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the Cupressus-Juniperus-Xanthocypatris
complex (Cupressaceae)
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Abstract

Background: Phylogenetic relationships among Eastern Hemisphere cypresses, Western Hemisphere cypresses, junipers,
and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address
relationships and attempt to produce a more robust classification, we sequenced 11 new plastid genomes (plastomes)
from the five variously described genera in this complex (Callitropsis, Cupressus, Hesperocyparis, Juniperus, and
Xanthocyparis) and compared them with additional plastomes from diverse members of Cupressaceae.

Results: Phylogenetic analysis of protein-coding genes recovered a topology in which Juniperus is sister to Cupressus,
whereas a tree based on whole plastomes indicated that the Callitropsis-Hesperocyparis-Xanthocyparis (CaHX) clade is
sister to Cupressus. A sliding window analysis of site-specific phylogenetic support identified a ~ 15 kb region, spanning
the genes ycf1 and ycf2, which harbored an anomalous signal relative to the rest of the genome. After excluding these
genes, trees based on the remainder of the genes and genome consistently recovered a topology grouping the CaHX
clade and Cupressus with strong bootstrap support. In contrast, trees based on the ycf! and ycf2 region strongly
supported a sister relationship between Cupressus and Juniperus.

Conclusions: These results demonstrate that standard phylogenomic analyses can result in strongly supported
but conflicting trees. We suggest that the conflicting plastomic signals result from an ancient introgression event
involving ycfT and ycf2 that occurred in an ancestor of this species complex. The introgression event was facilitated by
plastomic recombination in an ancestral heteroplasmic individual carrying distinct plastid haplotypes, offering further
evidence that recombination occurs between plastomes. Finally, we provide strong support for previous proposals to
recognize five genera in this species complex: Callitropsis, Cupressus, Hesperocyparis, Juniperus, and Xanthocyparis.
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incongruence, Introgression, Recombination

Background

The discovery in northern Vietnam of a new conifer
species, Xanthocyparis vietnamensis Farjon & T. H.
Nguyén [1, 2], has caused taxonomic upheaval within
the Cupressaceae. Based on distinctive morphological
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traits, this conifer was initially placed in a new genus
(Xanthocyparis) and inferred to be closely related to
Callitropsis nootkatensis (D. Don) Oersted ex D. P. Little
[1]. Ca. nootkatensis is another taxonomically controver-
sial species that has been variously classified into Chamae-
cyparis, Callitropsis, Cupressus, and Xanthocyparis 3, 4].
How these two species relate to one another and to other
Cupressaceae conifers has been a topic of ongoing taxo-
nomic debate, driven by a paucity of distinguishing mor-
phological characteristics [1, 3, 5] as well as incongruence
among molecular phylogenetic analyses [4, 6—14]. From a
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broader perspective, the phylogenetic positions of X.
vietnamensis and Ca. nootkatensis impinge on a large
taxonomic debate regarding the treatment of Western
Hemisphere cypresses (hereafter Hesperocyparis) and
Eastern Hemisphere cypresses (hereafter Cupressus)
[8, 9, 15], and affect phylogeographic interpretations
of migration patterns among flora spanning the Eastern
and Western Hemispheres [9, 10].

Phylogenetic relationships among the (up to) five rec-
ognized genera (Callitropsis, Cupressus, Hesperocyparis,
Juniperus, Xanthocyparis) of this (hereafter CaCuHJX)
complex of Cupressaceae species are unresolved. Early
phylogenetic studies based primarily on the internal
transcribed spacer region of the nuclear ribosomal DNA
cluster have generally recovered a tree in which X.
vietnamensis and Ca. nootkatensis form a clade that is
sister to Hesperocyparis, which together are more closely
related to Juniperus than to Cupressus [4, 6-8, 13]. In con-
trast, chloroplast markers, while generally providing less
resolution, have tended to construct (or at least be consist-
ent with) a grouping of Ca. nootkatensis and Hesperocy-
paris, which are successively sister to X. vietnamensis,
then Cupressus, and finally Juniperus [4, 7-11, 13, 14].
Analyses using nuclear or mitochondrial protein-coding
genes [7, 12], or the fastest-evolving sites in the plastid
genome [14], have recovered a third topology, in which
Juniperus is monophyletic with Cupressus while Ca. noot-
katensis, X. vietnamensis, and Hesperocyparis form a sec-
ond monophyletic group with less certain resolution.

Collectively, all of the aforementioned studies agree that
Hesperocyparis is more closely related to Ca. nootkatensis
and X. vietnamensis than to Cupressus or Juniperus, al-
though the precise relationships among these five genera
are as yet unclear. Intriguingly, these previous studies also
suggest fundamental incongruence between and within
the plastid and nuclear genomes. To stabilize the classifi-
cation of these five genera, and to explore the source of
conflicting intraplastomic signals, we sequenced 11 plas-
tomes and compared them with 10 existing plastomes
from all five genera. Through extensive phylogenetic com-
parisons, we present a robust phylogeny of the five genera
and identify the genes ycfl and ycf2 as the major source of
intraplastomic phylogenetic conflict. By integrating recent
discoveries on organelle inheritance, we highlight poten-
tial effects of genetic leakage and ancient recombination
on phylogenomic analysis.

Results

General features of newly sequenced Cupressaceae
plastomes

We sequenced complete plastomes from 11 species span-
ning five genera of Cupressaceae, including Callitropsis
(Ca. nootkatensis), Cupressus (Cu. sempervirens, Cu. tonki-
nensis, Cu. torulosa), Hesperocyparis (H. arizonica, H.
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benthamii, H. glabra, H. lindleyi, H. lusitanica), Juniperus
(. communis) and Xanthocyparis (X. vietnamensis). Ge-
nomes are very similar in size (127-129 kb) and content,
with nearly identical proportions of guanine plus cytosine
(G+C=34.6-349%) and an identical set of 82
protein-coding genes, 4 ribosomal RNAs, 33 transfer RNAs
and 18 introns (Table 1). Pairwise alignment of entire plas-
tome sequences demonstrated a high level of intra- and
intergeneric similarity (Fig. 1). Notably, the plastomes from
Cupressus and the CaHX clade are in all cases more similar
to one another (93.6-95.5% identity) than they are to Juni-
perus plastomes (90.5-93.0%).

Different plastid phylogenomic approaches construct
strongly conflicting trees
To examine the phylogenetic relationships among Calli-
tropsis, Cupressus, Hesperocyparis, Juniperus, and Xantho-
cyparis, we performed plastid phylogenomic analyses using
two common approaches: 1) a concatenated alignment of
all 82 protein-coding genes, and 2) a whole plastome align-
ment. The trees resulting from analysis of both data sets
were largely congruent, particularly with respect to the rela-
tionships among species within Juniperus, within Cupres-
sus, and among genera within the CaHX clade (Fig. 2).
However, there was strong conflict for relationships
among the Cupressus, Juniperus and CaHX clades (Fig. 2).
The tree constructed from the 82-gene alignment indi-
cated a sister relationship between Juniperus and Cupres-
sus with strong (96%) bootstrap support (Fig. 2a). In
contrast, the whole plastome alignment resulted in a tree
that united the CaHX and Cupressus clades with strong
(92%) bootstrap support (Fig. 2b). For each data set, the
Approximately Unbiased and Shimodaira-Hasegawa alter-
native topology tests significantly rejected (p <0.05) the
topology recovered by the other data set. Thus, two
standard phylogenomic approaches produced strongly
supported but incongruent trees.

ycf1 and ycf2 have a distinct phylogenetic signal relative
to the rest of the plastome

To investigate the source of phylogenetic incongruence
within the plastome, we calculated the likelihood of each
site in the whole plastome alignment for the two com-
peting topologies. By taking the difference in the log of
the site-likelihood values for the two tree topologies, we
identified those sites that provided the strongest prefer-
ence for one or the other topology. Sites providing strong
preference for the Junmiperus+ Cupressus topology were
mostly clustered within the 31 kb to 47 kb segment in the
whole plastome alignment, whereas sites providing strong
support for the CaHX + Cupressus topology were more
evenly spread throughout the data set (Fig. 3a). Sliding
window analysis provided clear evidence that this 31 kb to
47 kb genomic segment favored the Juniperus + Cupressus
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Table 1 General features of newly sequenced Cupressaceae plastomes

Species Genome size (bp) Protein genes Introns G+C (%) IR size (bp) Depth of coverage
Ca. nootkatensis 127,150 82 18 34.7 266 441
Cu. sempervirens 129,150 82 18 34.6 264 358
Cu. tonkinensis 127,835 82 18 347 255 142
Cu. torulosa 128,322 82 18 346 271 221
H. arizonica 127,158 82 18 34.7 268 451
H. benthamii 127,007 82 18 34.7 269 176
H. glabra 126,993 82 18 34.7 268 532
H. lindleyi 127,004 82 18 34.7 271 213
H. lusitanica 127,113 82 18 34.7 270 190
J. communis 127,904 82 18 349 272 281
X vietnamensis 127,541 82 18 347 266 325

relationship, whereas the remainder of the genome pro-
vided greater support for the CaHX + Cupressus relation-
ship (Fig. 3b). This anomalous region of the alignment
corresponds to a segment of the plastome containing the
entirety of the genes ycfl, trul-CAA, ycf2, and trnl-CAU
and a portion of the ccsA gene (Fig. 3¢).

To verify that ycfl and ycf2 have an anomalous phylogen-
etic signal, we reevaluated the concatenated gene alignment
after separating the ycfI + ycf2 genes from the remaining 80
genes (Fig. 4a). We also reexamined the whole-plastome
analyses with the ycfI + ycf2 genomic region separated
from the remainder of the genome (Fig. 4b). Results of
both analyses were fully consistent. The ycfI + ycf2 gene
and genomic segment data sets provided strong support
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H. lindleyi

H. lusitanica

Ca. nootkatensis
X. vietnamensis
Cu. chengiana
Cu. gigantea
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J. scopulorum
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Fig. 1 Similarity plot based on pairwise comparison of plastomes
from the untrimmed whole-genome alignment. Similarity scores
are color coded from white (90% sequence identity) to black
(100% sequence identity)

for Cupressus + Juniperus as sister taxa, while the rest
of the genes and genome produced trees with strong
support for CaHX + Cupressus (Fig. 4a and b).

The ycfl and ycf2 genes are known to be fast evolving,
with substantial levels of positive selection and numer-
ous indels [16-18]. In Cupressaceae, ycfI and ycf2 are
also relatively faster evolving, as demonstrated by the
generally 2- to 3-fold longer branch lengths in the trees
of ycfl + ycf2 relative to the remaining genes (Fig. 4a)
and genomic regions (Fig. 4b), and by the larger num-
ber of gap-containing columns in the untrimmed ycfI
+ ycf2 gene alignment (22.2% of 16,614 positions) com-
pared with the untrimmed 80-gene alignment (5.50% of
62,853 positions). Despite the faster relative rate of evo-
lution, no substitutional saturation was detected (See
Additional file 1: Table S1) in the Gblocks-trimmed
ycfl + ycf2 data sets based on an entropy test of substi-
tution saturation [19, 20].

We also confirmed that the different selection pressures
and rates of evolution at 3rd codon positions compared
with 1st and 2nd codon positions had no effect on the re-
covered topology. Indeed, regardless of codon partitioning
scheme (all codon positions, 1st+2nd positions only, or
3rd positions only), the ycfl + ycf2 gene data sets recovered
Cupressus + Juniperus with moderate to strong support,
while the 80 gene data set recovered Cupressus+ CaHX
with moderate to strong support (Fig. 4a). Finally, given the
large number of indels in the ycfl and ycf2 alignments, we
examined the effect of gap treatment during alignment
filtering of the genome data sets. Regardless of Gblocks
settings, the ycfl + ycf2 genomic segment recovered
Cupressus + Juniperus with strong support, while the
remainder of the genome recovered Cupressus + CaHX
with strong support (Fig. 4b).

Structural features of Cupressaceae plastomes
Cupressaceae plastomes lack the large inverted repeat
(IR) that is a diagnostic feature of most other land plant
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plastomes. Instead, they contain a much smaller (~ 260 bp)
IR that duplicates the trnQ gene [21-23]. The two copies of
the trnQ-IR flank a ~ 36 kb segment of the plastome, and
collinearity analysis indicated that IR recombination has led
to the inversion of this genomic segment in the newly
sequenced J. communis plastome (Fig. 5a). This inverted
region was previously defined as the “B” arrangement to
contrast with the non-inverted “A” arrangement that is
present in most Cupressaceae species, although several
other Cupressaceae species were also shown to have a plas-
tome in this “B” arrangement [21].

Analysis of mapped read pairs (Fig. 5b) verified that
nearly all read pairs that span the trnQ-IR (814/834) sup-
ported the “B” arrangement in J. communis. However, 2.7%
(20/834) of these J. communis read pairs instead supported
the existence of the “A” arrangement, demonstrating that
the “A” arrangement exists at a substoichiometric level rela-
tive to the predominant “B” arrangement within the sam-
pled J. communis individual. By contrast, the H. lindleyi
and H. lusitanica plastomes exist primarily in the “A” ar-
rangement in the sampled individuals, with a small propor-
tion (<1%) of reads supporting the presence of the “B”
arrangement at a substoichiometric level. The coexistence
of predominant and substoichiometric forms of the plas-
tome was previously reported [21, 24] for other Cupressa-
ceae species (Fig. 5b, shown in red).

Discussion

Previous studies have disagreed on the inferred phylogenetic
relationships among major lineages of the CaCuHJX clade,
which comprises Eastern Hemisphere cypresses (Cupressus),
Western Hemisphere cypresses (Hesperocyparis), junipers
(Juniperus), and the taxonomically enigmatic species X

vietnamensis and Ca. nootkatensis. Their relationships have
remained contentious due in part to phylogenetic incongru-
ence between nuclear and plastid data as well as intrage-
nomic conflict among loci within the plastid and nuclear
genomes. In this study, 21 complete plastomes (11 newly
generated) from species in the CaCuHJX complex were used
to reexamine phylogenetic relationships among genera and
to evaluate the distribution of conflicting phylogenetic sig-
nals across the plastome. Our whole-plastome analyses offer
substantially more informative characters than previous ana-
lyses using a small number of loci [4, 6-13] and more than
twice the number of ingroup taxa compared with the only
other plastome-based phylogenetic study [14].

Our results demonstrate that different phylogenomic ap-
proaches can produce strongly supported but conflicting
phylogenetic hypotheses (Fig. 2). In this case, we showed
that the phylogenetic conflict comes from a ~ 15 kb region
of the plastome (spanning ycfl and ycf2) that exhibits a
phylogenetic signal incongruent with the rest of the plas-
tome (Figs. 3 and 4). Phylogenetic incongruence of one or
few loci within the plastid genome has been reported in
other lineages of seed plants, including Sileneae [25], Citrus
[26], Pinus [16] and Picea [18], with the incongruence also
spanning a region containing the ycfI and ycf2 genes for the
latter two genera in Pinaceae. An important question aris-
ing from these analyses is why some plastid loci may have
distinct evolutionary signals. Below we discuss the potential
causes and taxonomic significance of these findings.

Unique characteristics of ycf1 and ycf2 do not explain
phylogenetic incongruence

There is no doubt that ycfI and ycf2 exhibit higher rates
of sequence and indel evolution compared with most
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Fig. 3 Distinct phylogenetic signals in Cupressaceae plastomes. a Difference in site log likelihoods for the two major tree topologies recovered in
Fig. 1. Sites supporting the Juniperus + Cupressus topology are shown in blue, while sites supporting the CaHX + Cupressus topology are shown in
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Red dotted lines demark the segment of the genome that exhibits an anomalous phylogenetic signal relative to the rest of the genome

plastid genes. Both the Pinus and Picea studies [16, 18]
identified several sites of the ycfI and ycf2 genes under
positive selection. However, pervasive positive selection
is not likely to be a determining factor for the conflicting
phylogenetic trees in the CaCuHJX complex. The codon
partitioning results argues strongly against any confounding
phylogenetic effects stemming from differences in substitu-
tion rate or selection pressure at different codon positions
(Fig. 4a). Second, while the ycfl and ycf2 genes are muta-
tional hotspots for the accumulation of indels, analysis
of data sets that either excluded all gaps (strict filtering)
or allowed gaps when present in < 50% of taxa (relaxed
filtering) recovered the same tree, which was still incon-
gruent with signals of the rest of the genome (Fig. 4b).
Finally, the effect of substitutional saturation can be
ruled out because individual branch lengths in all trees
are very short at this low taxonomic level (Fig. 4) and no

substitutional saturation was detected by an entropy test
[19, 20] implemented in DAMBE. Note that the previous
plastome-based study of the CaCuHJX complex did report
substitutional saturation for nine plastid genes (including
yefl and ycf2) [14]; in that study, untrimmed alignments
were apparently used for the entropy analysis based on the
fact that we can somewhat replicate their results when
using our own untrimmed alignment of the ycfI + ycf2 gene
data set (See Additional file 1: Table S1). However, given
the high indel rate in the ycfl and ycf2 genes, alignment
filtration using programs such as Gblocks is a necessity to
avoid spurious results in phylogenetic analysis, and this
would also apply to entropy tests which aim to assess the
suitability of a data set for phylogenetic analysis. Moreover,
the DAMBE software warns against including gaps and
unresolved characters in the alignment due to the potential
for false positives.
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A biological basis for phylogenetic incongruence
If phylogenetic artifacts due to the unique properties of
the ycfI and ycf2 genes can be excluded, then biological
factors may be the more likely source of phylogenetic in-
congruence. To explain the intragenomic conflict within
the plastomes of the CaCuHJX clade, we propose that the
anomalous signal resulted from an ancient introgression
event involving the ycfl and yc¢f2 genes. This event would
require several evolutionary processes to occur: 1) ancient
hybridization or incomplete lineage sorting to establish an
ancestral population having two plastid haplotypes with
distinct evolutionary ancestry, 2) creation of a heteroplas-
mic individual containing both plastid haplotypes via at
least occasional biparental inheritance, and 3) recombin-
ation between the two plastid haplotypes.

Hybridization is a common phenomenon in plant evolu-
tion that can confound phylogenetic analyses, particularly

when using cytoplasmic loci [27], and even more so if
recombination among distinct plastid haplotypes has
occurred [28]. In conifers, hybridization has resulted in
chloroplast capture, nuclear introgression, and phylogenetic
incongruence between the nuclear and plastid genomes [18,
29, 30]. Thus, it is plausible that members of the CaCuHJX
complex may have experienced some level of reticulate evo-
lution. In fact, long-distance dispersal of seed cones has been
well documented for many Juniperus species [9, 10], and an-
cient hybridization has been previously suggested to explain
phylogenetic incongruence between the nuclear and plastid
genomes in the CaCuHJX clade [12]. Incomplete lineage
sorting could also be an explanation for coexisting plastome
haplotypes in a population, although this mechanism has re-
ceived less attention in the plastome literature [31, 32].
Once distinct plastome haplotypes were established in
a population (via ancient hybridization or incomplete
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Fig. 5 Analysis of structural variation among Cupressaceae plastomes.
a progressiveMAUVE plot of whole plastome sequences. The location
of the two trnQ-IR copies is marked by arrows, and species containing
the intervening sequence in an inverted orientation are labeled. b
Numbers of read pairs spanning the trnQ-IR that provide support for
the genome in either the "A" or “B" arrangement. Numbers listed in
red are from previous studies [21, 24]

lineage sorting), some level of biparental inheritance
could have created a heteroplasmic state, which could
then have facilitated recombination between plastomes
from different species, resulting in the introgression of
foreign ycfl and ycf2 genes. Frequent reversals of unipa-
rental inheritance (maternal-to-paternal and vice versa)
have been found for both mitochondrial and chloroplast
genomes [33], and genetic leakage has been observed in
many Cupressaceae species (See Additional file 1: Table S2)
and other seed plants [34—36]. Heteroplasmy and recom-
bination could neatly explain the anomalous phylogenetic
signal that is confined to the ~ 15 kb region of the plas-
tome, regardless of the fast-evolving properties of the two
ycf genes.

The anomalous grouping of Jumniperus and Cupres-
sus in the ycfl + ycf2 analyses suggests that the an-
cient introgression of the ycfI and ycf2 genomic
segment occurred between these two lineages. The
crown group ages for Cupressus and Juniperus have
been dated to ~30 and ~40 million years, respect-
ively, while the crown group age for the entire
CaCuHJX clade was estimated to be ~60 million
years [9]. These dates suggest that the ancient
hybridization and recombination event probably oc-
curred 40—60 million years ago, subsequent to the ini-
tial diversification of the CaCuHJX clade but prior to
the diversification of the Cupressus and Juniperus line-
ages. However, the direction of ycfI + ycf2 introgression
(from Cupressus to Juniperus or from Juniperus to Cupres-
sus) cannot be determined from the available data.
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Taxonomic implications of phylogenetic results

Except for the intragenomic conflict observed in our
plastomic data regarding the relationships among the
Cupressus, Juniperus, and CaHX clades, phylogenetic re-
sults are otherwise largely congruent in the trees based
on protein-coding genes and complete plastomes. Im-
portantly, all data sets but one from this study strongly
support a sister group relationship between Callitropsis
and Hesperocyparis within the CaHX clade (Fig. 2; Fig. 4),
which is generally consistent with previous studies using
at least 10 kb of sequence data [9-11, 13, 14]. The lone
contrasting data set (ycfI +ycf2 genomic data) instead
supports a sister group relationship between Ca. nootka-
tensis and X. vietnamensis (Fig. 4b, left), which has also
been observed in a minority of previous studies, primarily
based on nuclear internal transcribed spacer data [4, 7, 8].
Nevertheless, the weight of evidence from this study and
others indicates that Ca. nootkatensis and X. vietnamensis
are not sister taxa; thus, the previous suggestion [3] to
classify both species into separate monotypic genera ap-
pears well justified.

Finally, alternative suggestions to treat the entire CaHX
clade as a single genus Callitropsis [7], or to maintain a
more broadly defined Cupressus sensu lato (s.l.) that in-
cludes the CaHX clade [15], are problematic. The mainten-
ance of Cupressus s.l. is problematic due to uncertainty in
the placement of Juniperus. Notably, a paraphyletic Cupres-
sus s.l. is consistently recovered in the few studies that have
utilized nuclear or mitochondrial protein-coding genes
[7, 8, 12, 13] as well as a minority of plastid analyses
from this (Fig. 2; Fig. 4) and other [14] studies; more
nuclear and mitochondrial data is required to explore
this issue further. Furthermore, while the CaHX clade
is clearly monophyletic in this and many previous stud-
ies, there are a variety of morphological characters that
distinguish Hesperocyparis from Ca. nootkatensis and
X. vietnamensis [8], arguing against circumscribing all
three genera into a single, more broadly defined genus.
Collectively, while there is still room for debate on the
precise relationships among species in the CaCuHJX clade
of Cupressaceae, the weight of evidence strongly favors
recognition of five separate genera: Callitropsis, Cupressus,
Hesperocyparis, Juniperus, and Xanthocyparis.

Conclusions

Our results provide further evidence that standard phy-
logenomic analyses can produce strongly supported but
conflicting trees, implying that phylogenomic results
should be performed in multiple ways with different data
partitioning schemes to unmask potential signals of con-
flict. In our study, we showed that the conflicting phylo-
genetic signal was localized to the ycfI and ycf2 region of
the genome, which we suggest was due to introgression of
this region in an ancestor of this species complex. This
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hypothesis implies that plastomic recombination must
have occurred between distinct haplotypes that coexisted
in an ancestral heteroplasmic individual. Finally, after ex-
clusion of the introgressed ycfI and ycf2 genes from the
data sets, our analyses recovered a robust phylogeny of
the five genera and provided strong evidence in support of
previous proposals to recognize five distinct genera in this
species complex: Callitropsis, Cupressus, Hesperocyparis,
Juniperus, and Xanthocyparis.

Methods

Sample collection and DNA sequencing

Leaf samples (50 mg each) from mature trees (Ca. nootka-
tensis, Cu. sempervirens, H. arizonica, H. benthamii, H.
glabra, H. lindleyi, H. lusitanica, and J. communis) were
collected on roadsides in common areas of public land. Leaf
samples (50 mg each) from remaining samples (Cu. tonki-
nensis, Cu. torulosa, and X. vietnamensis) were collected
from seedlings grown by Keith Rushforth (UK) in his gar-
den from seeds collected by him. Thus, no samples were
subject to institutional, national or international guidelines
for collection. DNAs were extracted according to proce-
dures described previously [21] and sequenced on the Illu-
mina HiSeq 2500 platform at BGI (Shenzhen, China) or the
[lumina MiSeq system at the Center for Genomics and
Bioinformatics at Indiana University (Bloomington, IN).
Details of collection sites, voucher numbers, and sequen-
cing results are provided (See Additional file 1: Table S3).

Plastome assembly and annotation

Plastomes were assembled using an established proced-
ure [21, 37, 38]. For each species, a draft sequence was
assembled from raw reads using Velvet version 1.2.03
[39] with pairwise combinations of different Kmer values
(61, 71, 81, 91, 101) and expected coverage values (50, 100,
200, 500, 1000), and a final consensus sequence was gener-
ated from at least three independent assemblies. Genes
were initially annotated using DOGMA [40], followed by
manual correction of start and stop codons based on com-
parison to homologs from other Cupressaceae plastomes.

Gene and whole genome alignments
A total of 82 plastid protein-coding genes were extracted
from the 11 genomes newly sequenced in this study plus
additional species of Cupressaceae (See Additional file 1:
Table S4). For each gene, a codon-based alignment was
generated by aligning amino acid sequences with MUSCLE
[41] and reverse translating the alignments into nucleotide
sequences using PAL2NAL [42]. A concatenated plastid
data matrix was built with FASconCAT version 1.0 [43].
The aligned 82-gene data set was 79,479 bp in length.
Whole plastome sequence alignments were also con-
structed from the 11 genomes newly sequenced in this
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study plus additional species of Cupressaceae (See
Additional file 1: Table S4). First, a collinearity plot
was generated with the progressiveMAUVE algorithm [44]
using full genome sequences. When necessary, genomes
were adjusted to start on the rbcL gene to ensure a consist-
ent starting point for this plot. Next, whole genome align-
ments were performed with MAFFT version 7.245 [45]
using the fftnsi setting. To facilitate this whole plastome
alignment, the orientation of an inverted segment in some
Cupressaceae plastomes (mediated by a small trnQ-con-
taining inverted repeat element termed trnQ-IR [21]) was
manually reverted such that all examined genomes were
globally collinear. Plastomes from more distant outgroups
were more highly rearranged and were thus excluded from
the whole plastome alignments. The aligned plastome data
set was 144,492 bp in length.

The aligned gene and genome data sets were trimmed
using Gblocks version 0.91b [46] with default strict set-
tings J(b1=13, b2=21, b3 =8, b4=10, b5=none) or
with more relaxed settings (b1 =13, b2=13,b3=8, b4 =
5, b5 = half). The final 82-gene data set was trimmed in
codon mode (t=c) to 74,772 bp (relaxed) or 71,871 bp
(strict), while the whole plastome data set was trimmed
in DNA mode (t=d) to 126,645 bp (relaxed) or
113,387 bp (strict).

Phylogenetic analysis and alternative topology tests
Phylogenetic analyses were performed using the maximum
likelihood approach in PhyML version 3.0 [47] under the
GTR+G+1 model with 100 bootstrap replicates. The
shape of the gamma distribution of rate variation, propor-
tion of invariant sites, and substitution rate parameters
were estimated during the analysis. Two competing phylo-
genetic hypotheses of the relationships among Callitropsis,
Cupressus, Hesperocyparis, Juniperus and Xanthocyparis
were examined using the Shimodaira-Hasegawa test and
the Approximately Unbiased test, as implemented in
CONSEL [48]. One topology forced Cupressus to be
sister to Jumiperus, while the second topology forced
Cupressus as sister to the CaHX clade.

Assessment of phylogenetic incongruence in the plastome

To assess levels of substitutional saturation in the data
sets, saturation tests were performed on untrimmed and
trimmed data sets using an entropy test based on an
index of substitution saturation [19, 20] as implemented
in DAMBE version 6.4.110 [49]. To examine phylogenetic
signals among genomic regions, log-likelihoods for each
site in the whole genome alignment were calculated on
the two major topologies: Cupressus sister to Juniperus
versus Cupressus sister to CaHX. Site likelihoods for each
topology were reported in PhyML, and then the difference
in log-likelihoods at each site was plotted along the gen-
ome. A sliding window analysis was performed (window
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size = 5000, step size = 100) that summed the difference in
site likelihoods in order to show localized variation in like-
lihoods across 5 kb segments of the alignment.

Additional file

[ Additional file 1: Supplementary Tables S1-S4. (PDF 97 kb) ]
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