagellate P. micans was poorly resolved and classi-
fied, it is possible that the small cell size (< 100 μm) lim-
ited any detection of its thecal plates or small (< 10 μm) 
apical spine [71]. For the diatoms, the chained C. socialis, 
Chaetoceros sp., and M. octagona were all distinct from 
each other with colonies, spirals, and straight chains that 
likely contributed to their reliable classification. More 
broadly, many chained objects showed a discernible 
interstitial space between cells which was especially dis-
tinct in Chaetoceros and S. costatum (Fig. 2), although the 
setae of the Chaetoceros classes was rarely visible. Com-
paratively, the poorly ranked diatoms S. costatum, R. seti-
gera, and P. arctica all lacked morphological definition. 
Similar to the WHOI plankton dataset [40], the small 
sized choanoflagellate P. socialis only displayed colonies 
of flame bulbs and the silica loricae and flagellum cannot 
be seen—likely explaining its unanimously poor ranking 
by each CNN.

The complex morphology of plankton also presents a 
problem of image scale: The features available for detec-
tion in this study were limited to those that remained 
after objects were segmented to 128 × 128 scale. These 
image sizes are different from the ImageNet images used 
to train each CNN—VGG16 and ResNet50 were trained 
on 224 × 224 images and InceptionV3 and Xception were 
trained on 229 × 229 images. This suggests encourag-
ing transferability to our holographic plankton images. 
Although scaling effectively normalizes the wide vari-
ety of features and explicitly retains scale invariant fea-
tures, imaged plankton features can obviously vary with 
size, and therefore scale invariant features only partially 
describe the spatial composition of any object [72]. Seg-
menting objects at multiple scales could capture scale-
variant features, but examples of scale-variant detection 
are less common. Artist attribution is an example of a 
complex classification task where multi-scale images 
(256, 512, 1024, 2048 pixels) systematically improved 
CNN predictions using both coarse and fine grain 
features of digitized artworks belonging to the Rijks-
museum, at the Netherlands State Museum [73]. But cur-
rently, multi-scale CNNs lose scale invariant features that 
otherwise emerge during scaling and augmentation, and 
these features are not guaranteed to emerge during con-
volutional feature extraction. Further research on scale-
variant feature detection could overcome this limitation 
and help identify the diversity of plankton features that 
are more or less resolvable at different scales.

Holography has certain technical challenges for cap-
turing high-quality plankton features, owing first to 
the need for numerical reconstruction of a sample vol-
ume, followed by object detection and autofocusing. In 

Table 3  Area under the precision-recall curves calculated using 
average precision for each class

a Indicate rare classes with < 25 examples in the training set

Class AUC-PR

VGG16 InceptionV3 ResNet50V2 Xception

Alexandrium tama-
rense

0.97 0.85 0.96 0.98

Ceratium fusus 0.88 0.55 0.78 0.89

Ceratium lineatuma 0.76 0.60 0.76 0.91

Ceratium longpipes 0.97 0.93 0.98 0.99

Ceratium sp. 0.79 0.59 0.85 0.92

Chaetoceros socialis 0.98 0.96 0.99 0.99

Chaetoceros straight 0.80 0.61 0.77 0.84

Chaetoceros sp. 0.93 0.83 0.96 0.98

Crustaceana 0.56 0.30 0.84 0.86

Dictyocha speculum 0.98 0.88 0.97 0.99

Melosira octagona 0.98 0.92 0.97 0.98

Noise 0.96 0.87 0.94 0.98

Parvicorbicula 
socialisa

0.01 0.01 0.01 0.01

Prorocentrum 
micansa

0.19 0.21 0.20 0.16

Pseudo-nitchzia 
arcticaa

0.02 0.01 0.03 0.03

Rhizosoenia setigera 0.05 0.04 0.04 0.04

Rods 0.19 0.13 0.14 0.14

Skeletonema cos-
tatum

0.06 0.07 0.05 0.06

Tintinnida 0.01 0.01 0.01 0.02
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assessing the HoloSea, Walcutt et  al. [41] observed two 
notable biases underlying particle size and density esti-
mates, including the attenuated light intensity from the 
point source, both radially and axially across the sample 
volume and secondly, that foreground objects inevitably 
shade the volume background. Although this study is 
concerned with classification, both biases are present in 
this study. Several modifications offered by Walcutt et al. 
[41] apply here: Adjusting the point source-to-camera 
distance to expand sample space illumination and create 
a more uniform light intensity, scaling object detection 
probability based on pixel intensity, and local adaptive 
thresholding to improve ROIs detection consistency at 
the dimmed hologram edges—as opposed to the fixed, 
global thresholding algorithm used here. Because objects 
are less likely to be detected at the hologram edges, only 
a fraction of the particle field is consistently imaged. The 
total volume imaged, calculated as the product of the 
number of holograms and the volume of each hologram 
(maximally 0.1  mL), should be corrected by the actual 
illuminated proportion of the sample volume: For the 
HoloSea, Walcutt et al. [41] empirically derived the work-
ing image volume at 0.063 mL per hologram. The digital 
corrections are likely simpler and should be implemented 
in future quantitative assessments, unless the increasing 
ability of deep learning algorithms in holographic recon-
struction, enhancing depth-of-field and autofocusing can 
outperform instrument-specific corrections [17]. None-
theless, holography opens new opportunities for high-
throughput volumetric image analysis and the robust 
modular casings of DIHM—which operate in the abys-
sopelagic zone (~ 6000  m) [74] and High Arctic springs 
[75]—make for versatile instruments to deploy in oceanic 
environments.

Classification tasks for almost every image domain 
have greatly improved with transfer learning [76], includ-
ing for plankton [77]. With a transfer learning approach, 
our results show good classification performance for 
multiple groups of abundant micro and mesoplank-
ton—encompassing the size spectra (5–50  µm) that 
microbial eukaryotic diversity peaks [78]. Classification 
performance was also high for several rare taxa includ-
ing Crustaceans, C. fusus, C. lineatum, and Ceratium sp., 
all of which contained fewer than 50 training examples. 
Publicly shared datasets like ImageNet have been central 
for classification benchmarks, increasing training exam-
ples for a wider recognition of features within and across 
imaging modes and minimizing the imbalance of class 
distributions in small and large datasets [79]. For plank-
ton, open access datasets such as the In  Situ Ichthyo-
plankton Imaging System [5] dataset shared through the 
Kaggle’s National Data Science Bowl competition, and 
the WHOI dataset captured by the Imaging Flow Cytobot 

[4] are important starting points. But both image modes 
are quite different from holographic images: To improve 
transferability of feature recognition, an open database 
specific to the holographic domain could promote wider 
use and shrink the gap between its high-throughput 
image production and analyses. To that end, the holo-
graphic plankton images used here will be publicly avail-
able in the Cell Image library (See ‘Availability of data and 
materials’).

Although the primary concern of this work is detec-
tion and classification from holographic images, general-
izing classifiers to unseen plankton populations remains 
challenging [35]. Plankton vary widely and are invariably 
observed unevenly. However rare plankton classes can 
be important and removing them from datasets (e.g., 
[34, 65]) is not desirable if imaging instruments are to be 
maximally effective in sampling the plankton commu-
nity. Ballast water quality testing, for example, relies on 
presence-absence of rare, invasive taxa [80]. The proper 
classifier evaluation is in performance on the origi-
nal imbalanced datasets, not how certain performance 
measures can be tuned by synthetically manipulating 
class balances [81]. As an alternative, optimizing deci-
sion thresholds in precision-recall curves for each class 
has seen revived interest, and benefits from bypassing 
the generated biases in common oversampling methods 
[82]. For evaluating classifiers of imbalanced plankton 
datasets, we encourage wider use of ranking metrics like 
AUC-PR, which summarize the trade-offs of any particu-
lar metric at every decision threshold and appear rarely 
used in plankton classification tasks (e.g., [83, 84]).

In machine learning, quantification is increasingly 
separated from classification as a different, and alto-
gether more challenging learning task; several quantifi-
cation approaches are reviewed in González et al. [85]. 
For in-situ plankton imaging systems, classification 
algorithms do not account for shifting class distribu-
tions across samples, false positive rates acquired dur-
ing model training, and because most plankton studies 
aim to estimate total group abundance across observa-
tions in space, or through time, the learning problem 
then becomes at the level of the sample, not the individ-
ual image [35]. Although any classifiers false positives 
can be corrected for (e.g., [86]), a generalizable classi-
fier would contain robust sample-level error, not at the 
taxon level [35]. The features learned by CNNs for clas-
sification, similar to those described here, can be used 
for plankton quantification. González et  al. [87] input 
high-level features from pre-trained CNNs into quan-
tification algorithms to estimate plankton prevalence 
throughout more than six years of the Martha’s Vine-
yard time series collected by the Imaging Flow Cytobot 
and showed high correspondence—even approaching 
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perfect—between probabilistic quantifiers and ground-
truth estimates even in rare taxa (< 1  mL−1). These 
results are encouraging that even imperfect quanti-
fiers can deliver biologically meaningful estimates of 
plankton.

Conclusion
This work integrates a simple and deployable high-
throughput holographic microscope with autofocused 
object detection and state-of-the-art deep learning clas-
sifiers. The combined high-throughput sampling and 
digital image processing of the HoloSea shows its ability 
to produce and reconstruct sharp images of important 
plankton groups from both culture and environmental 
samples, although some further optical corrections are 
desirable. Classifying a wide-ranging plankton classes, 
both rare and abundant, the pre-trained CNNs showed 
compelling baselines through rapid learning and complex 
feature recognition despite the starkly different holo-
graphic image domain. Overall, this ensemble of tools 
for holographic plankton images can confidently sepa-
rate and classify the majority of our micro-mesoplankton 
classes. With the exception of a small dinoflagellate and 
choanoflagellate with poorly resolved features, classifica-
tion performance was unaffected by plankton size.

Holographic microscopes are well suited for volumet-
ric sampling in aquatic ecosystems and the relatively 
simple in-line microscope configurations, compara-
ble to the model used here, can be modified for robust 
designs to deploy in harsh environments. These advan-
tages allow in-line holographic microscopes to be 
towed, attached to conventional CTD rosettes, or sta-
tioned in situ for continuous monitoring. Moreover, the 
recent achievements in holographic reconstruction and 
image processing allow micrometer resolution from 
high-throughput instruments. Achieving real-time data 
interpretation remains unfeasible, but the rapid sam-
pling capacity of holography leaves automatic classifi-
cation, although improved, an outstanding challenge.

We contribute a publicly available dataset to improve 
CNN transferability and enhance benchmarks for 
plankton classification. The improvements in holo-
graphic hardware and digital capacity argues for wider 
use in aquatic microbial ecology and more broadly, its 
high-throughput potential and data-rich images war-
rants wider adoption in cell imaging tasks.
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