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Background: The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two
main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded,
including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies
suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes
gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of
Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available
sequences, assembled decay mode characters from the literature, and coded host specialization using the newly

Results: We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot
fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition
rates between generalism and specialization in both decay modes. However, while white rot lineages switched
most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-
calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades
originated after the diversification of the angiosperms in the Cretaceous.

Conclusions: Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and
reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated
convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than
gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated
phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi,
which was exploited particularly well by white rot lineages.

Keywords: Wood-decay fungi, Decay mode, White rot, Brown rot, Host specialization, R package rusda

Background

About 2000 billion tons of carbon is present in terres-
trial ecosystems [1], of which 550 billion tons are fixed
in vegetation [2]. In forest ecosystems, most plant bio-
mass is stored in the form of dead wood [3]. Woody
plant cell walls consist mainly of the lignocellulose com-
plex which is composed of the polymeric polysaccha-
rides cellulose, hemicellulose and lignin heteropolymers
[4, 5]. Cellulose is a macropolymer consisting of linear
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chains of glucose subunits that can take on a recalcitrant
crystalline form [6]. Hemicelluloses are matrix polysac-
charides consisting of various heteropolymers, e.g., of
xylans and glucomannans [7]. Lignin is a complex aro-
matic polymer that is resistant to hydrolytic degradation
[8]. The amount of cellulose in woody plants is 40-50%
of the wood dry weight and for hemicelluloses and lignin
15-30% each. The plant biomass further consists of
macromolecules such as lipids, waxes, proteins and
phenolic compounds [3]. The most efficient agents of
the decay of the lignocellulose complex are saprotrophic
fungi, which therefore play pivotal roles in the cycling of
carbon [9] and nutrients [10] in the forest ecosystem.
Wood is produced by angiosperms and gymnosperms,
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which together comprise more than 60,000 species [11].
Angiosperms regularly have lower amounts of lignin
than gymnosperms, whereas angiosperms regularly have
higher amounts of cellulose than gymnosperms [12, 13].
Further, angiosperms often have lower amounts of
non-structural secondary compounds (plant extractives)
than gymnosperms [12—15], with some exceptions, e.g.,
species of the genera Quercus, Fagus or Malus [16].

The main agents of wood decay are members of the
class Agaricomycetes (Basidiomycota). Agaricomycetes
contains about 21,000 species with a worldwide distribu-
tion, including many lifestyles, e.g. mycorrhizal symbi-
onts, pathogens, and saprotrophs. Most saprotroph
fungi within the Agaricomycetes are dead wood decaying
fungi. Dead wood decay modes can be classified as ei-
ther white or brown rot. Brown rot fungi attack cellulose
but do not significantly degrade lignin [17], resulting in
a brownish residue that breaks into cubical fragments,
whereas white rot fungi degrade both cellulose and lig-
nin [18], leaving a bleached fibrous residue (Fig. 1).
Hemicellulose can be degraded by both brown and white
rot fungi [19]. Whereas dead wood is mainly decayed by
Agaricomycetes, in plant litter decay, Ascomycota play a
significant role along with litter-decomposing Agarico-
mycetes [19, 20]. Other decay modes are also present,
such as “soft rot” in some Ascomycota and “grey rot” in
some Basidiomycota such as Schizophyllum commune
[21]. Although many ectomycorrhizal fungi are partially
saprotrophic, their decay abilities are considered mar-
ginal compared to wood decay fungi [22, 23].

The enzymatic basis of the differences between white
rot and brown rot has been studied extensively in com-
parative genomic analyses [21, 24—26]. White rot fungi
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are distinguished by high copy numbers of genes encod-
ing different carbohydrate-active enzymes (CAZymes)
which are classified based on the CAZy database [27]. In
general, CAZymes, which act on crystalline cellulose are
more abundant in white rot genomes compared with
brown rot [24]. Glycoside hydrolase (GH) families (e.g.,
GH6 and GH?7, including cellobiohydrolases) are more
abundant in white rot compared with brown rot fungi
[24]. Further, lytic polysaccharide monooxygenases
(LPMOs) from the AA9 family are more abundant in
white than brown rot fungi [24]. Apart from Agaricomy-
cetes, LPMOs can be found in Ascomycetes and Mucor-
omycotina [21, 24]. Finally, lignin-degrading class II
peroxidases (AA2) and other heme-containing peroxi-
dases are more common in white rot, and reduced or
absent in brown rot fungi [26] (for mechanisms of action
see Hofrichter et al. [28]). The most recent common an-
cestor of Agaricomycetes was a white rot species (based
on an inferred expansions of AA2 and other lignocellu-
lolytic enzymes) with at least four independent origins of
brown rot, correlated with parallel losses of genes en-
coding diverse CAZys, and the complete loss of lignino-
Iytic class II peroxidases (AA2) [24], making reversals to
white rot unlikely. This white rot ancestor likely lived
roughly 290 (+/- ca. 70) million years ago (MYA) [24].
Analyses of a sample of 62 genomes by Nagy et al. [29]
suggested that expansions of cellobiohydrolases (GH6,
GH?7), LPMOs (AA9), and other plant cell wall degrad-
ing enzymes occurred early in the evolution of Agarico-
mycetes, prior to the expansion of class II peroxidases
(AA2).

Gilbertson [30] investigated ecological differences be-
tween white and brown rot decay modes, noting that
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Fig. 1 Brown and white rot residues and fungal fruit bodies. a) Brown rot residue, b) brown rot fungus, Fomitopsis pinicola (Polyporales,
Fomitopsidaceae), ¢) white rot residue, d) white rot fungus, Fomes fomentarius (Polyporales, Polyporaceae). Photos by F.-S. Krah (ab,c) and
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brown rot fungi preferentially occur on gymnosperm
hosts [31]. Gilbertson thus suggested a correlated evolu-
tion of brown rot decay mode and gymnosperm
specialization. Hibbett and Donoghue [32] tested Gil-
bertson’s hypothesis using phylogenetic comparative
methods. Their results suggested that the evolution of
brown rot was correlated with the evolution of exclusive
decay of gymnosperm hosts. However, this inference was
made from a dataset with limited taxonomic sampling,
with only a total of 130 species [32].

To assess the evolution of decay modes and patterns
of host specialization among wood decay fungi in Agari-
comycetes, we utilized a time-calibrated mega-phylogeny
approach and drew on the extensive Fungus-Host Distri-
bution Database built by the United States Department
of Agriculture (USDA) [33]. We then used this
mega-phylogeny and host associations, which encom-
passed 1157 species from 14 orders, to test two hypoth-
eses: (1) brown rot fungi occur primarily on
gymnosperm hosts; and (2) brown rot fungi switched
more frequently towards gymnosperm hosts than white
rot lineages. We further use this large-scale dataset to
investigate white rot specialization pattern and mecha-
nisms, a topic currently neglected due to a focus on
specialization pattern of brown rot fungi.

Methods

Trait data and character matrix

To test our hypotheses, we gathered data on decay mode
and host associations for Agaricomycetes. For decay
mode, we used the “decay.type” as published in Tedersoo
et al. [34], which is available on the genus level, and we
also conducted a literature search for additional genera.
Tedersoo et al. (2014) investigated lifestyle-dependent glo-
bal fungal diversity and therefore coded the trophic status
(six states, e.g., biotroph), the lifestyle (17 states, e.g., ecto-
mycorrhizal) and decay type (four states, e.g. white rot,
brown rot) for more than 10,000 genera. We used only
species with either white or brown rot in our analysis and
excluded other lifestyles (e.g., mycorrhizal). This gave us
the decay mode of particular species in the genera. We
then extrapolated this decay mode to the remaining spe-
cies of a genus (with one exception, see below). Our justi-
fication is that decay mode has often been a focus of
taxonomists and thus was widely used to distinguish gen-
era such as Antrodia and Antrodiella [35], Lentinus and
Neolentinus-Heliocybe [36], and Daedalea and Daedaleop-
sis [37]. We found only three genera where more than one
decay mode has been reported: Clitocybula [38, 39],
Hyphoderma [40], and Mucronella [40, 41]. Clitocybula
and Mucronella were deleted from the dataset because no
host data were available. For Hyphoderma we used only
the two species where decay mode references were found.
To estimate how this strategy might affect our
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interpretations, we re-sampled a single species per genus
from our final dataset (hereafter “one-genus-subset”) and
repeated the analyses described below 100 times.

To gather data on host associations, we used the R
package “rusda”, written for this study, as an interface to
the USDA Fungus-Host Distribution Database (FHDD)
[33]. The FHDD contains fungus-host combinations, but
does not provide information on the occurrence fre-
quencies on a particular host (other than the number of
published records on each host). The “rusda” package
makes it possible to retrieve (“query”) host data for fun-
gal species, and vice versa. For a detailed description,
basic usage and evaluation of the R package “rusda”, see
Additional file 1 and for repositories refer to Availability
of data and material.

To retrieve host associations from the FHDD we used
the function associations, which takes an input of species
names and provides an output list of fungus-host combi-
nations. As input we used the NCBI taxonomy for
fungi and re-classified the order level where necessary
(Additional file 1: Table S3). We then produced a
dataset of plant phyla by matching host genera to the
Spermatophyta taxonomy downloaded from NCBI
taxonomy using the R package “megaptera” [42]. Thus, we
retrieved the phylum information “Acrogymnosperma”
and “Magnoliophyta” for each host species. We refer to
“Magnoliophyta” as angiosperm (A) and “Acrogymnos-
perma” as gymnosperm (G) and stored the number of
gymnosperm and angiosperm associations for each fungus
species in a table. Species which did not belong to either
Acrogymnosperma or Magnoliophyta were deleted from
the dataset. We further deleted all non-woody plants
based on the woodiness dataset which classified more
than 35,000 plants into woody and non-woody [43]. Thus,
the final host dataset included only woody plants from
Acrogymnosperma or Magnoliophyta; seedless vascular
plants, bryophytes, algae, and non-plant hosts were
excluded. The FHDD covers mainly temperate North
America and Europe [33].

The host association data were used to calculate the
number of angiosperm and gymnosperm host species
for each fungus species. We defined the “gymnosperm
association” by dividing the number of gymnosperm
host tree species (Ng) by the sum of the number of
angiosperm (N,) and gymnosperm host tree species:
gymnosperm associations [%] = Ng/(Ng + N). Thus, a
gymnosperm association of 100% means that a fungus is
reported exclusively on gymnosperm hosts in the
Fungus-Host database, whereas 0% means only angio-
sperm hosts are reported. We classified host preferences
into three states: (1) generalism, (2) angiosperm
specialization, or (3) gymnosperm specialization. Based
on the distribution of gymnosperm association [%]
(Fig. 4c), we defined specialization based on the



Krah et al. BMC Evolutionary Biology (2018) 18:119

gymnosperm association [%] with a threshold of =90%
for gymnosperm specialization and a threshold of <10% for
angiosperm specialization (hereafter “90—10 specialization”).
Previous studies used exclusivity as a measure of host asso-
ciation [32], but missing or incorrect data for a single fungus
observation may then lead to misclassification of a species.
Nonetheless, we also inferred our final model (see Statistics
and models of host specialization) using the exclusivity cod-
ing (hereafter “100-0 exclusivity”). However, in the exclusiv-
ity coding, generalists and non-exclusive specialists are
coded in one state (“generalists”) and thus results might be
hard to interpret.

Mega-phylogeny approach

To test dynamics of host switching, we used phylo-
genetic comparative methods (PCMs). For this pur-
pose, we applied a mega-phylogeny approach using
the R package “megaptera”, a pipeline for large-scale
automated sequence-retrieval and alignment [44] (ver-
sion available on https://github.com/heibl/megaptera).
The mega-phylogeny approach aims at maximising taxon
sampling integrating previous knowledge (e.g. taxonomic
information, backbone trees) into the tree inference [45].
For our mega-phylogeny approach, we used a backbone
guide tree based on phylogenomic analyses [24, 26, 29] to
provide information for deep splits (order level), as resolv-
ing such ancient divergences can be difficult due to
sequence saturation [45]. Further, mega-phylogeny ap-
proaches often lead to a high number of gaps or missing
data, often more than 90% (e.g. Smith et al. [45]). To re-
duce the bias of missing data, we computed a reliability
measure for each column of the alignment, which is then
supplied to the tree inference program. In this way, uncer-
tain regions in the alignment are down-weighted in the
phylogeny inference step.

First, we used the R package “megaptera” to download
all sequences for the species with decay mode and host
association information from GenBank [46] (queried
February 2017). We selected seven DNA regions: 18S,
28S and 5.8S rRNA (nuclear ribosomal RNA genes),
genes encoding RNA polymerase b (rpbl, rpb2), transla-
tion elongation factor 1 (tefl), and ATP synthetase
(atp6). We chose the rRNA regions to obtain high spe-
cies numbers and the other regions for resolution of
deeper nodes [47]. Only sequences of samples identified
to species level were accepted.

We used single sequences where only one sequence
for a particular species and DNA region was available. If
multiple sequences were available, all sequences of the
same DNA region and organism (putatively conspecific
sequences) were aligned and a majority rule consensus
sequence was calculated. In the next step, all sequences
were compared to three to six Agaricomycotina refer-
ence sequences for each DNA region as a quality check
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(Additional file 1: Table S4). We used the R package
“megaptera” to calculate the identity (proportion of nu-
cleotides identical) and coverage (proportion of nucleo-
tide positions in common) with the reference. Based on
the coverage and identity values, thresholds can be ad-
justed aiming to maximize both quality and number of
taxa. The default values are 0.75 for identity and 0.5 for
coverage. Based on visual inspection of the alignments,
we chose identity thresholds between 0.5 and 0.75 and
coverage thresholds between 0.25 and 0.5 for the seven
gene regions. All sequences outside these limits were
discarded.

We aligned the remaining sequences for each gene re-
gion separately, using GUIDANCE2 [48, 49] with the
multiple sequence alignment program MAFFT [50].
GUIDANCE?2 computes a reliability score for each col-
umn based on alternative alignments produced by boot-
strap guide trees and four co-optimal alignments based
on each bootstrap alignment, created by the heads or
tails algorithm [51]. We passed the resulting column
score as character weights to the phylogeny inference
program RAxML (flag -a; see additional details on
phylogenetic inference below) rather than filtering the
alignment using the column score, which is not recom-
mended [52]. We used IQ-TREE version 1.5.3 with spe-
cification “-“TESTMERGEONLY” [53, 54] to select a
partition scheme among the gene regions. IQ-TREE
found six blocks as the best partitioning scheme (mer-
ging the 5.8S rRNA and 28S rRNA into one partition;
Additional file 1: Table S1). The final alignment had
37,466 sites and the proportion of gaps was 92.07% with
16,814 distinct alignment patterns.

We produced a comprehensive backbone guide tree by
first assembling an order-level “genomic” based back-
bone tree (Additional file 1: Figure S1 A) from the litera-
ture [21, 26, 29] and then attaching all species on the
order-level tips of the genomic backbone tree (Add-
itional file 1: Figure S1 B). We performed maximum
likelihood estimation, using the concatenated superma-
trix of the seven DNA regions, with RAxML [55] on the
CIPRES Science Gateway v.3.3 (RAxML -HPC2 on
XSEDE 8.1.11) [56, 57] under the GTRGAMMA model
with partitioning as described above, the GUIDANCE?2
column score (flag —a) and the comprehensive backbone
tree (flag —g). We subsequently conducted 1000 approxi-
mate Shimodaira—Hasegawa likelihood ratio tests
(SH-aLRT branch support). SH-aLRT which are fast, ac-
curate and robust even for larger phylogenies [58].

We estimated divergence times of the resulting phyl-
ogeny using penalized likelihood as implemented in the
R function chronos from the R package “ape” [59]. We
used two calibration points, a Late Cretaceous mush-
room fossil Archaeomarasmius legetti [60], which bears
a strong resemblance to extant Agaricales (particularly
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Marasmiaceae), and a Middle Eocene ectomycorrhizal
fossil, which has been interpreted as a representative of
Boletales [61]. We followed the strategy of Kohler et al.
[26] and used the ectomycorrhizal fossil to calibrate
Boletales with a stem age of 40-60 MYA and A. legetti
to date Agaricales with a stem age range of 70-110
MYA. We also tried the approach of [24] and used 50
and 90-94 MYA as age priors, which yielded almost
identical divergence time estimates (results not shown).

We applied chronos with three different models of substi-
tution rate variation among branches: “relaxed”, “corre-
lated” and “strict” and compared the model fits using ¢pIC
[62]. The “correlated” model had lowest ¢IC values and
thus was used for further analysis. We are aware that penal-
ized likelihood does not make use of the sequence data and
does not incorporate phylogenetic uncertainty. However,
algorithms that perform joint inferences of the tree and
divergence times currently do not implement an option for
character weights, e.g. BEAST [63] or character weights
and guide tree, e.g. ExaBayes [64].

To account for phylogenetic uncertainty at nodes with
low support values, we produced alternative trees based
on the maximum likelihood phylogeny (Additional file 1:
Figure S2). We created hard polytomies on nodes with
SH-like support values < 80 based on the non-ultrametric
ML tree (Additional file 1: Figure S3). We then used the
function multi2di from the R package “ape” [59] and
resolved the polytomies randomly and used chronos (as
described above) to estimate divergence times. We re-
peated this 100 times and summarized the dated trees
using TreeAnnotator [65] to calculate a maximum clade
credibility tree (MCCT) with the node option “Common
ancestor heights” (because the nodes did not share the
same ancestors since polytomies were created at random).
We displayed confidence intervals of the divergence time
estimates as HPD (highest posterior density) for the
brown rot clades and the root. Furthermore, we use the
100 ultrametric trees as input for the transition rates esti-
mation to measure robustness of the results against phylo-
genetic uncertainty.

Statistics and models of host specialization

We first tested preferences of host species among extant
fungi of the two decay modes using a phylogenetic linear
model in the R package “phylolm” [66]. We tested whether
the number of host species (host range) differed between
decay modes as a binary predictor variable. As an evolu-
tionary model for the residual variance-covariance matrix
we used the lambda model [67]. The number of host tree
species was logo-transformed.

We modelled dynamics and pattern of host specialization
evolution in white and brown rot lineages using multistate
likelihood-based models. We used the function rayDISC
from the R package “corHMM” [68], which implements a
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multi-state version of a continuous-time Markov model,
where the Markov process is characterized by a Q-matrix.
The Q matrix specifies the transition rates between the
character states and hence the model of discrete character
evolution. All models were based on our six-state character
coding and the transition rate matrix was a 6 x 6 matrix: (1)
white rot/angiosperm specialist, (2) brown rot/angiosperm
specialist, (3) white rot/gymnosperm specialist, (4) brown
rot/ gymnosperm specialist, (5) white rot/generalist, and (6)
brown rot/generalist.

The first model allows for all transitions to occur in
single steps, e.g. an angiosperm specialist can switch dir-
ectly to a gymnosperm specialist without first passing
through a generalist state. Further, in this model transi-
tions between white rot and brown rot are allowed in
both directions. All models allow white rot to brown rot
transitions. We call this the “Uncorrelated” model, be-
cause switches between the states are not conditioned
on previous states. This model may not be biologically
realistic. Transitions from an angiosperm specialist to a
gymnosperm specialist may require a transition first
through a generalist, before passing to a gymnosperm
specialist, and thus could require two “steps”. Thus, we
coded further models implementing correlated
(dependent) character evolution. In the second model,
we prohibited transitions leading directly from one spe-
cialist to another by setting the direct transition parame-
ters to zero. We call this the “Correlated hosts” model.
Both the “Uncorrelated” and the “Correlated hosts”
model allow for brown rot to white rot reversals. How-
ever, brown rot evolution is correlated with complete
losses of genes encoding ligninolytic class II peroxidases
(AA2) and reductions in other decay enzymes, making
reversals to white rot unlikely [24]. Accordingly, we con-
structed a third model where we further disallowed tran-
sitions from brown rot states to white rot states. We call
this the “Correlated hosts — norev” model. For the cod-
ing of the Q matrices, see Additional file 1: Figure S4.

We fitted the three models with equal rates (ER) and
all rates different (ARD) and compared the fit of the
models by Akaike’s information criterion (AIC) [69]
from the log-likelihoods. For model selection we applied
a simple root state with equal weights among the six
character states (root.p=NULL). Brown rot has been
shown to evolve repeatedly from white rot ancestors [70,
71], so we applied an additional root state treatment
which only allows white rot as root state. Thus, after
model selection we ran the final (best) model using an
additional root state coding, which assumed zero prob-
ability for brown rot and equal probabilities for each of
the three white rot states, and compared the models.

Another framework to estimate pattern of host evolu-
tion is the coding as three independent binary states:
white rot — brown rot; angiosperm — no angiosperm;
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gymnosperm — no gymnosperm (e.g. using the function
corDISC, from the R package “corHMM”). However, this
model requires unobserved states (no angiosperm and
no gymnosperm host). Such unobserved states may yield
high rates as a methodological artefact [72]. Thus, we
decided to use the multi-state implementation in the
function rayDISC.

Phylogenetic signal

We computed phylogenetic signal in decay mode, gymno-
sperm association, and the six-state character coding (as
defined above). For the decay mode (binary state) we used
the phylogenetic D statistic, which is calculated as the
sum of sister-clade differences based on reconstructed
values on all nodes of the tree [73]. The observed D is
then compared against (1) a random expectation (random
shuffling of trait values along the tips), and (2) a trait sim-
ulated according to a Brownian motion model of character
evolution along the tree, after the values were converted
to a binary according to a threshold. For the computation
we used the function phylo.d in the R package “caper” [74]
with 1000 permutations.

For the gymnosperm association we calculated two
measures of phylogenetic signal: Pagel's lambda [67]
using the function phylosig from the R package “phy-
tools” [75], and phylogenetic correlograms using the
function phyloCorrelogram from the R package “phylo-
singal” [76]. Lambda measures the phylogenetic depend-
ence of a trait under the assumption of a pure Brownian
motion model of evolution. Lambda is a transformation
(weight) of the variance-covariance matrix, if other fac-
tors than the phylogenetic history had an effect on the
trait. If lambda equals 1 the model fits a Brownian mo-
tion model of evolution. Phylogenetic correlograms
measure phylogenetic signal in dependence of the phylo-
genetic distance (that is distance in branch lengths). For
a single trait, phylogenetic signal is measured as the
autocorrelation (Moran’s I) based on a sequence of
phylogenetic weights matrices differing in their mean
(phylogenetic distance if method = “lag-norm”). We con-
ducted 100 bootstraps for 100 points to generate a confi-
dence interval. If the confidence interval falls below or
above 0 the signal becomes significant. We rescaled the
phylogeny to a tree height of 1 for this analysis.

For the six state character coding we calculated the
phylogenetic signal following the method described in
Bush et al. [77] (function phylo.signal.disc, the script is
available at:  https://github.com/juliema/publications/
blob/master/BrueeliaMS/Maddison.Slatkin.R). A parsi-
mony score of the discrete trait along the tree is com-
pared to a randomized parsimony score inferred by
randomizing tip states. If the parsimony score falls out-
side the random distribution, this indicates a higher con-
servation than under a random expectation.
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Results

Our core dataset consisted of 1157 fungal species, in-
cluding 126 brown rot and 1031 white rot species. Based
on the 90-10 specialization coding, we found 205 gym-
nosperms specialists, 565 angiosperm specialists and 387
generalists (for tip state frequencies, see Additional file 1:
Table S2).

Our time-calibrated phylogeny contains five brown rot
clades (Fig. 2, all clades had SH-like support values
above 90, Additional file 1: Figure S3), including two in
Polyporales, one in Gloeophyllales, one in Agaricales
and one in Boletales. Clade 1, the Auriporia-Crusto-
derma clade, within the Polyporales includes Laetipora-
ceae, Sparassidaceae, Dacryobolaceae pro parte
(Dacryobolus karstenii), Crustoderma and Pycnoporellus.
Clade 2, the Antrodia-Fomitopsis clade, within the Poly-
porales includes Fomitopsidaceae, Dacrybolaceae pro
parte (Spongiporus, Oligoporus, Postia pro parte) and
Fibroporia gossypinum. Clade 3, the Gloeophyllum-Neo-
lentinus clade, falls within the Gloeophyllales. Clade 4,
the Fistulina clade, falls within the Agaricales (Fistulina
pallida and F. antarctica). Clade 5, the Serpula-Hygro-
phoropsis clade, falls within the Boletales (Fig. 2).

Phylogenetic signal

For decay mode, we found a phylogenetic D value of -
0.38, which had a high probability resulting from a
Brownian motion phylogenetic structure (P =0.998) and
a corresponding low probability resulting from a random
phylogenetic structure (P =0.00, Fig. 3a). We found a
lambda value of 0.73 for gymnosperm association and an
increasing phylogenetic signal towards the tips (Fig. 3b,
red and blue lines indicates significance). For the
six-state character coding, we found that the observed
parsimony score was significantly smaller than under a
random expectation (Fig. 3c).

Host preferences among decay fungi

We assessed host preferences among extant decay fungi
based on the average number of host tree species. White
and brown rot fungi did not significantly differ in their
average number of host tree species (phylogenetic re-
gression, Fig. 4a, b, statistics Additional file 1: Table S5),
although visible trends suggested that white rot species
have a larger average host range on angiosperms (Fig. 4a),
while brown rot species have a larger average host range
on gymnosperms (Fig. 4b). The histogram of the gymno-
sperm association showed a bimodal distribution with
two peaks towards the ends of the distribution, repre-
senting extremes of angiosperm vs. gymnosperm
specialization (Fig. 4c). Thus, among the specialized
decay fungi most occur exclusively on either angiosperm
or gymnosperm hosts (Fig. 4c). Based on the gymno-
sperm association we found that 51% of white rot
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rot crown nodes indicate confidence intervals (HPD) from 100 alternative trees. For a detailed maximum likelihood phylogeny with SH support

values and tip labels, see Additional file 1: Figure S3

species are specialized to angiosperm hosts, whereas
27% of brown rot fungi are specialized on angio-
sperms (Fig. 4d). Among brown rot fungi, however,
we found a higher proportion of generalists and

Of the five brown rot clades (Fig. 2), two consisted of
mainly generalist species (Polyporales clades: Auriporia-
Crustoderma and Antrodia-Fomitopsis). Two clades consist
of mainly gymnosperm specialists (Gloeophyllales:

gymnosperm specialists than in white rot fungi  Gloeophyllum-Neolentinus; Boletales: Serpula-Hygrophor-
(Fig. 4d). opsis). One clade consists of mainly angiosperm specialists
<
a Decay mode b Host association [%] Cc Host association - 6-states
10 s 0.15- " 2004 90-10
o | /spemahzahon
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Fig. 3 Phylogenetic signal for decay mode, and two measures of gymnosperm association. a) Phylogenetic signal D for decay mode (binary
variable). A value smaller than 0 indicates strong conservatism. b) Pagel’s lambda and phylogenetic correlogram for gymnosperm association. A
lambda value of 0.73 indicates non-random trait evolution which is not as conserved as Brownian motion. The phylogenetic signal increased
towards the tips. Displayed is the mean phylogenetic signal with a 95% confidence interval resulting from 100 bootstraps. ¢) Phylogenetic signal
C for the six-state coding. The observed value outside of the random expectation distribution indicates conservatism
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(Agaricales: Fistulina) (Fig. 4e). The two Polyporales thus we did not interpret host associations for them.
clades, Auriporia-Crustoderma and Antrodia-Fomitopsis, ~ White rot species within six orders were primarily
however, also display a considerable amount of angiosperm  angiosperm specialists (Agaricales, Auriculariales, Cor-
specialists, exceeding gymnosperm specialists (Fig. 4e). ticiales, Hymenochaetales, Polyporales, Russulales)

Twelve of the 14 orders in our dataset contained white  (Fig. 4f). White rot species within three orders were pri-
rot lineages (Fig. 4f). Three of these had less than five  marily generalists (Atheliales, Cantharellales, Trechispor-
species (Amylocorticiales, Gomphales, Sebacinales) and ales) (Fig. 4f).
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Dynamics of host switches

Based on the models of discrete trait evolution describ-
ing host switching dynamics among white and brown
rot fungi, we found the “Correlated hosts — norev”
model, with all rates different, as the best model (model
3.2, Table 1). This model assumed host paths via a gen-
eralist state and prohibited reversal from brown rot to
white rot, which is consistent with our expectation that
swtiches between angiosperm and gymnosperm
specialization cannot occur in a single step, and that
losses of AA2s and other lignocellulolytic enzymes
makes reversals from brown rot to white rot unlikely.
The version of this model that specified the root state
with equal weights for white rot states and zero prob-
ability for brown rot states (model 3.3) performed better
than the model which assumed equal weights among all
six states. We display transition rates based on model
3.3 (Fig. 5).

We found disparity in rates of transitions between
generalism and angiosperm specialization between the
decay modes. While white rot lineages display high
transition rates from generalism to angiosperm
specialization, brown rot lineages display higher rates
from gymnosperm specialization to generalism (Fig. 5).
White rot lineages further show higher rates of transi-
tions towards angiosperm specialization than the re-
verse, whereas brown rot lineages show the opposite,
with higher rates from angiosperm specialization to gen-
eralism than the reverse. White and brown rot lineages
both switch more frequently from gymnosperm
specialization to generalism than the reverse (Fig. 5).
The transition rate estimates were consistent across 100
alternative trees (Additional file 1: Figure S5 A, B). The
100 one-genus-subsets yielded consistent relative rates, but
rates of white rot states were higher (especially rates from
generalists to gymnosperm specialists, Additional file 1:
Figure S5 A, C).

Concerning the rates of transitions from white to
brown rot estimated based on the ML phylogeny, the al-
ternative trees and one-genus-subsets did not yield a
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Table 1) and the maximum likelihood phylogeny among six character
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width reflects the rate size. For rate estimates based on alternative trees
and the one-genus-subsets see Additional file 1: Figure S5. Angiosperm
tree image by Michele M. Tobias (see Acknowledgements)

clear picture. The rate estimates based on the ML phyl-
ogeny showed one transition rate from white to brown
rot angiosperm specialists (Fig. 5). The 100 alternative
trees further displayed equally high rates from white to
brown rot generalists (Additional file 1: Figure S5 A, B).

Table 1 The fit of three alternative models of host evolution among decay fungi of Agaricomycetes. The best model (shown in
bold), based on Akaike weights (w), was the model 3.3, which allowed only intermediate host transitions (“Correlated hosts”), no
brown rot to white rot reversals (“norev”) and a root prior with equal probabilities among white rot fungi and zero probability for
brown rot states (“white rot equal”). For model selection based on the exclusivity coding, see Additional file 1: Table S6

Model -LnL AIC A AIC w

Uncorrelated, ER —1870.83 3743.65 1355.72 0.00
Uncorrelated, ARD - 1180.64 242127 3334 0.00
Correlated hosts, ER —1774.09 3550.19 1162.25 0.00
Correlated hosts, ARD —1183.56 2395.12 7.19 0.02
Correlated hosts — norev, ER —1941.71 388541 1497.48 0.00
Correlated hosts — norev, ARD, root = equal —1183.66 2389.32 139 033
Correlated hosts — norev, ARD, root = white rot equal - 118297 238793 0.00 0.65
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Within the 100 alternative trees, brown rot clades were
not collapsed since SH-like support values were > 90.
Transition rates from white to brown rot gymnosperm
specialists were either estimated as zero or very low
(Fig. 5, Additional file 1: Figure S5).

Discussion

Brown rot fungi as a whole comprise a larger proportion
of gymnosperm specialists than white rot (Fig. 4d),
which is consistent with Gilbertson’s observations [31].
Nevertheless, most brown rot fungi are generalists and
only two of five brown rot clades display mainly gymno-
sperm specialists (clades Gloeophyllum-Neolentinus and
Serpula-Hygrophoropsis, Fig. 4d, e). Brown rot lineages
show a higher rate of switches to gymnosperm
specialization than white rot fungi, but brown rot display
the highest rate towards generalism. Brown rot further
displayed dynamic transitions between generalism and
specialization (Fig. 5). White rot fungi are highly special-
ized on angiosperm hosts (Figs. 4 and 5).

Gilbertson [p. 33] suggested that “85% of brown-rot
polypores occur primarily on conifers”, which was the
basis for later hypotheses about brown rot evolution in
general [31]. Our analysis could not confirm that brown
rot Polyporales occur primarily on gymnosperm hosts
(Fig. 4e). We found two brown rot clades within Poly-
porales, of which the Auriporia-Crustoderma clade con-
sists of mainly generalists and angiosperm specialists
and the Antrodia-Fomitopsis clade of mainly generalists
(Fig. 4e). Thus, neither of the two brown rot clades
within the Polyporales were mainly specialized on gym-
nosperms (Fig. 4e). Our dataset allowed us to extend
and evaluate Gilbertson’s statement for a broad range of
brown rot lineages of different clades and orders. Ac-
cording to our analysis, only two of five brown rot clades
consist of mainly gymnosperm specialists, the Gloeophyl-
lum-Neolentinus (Gloeophyllales) and the Serpula-Hy-
grophoropsis (Boletales) clades (Fig. 4e). Further, the
majority of brown rot fungi are generalists (Fig. 4d).
Therefore, the hypothesis that brown rot fungi occur
primarily on gymnosperms is not generally supported.

Based on our 90-10 specialization coding and a
multi-state likelihood model of host evolution, we found
that white rot fungi switched frequently between gener-
alism and angiosperm specialism with a higher rate to-
wards angiosperm specialism (Fig. 5). Within brown rot
lineages, this pattern shifted towards frequent switches
between generalism and gymnosperm specialization
(Fig. 5). This suggests that brown rot evolution pro-
moted frequent shifts to gymnosperm specialization.
However, the reversal rate from gymnosperm specialism
to generalism is higher, suggesting that specializations
towards conifer hosts are not restrictive (Fig. 5). Hibbett
and Donoghue [32], based on a much smaller dataset,
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inferred a correlation between brown rot and exclusive
decay of conifer hosts and suggested that brown rot pro-
motes gymnosperm specialization. However, within
brown rot, transition rates between gymnosperm
specialization and generalism are high in both directions,
with a trend toward generalism, suggesting that speciali-
zations towards conifer hosts are not stable (Fig. 5). Our
findings are robust against topological and branch
lengths variation (Additional file 1: Figure S5 A, B). Fur-
ther, our results are robust against different assumptions
concerning reversals from white to brown rot. Transi-
tion rate estimates of the model allowing reversals and
the one disallowing reversals were nearly identical (data
not shown, however, AIC difference only 7.19 which is
often considered as not substantially different [78]).

Further, we estimated the likelihood model of host
specialization evolution based on the exclusivity coding
and found that the transition rate towards gymnosperm
exclusivity was higher for brown rot compared with
white rot lineages (Additional file 1: Figure S6). This
finding is consistent with the 90-10 specialization cod-
ing (Fig. 5). Within the exclusivity model we found over-
all higher rates from host exclusivity to generalism
(Fig. 5, Additional file 1: Figure S6). However, the strin-
gency of this coding scheme may overestimate the num-
ber of generalist taxa, as species found at extremely high
rates on a single host species (e.g. >90%, but less than
100%) are still coded as generalists. Thus, rates towards
“generalists” are probably overestimated in this coding
scheme. Therefore, interpretations from the exclusivity
model should be made with caution. For a more detailed
picture, further analysis should thus include three states
of host association, separating generalism, non-exclusive
specialization and exclusivity and treat non-exclusive
specialization as an intermediate state.

Based on our time-calibrated mega-phylogeny ap-
proach, we found that most lineages within Agaricomy-
cetes radiated after the origins of gymnosperms and
angiosperms (Fig. 2). Our estimates for branching times
are highly consistent with chronograms of previous stud-
ies with more limited species sampling, but more gen-
omic information. Floudas et al. [24] for example found
a mean age of 290 million years for the crown node of
Agaricomycetes, which is consistent with our estimate of
282 million years (Additional file 1: Figure S7). Smith et
al. [79] used an uncorrelated relaxed molecular clock
analysis to date a comprehensive plant tree of life and
found mean crown origins of 301 million years for
gymnosperms and 217 million years for angiosperms,
respectively. Many of the large clades within Agaricomy-
cetes originated before, but diversified after the angio-
sperm and gymnosperm origins (Fig. 2). The estimated
timing of origin of the fungal and plant groups is con-
sistent with our inference that transitions from white rot
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to brown rot occurred among angiosperm specialists
(Fig. 5) or possibly generalists (Additional file 1: Figure
S5). Relative transition rates in white rot fungi suggest a
pattern of transition away from gymnosperm specialization
and towards generalism, followed by relatively higher rates
of angiosperm specialization (Fig. 5). This pattern away
from gymnosperm specialization and towards angiosperm
specialization among white rot is consistent with the rela-
tively high percentage of white rot angiosperm specialists
we observed (Fig. 4). Thus, it is plausible that the radiation
of angiosperms created new niches for wood decayers and
promoted diversification of white rot fungi.

Conclusion

Our models of host evolution suggest that angiosperms
may have served as a new mega-niche, which was
exploited particularly well by white rot fungi leading to
high specialization rates. Brown rot lineages switched
more frequently towards generalism, suggesting that
brown rot fungi were limited in exploiting angiosperm
resources. Whether this limitation on the part of brown
rot in exploiting angiosperm resources is directly related
to the loss in copy number of decay-related genes [26]
seems plausible, but remains to be tested by future stud-
ies. Moreover, host shifts may be identifiable at the
enzymatic level, if expression patterns for genes coding
for key decay enzymes differ between clades with differ-
ent host specializations. Such studies represent exciting
future possibilities in this system, and may elucidate the
underlying molecular mechanisms controlling decay
mode shifts.
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