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Abstract

Background: Provision of long-chain polyunsaturated fatty acids (LC-PUFA) in vertebrates occurs through the diet
or via endogenous production from C18 precursors through consecutive elongations and desaturations. It has been
postulated that the abundance of LC-PUFA in the marine environment has remarkably modulated the gene
complement and function of Fads in marine teleosts. In vertebrates two fatty acyl desaturases, namely Fads1 and Fads2,
encode Δ5 and Δ6 desaturases, respectively. To fully clarify the evolutionary history of LC-PUFA biosynthesis in
vertebrates, we investigated the gene repertoire and function of Fads from species placed at key evolutionary nodes.

Results: We demonstrate that functional Fads1Δ5 and Fads2Δ6 arose from a tandem gene duplication in the ancestor
of vertebrates, since they are present in the Arctic lamprey. Additionally, we show that a similar condition was retained
in ray-finned fish such as the Senegal bichir and spotted gar, with the identification of fads1 genes in these lineages.
Functional characterisation of the isolated desaturases reveals the first case of a Fads1 enzyme with Δ5 desaturase
activity in the Teleostei lineage, the Elopomorpha. In contrast, in Osteoglossomorpha genomes, while no fads1 was
identified, two separate fads2 duplicates with Δ6 and Δ5 desaturase activities respectively were uncovered.

Conclusions: We conclude that, while the essential genetic components involved LC-PUFA biosynthesis evolved in the
vertebrate ancestor, the full completion of the LC-PUFA biosynthesis pathway arose uniquely in gnathostomes.
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Background
Long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA)
and their derivatives are biologically active molecules that
are involved in neural function, signalling and regulation
of lipid metabolism, inflammation and cell division [1].
Among LC-PUFA, arachidonic acid (ARA, 20:4n-6), ei-
cosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic

acid (DHA, 22:6n-3) play particularly important roles in
the abovementioned physiological processes [2, 3]. In ver-
tebrates, biosynthesis of LC-PUFA such as ARA, EPA and
DHA is achieved by sequential reactions towards the diet-
ary essential fatty acids (EFA) linoleic acid (LA, 18:2n-6)
and α-linolenic acid (ALA, 18:3n-3), which are catalysed
by fatty acyl desaturase (Fads) and elongation of very
long-chain fatty acid (Elovl) enzymes [3]. Briefly, ARA and
EPA are synthesised from LA and ALA, respectively, by
two distinct pathways called the “Δ6 pathway” (Δ6 desat-
uration – elongation – Δ5 desaturation) or the “Δ8 path-
way” (elongation – Δ8 desaturation – Δ5 desaturation).
Moreover, DHA biosynthesis generally proceeds through
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the so-called “Sprecher pathway”, comprising two con-
secutive elongation steps from EPA to produce 24:5n-3,
which is then Δ6 desaturated to 24:6n-3 prior to being
converted to DHA by partial β-oxidation in peroxisomes
[4, 5]. Interestingly, an alternative pathway involving direct
Δ4 desaturation of 22:5n-3 to DHA has been described in
teleosts [6, 7] and, more recently, found to operate in
mammalian cells [8].
In mammals, Δ5 and Δ6 desaturation reactions are

specifically catalysed by FADS1 and FADS2 enzymes, re-
spectively [2]. Orthologues of both fads1Δ5 and fads2Δ6
were previously identified in the cartilaginous fish Scylior-
hinus canicula, an indication that they emerged before
gnathostome origin [9]. Furthermore, while mammals,
birds, reptiles and amphibians also possess fads1 and
fads2 genes, an orthologue of fads1 has not be identified
to date in Teleostei [3, 9]. In addition, the repertoire of
Teleostei fads2 varies significantly among lineages, with
some species possessing one (e.g. Danio rerio), two
(e.g. Monopterus albus), three (e.g. Oreochromis niloti-
cus) or four (e.g. Salmo salar) fads2 paralogues,
whereas others lack completely fads genes in their ge-
nomes (e.g. Tetraodon nigroviridis) [3]. With regards
to function, many Teleostei Fads2 retain the Δ6 desa-
turase phenotype but, interestingly, they also exhibit a
more varied spectrum of activities including bifunc-
tional Δ6Δ5 desaturase [10–13] and Δ4 desaturase [7]
as a result of a functionalisation process hypothesised
to have occurred in response to dietary availability in
natural prey [9].
Although the gene complement and functions of fads

are well understood in Chondrichthyes, numerous Tele-
ostei species and Tetrapoda [2, 3], the lack of informa-
tion in lineages such as Cyclostomata, Polypteriformes,
Holostei and post 3R lineages (e.g. Elopomorpha and
Osteoglossomorpha) hampers the full comprehension of
FADS function in vertebrates. Hence, to fully clarify the
history of LC-PUFA biosynthesis in vertebrates, we iso-
lated and functionally characterised the fads comple-
ment from species placed at key phylogenetic nodes, i.e.
the cyclostome Lethenteron camtschaticum (Arctic lam-
prey), representative of the most ancient lineage of ex-
tant vertebrates, and four species of ray-finned fish.
Among the latter, we investigated two species that di-
verged before the teleost specific whole genome duplica-
tion (3R WGD), namely the Polypteriforme, Polypterus
senegalus (Senegal bichir) and the Lepisosteiforme, Lepi-
sosteus oculatus (spotted gar) [14], and two others that
diverged after the teleost specific 3R whole genome du-
plication (WGD), namely the Elopomorpha, Anguilla ja-
ponica (Japanese eel) and the Osteoglossomorpha,
Pantodon buchholzi (African butterfly fish) [15, 16]. Our
findings provide a definitive understanding of the evolu-
tionary history of key components of essential LC-PUFA

biosynthesis and demonstrate that functional fads1Δ5
and fads2Δ6 emerged in the vertebrate ancestor.

Methods
Sequence collection and phylogenetic analysis
The initial sequence collection for phylogenetic analysis
was performed through blastp and blastn searches in
NCBI, using as query Homo sapiens FADS1
(NP_037534.3) and FADS2 (NP_004256.1) sequences.
Additionally, to ensure a full collection of fads sequences
in Teleostei a second search was performed in NCBI tar-
geting specifically the nucleotide collection and
non-redundant protein database. From these results a
set of Fads amino acid sequences representative of the
major vertebrate clades was collected for phylogenetic
analysis (Accession numbers provided in Fig. 1).
Searches revealed that the Scleropages formosus pre-
sented a 3’partial Fads-like sequence (XP_018598908.1);
this sequence was completed by performing blastn
searches in S. formosus transcriptome SRA reads (NCBI
accession: SRX1668426 to 32). Additionally, Gnathone-
mus petersii and Osteoglossum bicirrhosum fads-like
genes were assembled from their genomic SRA
(SRX2235994 and 95) with Geneious V 7.1.9 using as
reference the previously curated S. formosus fads. The 86
sequences from the databases and 9 sequences function-
ally characterised in the present study were aligned with
MAFFT v7.306 [17]. The best alignment method was de-
termined automatically resulting in L-INS-i method
[18]. Columns containing 90% gaps were stripped from
sequence alignment leaving a total of 451 sites for phylo-
genetic analysis. Sequence alignment was then submitted
to PhyML v3.0 server [19] for Maximum Likelihood
(ML) phylogenetic evolutionary model and was automat-
ically selected by smart model selection SMS resulting in
LG +G + I, and branch support was calculated using
Abayes [20]. The resulting tree was visualised using Fig-
Tree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/)
and rooted with invertebrate Fads sequences.

Isolation of fads for functional characterisation in yeast
Selected Fads from species within major pre and post 3R
WGD lineages were functionally characterised by express-
ing their ORF in yeast S. cerevisiae. In order to isolate the
corresponding fads ORF sequences, initial tblastn searches
using S. canicula fads1 (AEY94454) and fads2 (AEY94455)
as queries were carried out in the genome assembly of L.
camtschaticum (https://www.ncbi.nlm.nih.gov/assembly/
GCA_000466285.1) and A. japonica (GCA_000470695),
and transcriptome SRA from P. senegalus (SRX796491,
SRX732875) and P. buchholzi (SRX666400). The resulting
hits were assembled into predicted full-length ORF using
the corresponding bait sequences as references. With L.
oculatus, although annotations of fads1- and fads2-like
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genes were available at GenBank (XM_015338726 for
fads1) and Ensembl (ENSLOCG00000007048 and
ENSLOCG00000007031 for fads1 and fads2, respectively),
these gene predictions were poor due to the genome cover-
age. Therefore, we performed manual mapping of the gen-
omic sequence (NC_023205) using transcript sequences of
fads1- and fads2-like genes retrieved from their transcrip-
tome SRA (SRX661022). The obtained transcripts were

then assembled into full-length ORF sequences referring to
the genomic sequence. All final assembled/predicted fads
ORF sequences were then used as reference to design
primers for further cloning into the yeast expression vector
pYES2 (Thermo Fisher Scientific, Waltham, MA, USA).
Briefly, cDNA prepared from total RNA extracted from L.
camtschaticum, P. senegalus, L. oculatus, P. buchholzi and
A. japonica was used to amplify the corresponding fads

Fig. 1 Maximum likelihood phylogenetic analysis of FADS1 and FADS2 amino acid sequences. Values at nodes indicate posterior probabilities,
* indicates FADS isolated and functionally analysed in this work. Black arrow (3R WGD) approximates the timing of the teleost duplication.
Accession numbers are indicated
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ORF by PCR using primers containing restriction sites at
both the start and stop codon (see Additional file 1 for pri-
mer details and PCR conditions). Each PCR product was
digested with the corresponding restriction enzymes and li-
gated into similarly restricted pYES2 [6, 10]. All pYES2
clones were confirmed by sequencing (GATC Biotech Con-
stance, Germany) prior to being used in functional assays
in yeast.

Yeast expression assays
Yeast transformation with pYES2 and the culture of
yeast S. cerevisiae were carried out as described previ-
ously [10, 21]. The resulting transgenic yeast expressing
each fads were grown in the presence of PUFA including
Δ6 (18:3n-3 and 18:2n-6), Δ8 (20:2n-6 and 20:3n-3), Δ5
(20:4n-3 and 20:3n-6) and Δ4 (22:5n-3 and 22:4n-6)
desaturase substrates. The PUFA substrates were ex-
ogenously supplemented at final concentrations of
0.5 mM (C18), 0.75 mM (C20) and 1.0 mM (C22) to com-
pensate for decreased efficiency of uptake with increased
chain length [21]. All FA substrates (98–99% pure), ex-
cept for 18:4n-3 and 20:4n-3, were purchased from
Nu-Chek Prep, Inc. (Elysian, MN, USA). Moreover,
18:4n-3 and 20:4n-3 were obtained from Sigma-Aldrich
(St Louis, MO, USA) and Cayman Chemicals (Ann
Arbor, MI, USA), respectively. After 48 h incubation,
yeast cells were collected, washed twice in distilled water
and kept at − 20 °C until further analysis.

Fatty acid analysis of yeast
Total lipid was extracted from yeast and used to prepare
fatty acid methyl esters (FAME) as described in detail
previously [10]. FAME extraction, purification and ana-
lysis were performed as described by Li et al. [6]. Sub-
strate fatty acid conversions from exogenously added
PUFA substrates were calculated by the proportion of
substrate fatty acid converted to a desaturated product
as [product area/(product area + substrate area)] × 100
[21]. When appropriate, GC-MS was used to confirm
the identity of the desaturation products [6].

Results
Gene orthologues of fads1 and fads2 emerged in the
ancestor of vertebrates
To address the orthology of the identified Fads-like se-
quences an ML phylogenetic analysis was conducted
with a total of 86 amino acid (aa) sequences, including
species from cyclostomes (e.g. Arctic lamprey L.
camtschaticum), tetrapods (e.g. amphibians, birds, mam-
mals), Chondrichthyes (e.g. elephant shark Callor-
hinchus milii), ray-finned fishes (e.g. P. senegalus, L.
oculatus, A. japonica and P. buchholzi), as well as Fads
sequences from several protostomes (Capitella teleta,
Lingula anatina and Lottia gigantea) and the

invertebrate deuterostome Saccoglossus kowalevskii. The
resulting phylogenetic tree displays two well-supported
monophyletic clades, each containing vertebrate Fads1
and Fads2 sequences, respectively, with the invertebrate
Fads appearing as an independent clade from both verte-
brate Fads (Fig. 1). In the Fads1 group, in addition to the
described gene orthologues from various lobe-finned fish
(e.g. Latimeria chalumnae) and Chondrichthyes species
(C. milii and S. canicula) [9], we find a putative Fads1
from the Arctic lamprey (L. camtschaticum), the Senegal
bichir (P. senegalus), spotted gar (L. oculatus) and the
teleost Japanese eel (A. japonica), but not in the Osteo-
glossomorpha or any other teleost examined (Fig. 1). A
similar genetic distribution is observed in the Fads2
clade, with an orthologue of fads2 found in the Arctic
lamprey (Fig. 1). Moreover, Fads2 were also present in
the pre-3R whole genome duplication (WGD) lineages
such as Polypteriformes (P. senegalus) and Lepisostei-
formes (L. oculatus) located at the ray-finned fish Fads2
clade. With the exception of Arapaima gigas, all Osteo-
glossomorpha species examined were found to possess
two Fads2 (termed “a” and “b”), which are distributed
among two well supported groups (0.9). Although, the
branching tree pattern of the Osteoglossomorpha fads2
gene duplicates could be indicative of an origin related
with the teleost-specific 3R WGD, the absence of syn-
teny precludes further analysis.

Newly cloned fads1 and fads2 exhibit conserved Δ5 and
Δ6 signature residues
To further characterise the newly identified Fads se-
quences, we cloned the full open reading frame (ORF) of
each gene and performed Pfam searches of the deduced
amino acid (aa) sequences. All the sequences presented
the characteristic signature motifs of Fads, namely the
heme binding motif (HPGG) and three histidine boxes
HXXXH, HXXHH and QXXHH [22, 23] (Fig. 2, brown
boxes). Next, we searched for critical aa residues that
have been recently demonstrated to account for Δ5
(NP_445897.2) and Δ6 (NP_112634.1) desaturase activ-
ities in rat FADS enzymes [24]. Regarding Fads1, the
analysed fish species preserved an overall Δ5 pattern
with a conserved methionine (M) to leucine (L) substitu-
tion (Fig. 2, black box 3), possibly presenting no impact
on the substrate specificity given the comparable bio-
chemical properties of these residues. An additional val-
ine (V) residue (Fig. 2, black box 5), also suggested to
determine substrate selectivity in rat Fads1 [24], was not
conserved in the analysed fish sequences, nor in the hu-
man sequence. Curiously, the fads2b sequences from the
Osteoglossomorpha P. buchholzi and S. formosus pre-
sented key residues for Δ5 function, conserved with rat
Fads1, serine (S) (Fig. 2, red box 2) and M/L (Fig. 2, red
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box 3). In contrast, the fads2a of P. buchholzi and S. for-
mosus showed typical Δ6 residues (Fig. 2).

Functional analysis indicates conserved and derived fads
activities in various vertebrate species
Functional analysis of the newly isolated Fads was car-
ried out by the heterologous expression of the ORF in
the yeast S. cerevisiae grown in the presence of potential
exogenously added polyunsaturated fatty acid (PUFA)
substrates. Inactivity towards PUFA in control (untrans-
formed) yeast was confirmed by fatty acid profiles char-
acterised by major endogenous yeast fatty acids (16:0,
16:1n-7, 18:0 and 18:1n-9) and unmetabolised exogen-
ously added PUFA (data not shown) [25]. Transgenic
yeast expressing fads1 from all species examined (L.
camtschaticum, P. senegalus, L. ocelatus and A. japonica)
showed Δ5 desaturase activity towards 20:4n-3 and
20:3n-6 since they were able to produce 20:5n-3 and
20:4n-6, respectively (Table 1 and Additional file 2).
Moreover, yeast expressing fads2 from L. camtschati-
cum, P. senegalus, L. oculatus and P. buchholzi (Fads2a)
showed Δ6 activity, desaturating 18:3n-3 to 18:4n-3 and
18:2n-6 to 18:3n-6 (Table 1 and Additional file 2). In the
vast majority of cases, Fads2 exhibited Δ8 desaturase

capability as they were able to desaturate 20:2n-6 and
20:3n-3 to 20:3n-6 and 20:4n-3, respectively (Table 1
and Additional file 2), a feature previously confirmed in
Fads2 of A. japonica [26]. Interestingly, transgenic yeast
expressing fads2b of the African butterfly fish, P. buch-
holzi, showed neither Δ6 nor Δ8 desaturase activity but,
as described above for Fads1 enzymes, a clear Δ5 desa-
turase profile, biosynthesising 20:4n-6 (ARA) and
20:5n-3 (EPA) from 20:3n-6 and 20:4n-3, respectively.
No Δ4 desaturase activity was detected in any of the
assayed Fads, which is in agreement with none of the se-
quences possessing the key aa residues responsible for
Δ4 function (Fig. 2, yellow box) [27].

Discussion
Gene duplication has long been recognised as a decisive
contributor in the shaping vertebrate genomes, provid-
ing spare genetic material for adaptive evolution, muta-
tion, and genetic drift [28–31]. Yet, degeneration and
loss are the most common fates encountered with dupli-
cate genes [3], with significant gene loss occurring
shortly after WGD episodes [28, 29, 32–36]. To evaluate
the impact of gene duplication and loss on LC-PUFA
biosynthesis in vertebrates, we investigated the genetic

Table 1 Functional characterisation of isolated Fads enzymes

FA
Substrate

FA
Product

% Conversion

Lca
Fads1

Lca
Fads2

Loc
Fads1

Loc
Fads2

Pse
Fads1

Pse
Fads2

Aja
Fads1

Ajaa

Fads2
Pbu
Fads2A

Pbu
Fads2B

Activity

18:3n-3 18:4n-3 n.d. 6.6 n.d. 32.4 n.d. 37.1 n.d. 64.3 77.4 n.d Δ6

18:2n-6 18:3n-6 n.d. 2.0 n.d. 15.6 n.d. 20.6 n.d. 20.7 42.7 n.d Δ6

20:3n-3 20:4n-3 n.d. 0.7 n.d. 4.1 n.d. 11.0 n.d. 6.0 18.4 n.d Δ8

20:2n-6 20:3n-6 n.d. n.d. n.d. 1.5 n.d. 3.6 n.d. 5.4 7.0 n.d. Δ8

20:4n-3 20:5n-3 6.0 n.d. 3.0 n.d. 56.1 n.d. 58.1 n.d. n.d. 14.4 Δ5

20:3n-6 20:4n-6 5.5 n.d. 2.9 n.d. 48.3 n.d. 33.2 n.d. n.d. 11.7 Δ5

22:5n-3 22:6n-3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Δ4

22:4n-6 22:5n-6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Δ4

Overall activity Δ5 Δ6/Δ8 Δ5 Δ6/Δ8 Δ5 Δ6/Δ8 Δ5 Δ6/Δ8 Δ6/Δ8 Δ5

The conversions were calculated according to the formula [product area/(product area + substrate area) × 100]
Lca Lethenteron camtschaticum, Loc Lepisosteus oculatus, Pse Polypterus senegalus, Aja Anguilla japonica, Pbu Pantodon buchholzi, n.d. indicates not detected
aData collected from [6]

Fig. 2 Sequence alignment of FADS1 and FADS2 amino acid sequences. Orange boxes correspond to the conserved histidine boxes, the yellow
box indicates residues proposed to be involved in substrate specificity [27], and blue boxes indicate residues replaced in rat FADS2 Δ6 desaturase
to obtain Δ5 activity [27]. The heme binding motif HPGG is also shown
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repertoire and function of fads genes in species placed at
key phylogenetic points, namely the transition from jaw-
less to jawed vertebrates, and the pre/post 3R period in
the evolution of the ray-finned fish.
Sequence and phylogenetic data revealed that fads1

and fads2 orthologues are present in the genome of the
Arctic lamprey (L. camtschaticum), supporting the hy-
pothesis that fads1 and fads2 originated most likely thor-
ough a tandem gene duplication in the vertebrate
ancestor (Fig. 3) [9]. Additionally, we found that fads1
and fads2 are also retained in ray-finned fish such as the
Senegal bichir (P. senegalus) and the spotted gar (L.

oculatus), which diverged prior to the Teleostei specific
3R WGD (Fig. 3). Unexpectedly, a fads1 orthologue was
also identified in species such as the Japanese eel (A. ja-
ponica) and the Indo-Pacific tarpon (Megalops cypri-
noides) belonging to Elopomorpha, a group that
diverged after the 3R WGD [15, 16]. These results indi-
cate that fads1, previously hypothesised to be lost in Tel-
eostei [3, 9, 11], is actually retained in some Teleostei
such as the Elopomorpha (Fig. 3). We were unable to re-
cover a fads1 orthologue in P. buchholzi nor in any of
the other Osteoglossomorpha species analysed, indicat-
ing that this gene is likely lost in this lineage. Further, in

Fig. 3 Evolutionary history and distribution of Fads1 and Fads2 in vertebrates, combined with the corresponding desaturase activities. Squares
correspond to fads1 circle to fads2, black arrows indicate the approximate timing of whole genome duplications in the ancestral vertebrate (2R)
and the teleost specific duplication (3R), grey square highlights lineages lacking fads1
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silico search for fads1 in relevant genome databases of
representatives of Euteleosteomorpha or Otomorpha lin-
eages suggest an absence of fads1 in Clupeocephala,
which further supports Elomorpha as the only Teleostei
retaining a functional fads1. Yet, all Fads1 desaturases
characterised in the present work (L. camtschaticum, P.
senegalus, L. ocelatus and A. japonica) exhibit Δ5 desa-
turase activity in agreement with the previous functional
assessments in Sarcopterygii such as H. sapiens FADS1
[37] and chondrichthyan Fads1 [9].
In contrast to the lack of fads1 within most Teleostei,

phylogenetic analysis confirmed that fads2 is ubiquitously
present across the entire vertebrate clade, with exceptions
represented by teleosts lacking fads-like orthologues in
their genomes, namely Takifugu rubripes and T. nigroviri-
dis [3, 38]. Thus, vertebrate Fads2 includes not only those
previously reported from numerous species within Teleos-
tei, Sarcopterygii and Chondrichthyes [3], but also the
presently functionally characterised Fads2 from Cyclosto-
mata (Arctic lamprey), Polypteriformes (Senegal bichir),
Lepisosteiformes (spotted gar), Elopomorpha (Japanese
eel) and Osteoglossomorpha (African butterfly fish). Inter-
estingly, we found that Osteoglossomorpha species pre-
sented two copies of fads2 that clustered into two separate
groups in the phylogenetic analysis and therefore suggest-
ing a potential origin dating to the 3R WGD. With regards
to their functional characterisation, the African butterfly
fish fads2b demonstrated that this gene did not encode a
Δ6 desaturase, but rather a desaturase that showed Δ5 ac-
tivity (Table 1). A similar functionalisation scenario among
teleost Fads2 was also suggested in some salmonids such
as Atlantic salmon (Salmo salar) and rainbow trout (On-
corhynchus mykiss), with the acquisition of Δ5 activity oc-
curring in one of the several fads2 copies that arose from
tandem gene duplication [3, 39, 40]. In fact, fads gene du-
plication appears to be a frequent event in vertebrate evo-
lution, with most mammals possessing an additional gene,
Fads3 [41–43], and the well-established fads2 duplication
occurred in Teleostei [6, 10, 11, 39, 44]. Gene duplication
is often followed by low purifying selection; thus, the pres-
ence of Δ5 functionalised Fads2b in Teleostei, such as
osteoglossomorpha, is consistent with subfunctionalisa-
tion and/or neofunctionalisation processes occurring rap-
idly after gene duplication [35, 45].
The conversion of a fads2Δ6 ancestor, as deduced

from the data from the Senegal bichir and the spotted
gar, into a fads2Δ5 in African butterflyfish (fads2b) may
be viewed as a mechanism to overcome the bottleneck
generated by the loss of fads1Δ5 in most Teleostei that
would otherwise be unable to biosynthesise essential
fatty acids such as EPA and ARA. Yet, such a constraint
triggered distinct evolutionary routes. In addition to the
abovementioned case in salmonids, whereby acquisition
of Δ5 desaturase occurred in one of the several Fads2

copies, in other species such as D. rerio [10] with one
fads2, the acquisition of Δ5 desaturase activity has been
accompanied by retention of Δ6 activity, thus resulting
in desaturases with dual (or bifunctional) Δ6Δ5 activities
(Fig. 3), which have also been found in other Teleostei
[11, 13, 46, 47]. Further functionalisation cases amongst
teleost Fads2 include the presence of Δ4 desaturases,
often co-existing with Δ5 desaturase activity within the
same enzyme [6, 11, 12]. Still, the majority of Teleostei
Fads2 are primarily Δ6 desaturases without Δ5 or Δ4 desa-
turase activities [3]. Interestingly, the functional character-
isation data confirm that, with the exception of the African
butterfly fish Fads2b (Δ5 desaturase), all the presently ana-
lysed Fads2 showed capability for Δ8 desaturation, an in-
trinsic enzymatic ability within vertebrate Fads2 and hence
not regarded as a functionalisation case [42, 44].
The LC-PUFA biosynthetic pathway is punctuated by

alternate steps of fatty acid elongation and desaturation
therefore, a comprehensive interpretation of the evolu-
tion of this key metabolic pathway in vertebrates can be
only fully attained if the repertoire and function of Elovl
enzymes is also considered. Similarly to Fads1 and
Fads2, Elovl2 and Elovl5, major elongation enzymes in-
volved in LC-PUFA biosynthesis [48], emerged in verte-
brate ancestry possibly as a consequence of genome
duplications, and as demonstrated by the existence of
both orthologues in Arctic lamprey and elephant shark
[49]. Therefore, the ability to biosynthesise EPA and
ARA was present in vertebrates such as lamprey. For
DHA biosynthesis, two consecutive elongation reactions
from EPA are required to produce 24:5n-3, which is then
Δ6 desaturated to 24:6n-3 before it is partly β-oxidised
to DHA (22:6n-3) [4]. While the Δ6 desaturation activity
towards 24:5n-3 has been shown to be an intrinsic char-
acteristic of non-Δ4 Fads2 desaturases and it is widely
distributed from basal gnathostomes to recently emerged
Teleostei [7], the elongation capacity towards C22 sub-
strates such as 22:5n-3 hinders the “Sprecher pathway”
in cyclostomes since the Arctic lamprey Elovl2 could not
elongate 22:5n-3 [49]. In pre 3R WGD Teleostei, along
with Fads1Δ5 and Fads2Δ6 reported here, it is likely that
Elovl2 and Elovl5 (present in at least spotted gar, Elovl2-
XP_015210453.1 and Elovl5- XP_006638754.1) consti-
tute a complete LC-PUFA biosynthesis cascade, as dem-
onstrated in chondrichthyans [49], a scenario that can
be also postulated for post 3R WGD Teleostei such as
Elopomorpha. Yet, other 3R WGD lineages including
cyprinids, siluriformes and salmonids have Elovl2 and
Elovl5 [13, 25, 50–52] and, while lacking Fads1 gene
orthologues, complete the LC-PUFA biosynthetic cas-
cade with functionalised Fads2Δ5 desaturase (e.g. D.
rerio). Consequently, a key event in Teleostei evolution
included also that of Elovl2, crucial for elongation reac-
tions involved in DHA biosynthesis, although Elovl4 has
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been seen to partly compensate such gene loss in Tele-
ostei [53]. The parallel, and contingent, evolution of two
separate gene families, Fads and Elovl, in vertebrate an-
cestry, allowed for the combination of pre-existing meta-
bolic islands into an integrated and functional enzymatic
cascade, which was indispensable for adaptive paths with
respect to LC-PUFA habitat availability.

Conclusion
In the present study, we established that the fatty acid
desaturation dependent of fads1Δ5 and fads2Δ6 ortholo-
gues arose before vertebrate radiation, as deduced from
the Arctic lamprey data. Additionally, fads1 was retained
in pre 3R WGD lineages such as Polypteriformes
(Senegal bichir) and Lepisosteiformes (spotted gar) and
post 3R WGD Elopomorpha (Japanese eel) but was
probably lost in the Osteoglossomorpha and Clupeoce-
phala. Moreover, in Osteoglossomorpha the two re-
ported fads2 genes exhibited the expected Δ6 desaturase
activity, while the second fads2 paralogue (fads2b) had
Δ5 activity. This observation supports the existence of
alternative evolutionary routes that mitigate the loss of
the canonical fads1Δ5 in Teleostei and puts forward
Osteoglossomorpha Fads2 as, possibly, the most ancient
representative of Fads2 plastic functionalisation.
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