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Abstract

That population size affects the fate of new mutations arising in genomes, modulating both how frequently they
arise and how efficiently natural selection is able to filter them, is well established. It is therefore clear that these
distinct roles for population size that characterize different processes should affect the evolution of proteins and need
to be carefully defined. Empirical evidence is consistent with a role for demography in influencing protein evolution,
supporting the idea that functional constraints alone do not determine the composition of coding sequences.

Given that the relationship between population size, mutant fitness and fixation probability has been well
characterized, estimating fitness from observed substitutions is well within reach with well-formulated models.
Molecular evolution research has, therefore, increasingly begun to leverage concepts from population genetics to
quantify the selective effects associated with different classes of mutation. However, in order for this type of analysis to
provide meaningful information about the intra- and inter-specific evolution of coding sequences, a clear definition of
concepts of population size, what they influence, and how they are best parameterized is essential.

Here, we present an overview of the many distinct concepts that “population size” and “effective population size”
may refer to, what they represent for studying proteins, and how this knowledge can be harnessed to produce better

specified models of protein evolution.
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Background

Understanding how proteins evolve under the influence of
natural selection is a central goal of evolutionary biology,
as it provides insight into functional constraints and the
diversification of genomes. Although it may be tempting
to study protein evolution from a predominately biophys-
ical perspective, considering how mutational processes
generate variation and population level processes mod-
ulate selection is necessary to fully explain extant cod-
ing sequences. Counter to the notion that amino acid
sequences are determined by functional requirements
alone, some of the observed variation is a consequence of
the limits of natural selection in finite populations.

The functional synthesis of protein evolution and popu-
lation genetics has shown that the size of a population ()
modulates amino acid sequence divergence as well as the
rates and patterns of adaptation [1, 2]. In simple models of
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population genetics, the standing pool of genetic diversity,
the probability of fixation of a new neutral mutation, and
the fixation probability of a selected mutation all relate to
N and take on values of 2N, 1/N and 2N, respectively.
Here, s represents the relative selection coefficient of the
mutant allele (that is, how fit the mutant is compared to
the wild type).

In accord with this view, comparative genomics has
linked changes in effective population size to differences
in observed properties of proteins, such as stability and
other features subject to selection, including binding
specificity and avoiding misinteraction [2—4]. The rate of
accumulation of neutral changes is not affected by N, as
the probability of introduction of a mutation is inversely
proportional to the neutral probability of fixation. How-
ever, all changes subject to selective constraint or adaptive
pressure are influenced by the population size [5].

Beyond the simplest models, however, the number of
individuals in a population is rarely the correct scalar for
all of these parameters of interest. It is standard practice,
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therefore, to employ a variation of it, the effective popu-
lation size (N,) to account for deviations introduced by
any and all of a host of complications such as inbreeding,
unequal sex ratios, linked selected sites, population sub-
structure, life-history patterns, or high-variance repro-
ductive strategies [6].

Given its importance in influencing sequence variation,
what precisely do we mean when we refer to N, in the
context of protein evolution? There are multiple defini-
tions of effective population size in use. For instance,
in population genetics, N, might be treated as a con-
venience parameter reflecting the extent of genetic drift
(stochastic changes in allele frequency) inferred from a
sequence, or as a constant summarizing an unruly history
of fluctuating demography or complicated social struc-
ture. However, to understand how protein structure and
function drive amino acid substitution, we require mod-
els that disentangle the factors contributing to neutral and
adaptive sequence divergence and describe the underlying
biological processes accurately [7, 8]. We refer to these as
mechanistic models in this work (though the term is used
differently elsewhere [9, 10]). The goal of the modeling
effort becomes to connect real physical observations and
processes with parameters in models. This can include
experimentally determined mutation rates, selection coef-
ficients, and recombination rates, among others.

Here we discuss how to define N, and how this parame-
ter can be augmented to capture information about mech-
anistic processes that are distinct from natural selection, a
prerequisite to realistically characterizing the evolution of
proteins in some scenarios.

Origins and historical applications

The concept of effective population size has its origins in
the Wright-Fisher model, which describes the change in
allele frequency through time in a single randomly mat-
ing population of constant size. This model has a single
parameter: the size of the population. All predictions from
this model could be interpreted as functions of the pop-
ulation size, giving a direct map between any predictable
population measurement and a population size that would
produce it. Where the model assumptions of Wright-
Fisher were applicable, it was reasonable to refer to this
parameter in its original sense as the unchanging, panmic-
tic, neutral, asexual, non-overlapping, population size N
[11,12].

This model proved to be both tractable and power-
ful for deriving many important properties of evolving
gene pools such as quantifying genetic drift, the proba-
bilities of allele loss and fixation, and allele sojourn times
within specified frequency ranges. Real populations, and
even most interesting population models, however, violate
many of the restrictive assumptions made in the Wright-
Fisher model. Deviations include population size change,
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population structure, organisms divided into sexes, assor-
tative mating, selection acting both directly on individual
loci and indirectly on linked neutral loci (which we may
not wish to include as part of N,), and non-overlapping
generations. Still, for any observation predictable under
the Wright-Fisher model, it is possible to ask what popula-
tion size in the Wright-Fisher model maps to the observed
value in the more complicated model. This parameter
was given the name "effective population size", while the
actual size of the population is designated as the census
population size or N,.

Defined this way there is no requirement that the effec-
tive population size need be the same for any two different
observations from the same population. In a Wright-
Fisher population there is only a single value of N that
is used to make all predictions about the behavior of the
model. In a non Wright-Fisher population, the N, that cor-
responds to the probability of fixation of a newly arising
allele might not be the same value as the N, that describes,
for example, the rate of change in frequency that said allele
exhibits or the probability that two randomly sampled
individuals share a recent common ancestor. In each case,
one must independently compare the observed value to a
corresponding Wright-Fisher model, and it is always nec-
essary when talking about the effective size of a population
to qualify it with what observation is being described.
Careful usage, then, was to explicitly label an effective
population size as to what it was describing [6, 13]. Com-
mon variants included the inbreeding effective popula-
tion size (describing the probability that two individuals
shared a common ancestor in the previous generation)
[6, 13, 14], the variance effective population size (describ-
ing the variance in reproductive success among individ-
uals) [6, 13, 14], and the eigenvalue effective population
size (describing the leading non-zero eigenvalue of the
allele frequency transition matrix) [6, 13]. These concepts
(like inbreeding structure or variable reproductive success
in the population over a lineage of a phylogenetic tree)
are directly related to individual protein-specific selective
pressures and probabilities of amino acid fixation through
the effects of the broader population acting on all proteins.

The more recent introduction of another useful effective
population size, the coalescent effective population size,
has gone a great way in elucidating the underlying mech-
anism of the frequent similarities of effective population
sizes as well as when more subtle distinctions are required
[15-18]. Many parameters of interest to a population
geneticist can be described as properties of the geneal-
ogy of a random sample of individuals. Furthermore,
many different population models converge to a common
underlying form of this genealogy (often referred to as
Kingman’s coalescent), each differing only in a single scal-
ing parameter. This includes models with deviations from
Wright-Fisher such as unequal sex ratios, structured life-
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stages, or uniformly elevated or depressed reproduc-
tive variance. For population models that converge to
Kingman’s coalescent, this scaling factor serves the pur-
pose of the effective population size for all of the popu-
lation genetic statistics determined by sample genealogy
(largely by definition — under the conditions in which a
population converges to a Kingman coalescent, the scaled
Kingman coalescent fully describes the properties of the
genealogy of the sample). It is compelling both as an expla-
nation of why a great many definitions of effective pop-
ulation size often produce very similar numbers, as they
are derived from a common rescaling of the underlying
genealogy, and as an illustration of when there is #0 sin-
gle parameter that can meaningfully compare the general
behavior of a particular population to one evolving under
Wright-Fisher rules. As illustrated in Fig. 1, subdivided
populations offer a particularly clear example of this type
of violation. For any large, random sample of individuals,
the genealogy will have an excess of short tips (individuals
in small sub-populations sharing recent common ances-
try with each other) and longer internal branches (indi-
viduals in different sub-populations sharing only distant
ancestors) than described by the Kingman coalescent. As
the distortions in different parts of the tree are in opposite
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Fig. 1 Example coalescent trees. Representative coalescent trees from
(@) an unstructured population and (b) a population with two sub-
populations with limited migration between them. Both trees have
been scaled to the same total depth, but the distribution of expected
coalescent times (grey lines) differ dramatically between the trees
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directions there can be no single scalar that adjusts this
genealogy to match one produced by a Wright-Fisher pop-
ulation with the ratio of inter-coalescent times shifting
along the timescale of the sample even if nothing changes
about the size, structure, or behavior of the population
(15, 19, 20].

Multiple important population size parameters

Removed from the cozy confines of the Wright-Fisher
model, the simple multiplicative relationship between
population size and the context-dependent conditional
probability of acquiring a beneficial mutation, the genetic
diversity, and the probability of fixation of a favored allele
becomes more complex and requires different treatments
of population size. If any individual born into a popu-
lation has some chance p of carrying a new mutation,
the population will acquire new mutations at the rate of
Ncpt (2N for diploids). The population size scalar here
does not depend on any properties of the relations among
individuals within the population or how they came to
be that way and is simply a reflection of the mutational
target size. The loss of variation through random genetic
drift, however, does depend on the nature of the popula-
tion. A new neutral mutation enters a diploid population
at frequency 2—}\[6 The expected time until fixation or

loss of this mutation is — 8NN, (1 — 2—}\&) In <1 — ZLNC)
[13, 21, 22], a function of both N, and N,. For mutations
with an additive selection coefficient of s, the proba-
bility of fixation is (1 - e_ZNes/NC) / (1 - e_4Nes) [5],0r
approximately 2sN, /N, [5, 23], and is driven both by the
intensity of selection on the particular variant and the
ratio of the variance in reproductive output (as reflected
in N,) and the mean reproductive output (as reflected
in N;). In populations where N, cannot be properly
defined, such as those with persistent subdivision,
these probabilities become more dependent on additional
population size measures [24, 25]. Mutations arise within
each sub-population with probability proportional to the
census size of the sub-population and then drift to loss
or fixation according to a complex meta-population
dynamic that may include considerable time spent fixed
within some sub-populations and absent in others. Indi-
vidual effective population sizes come into play across
sub-populations with a timescale-variant global effective
population size accounting for a complex migration
process [15, 19, 20, 26]. While there will always be some
probability distribution of time to fixation or loss of an
arbitrary new mutant it is unlikely in these cases to be
able to assign values N, and N, such that the distribution
matches anything produced by a population that con-
verges to the Kingman coalescent at a biologically relevant
timescale. These concepts need to be considered in the
context of models for understanding selection in proteins.
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In cases where N, is well-defined, N, cancels out of some
key properties for molecular evolution, but often only
after making other, further assumptions. For instance, in
a randomly mating population of constant size permit-
ting only mutations of small effect, while the probabilities
of fixation or loss of a new mutation depend on both N,
and N, the total rate of substitution will depend only on
N,. Comparing two such populations of equivalent effec-
tive population size, one with N, = N, and another with
N, = 2N, the one with the doubled census size will expe-
rience twice as many mutations but is half as likely to
fix any one of them. This reassuring phenomenon breaks
down, however, when the fitness effects of new mutations
are drawn from a distribution with appreciable mass in its
tail. A population with a large census size is more likely to
encounter a mutation of sufficiently large effect that the
diffusion approximations from which the N, terms cancel
[27] are no longer applicable.

Practical principles of effective population size for
protein evolution studies

Effective population size impacts the distribution of fitness
effects

In addition to influencing the probability with which a
mutation with a given selection coefficient fixes, it has
been suggested that N, affects the distribution of selec-
tive effects itself [3, 28]. An important source of constraint
on proteins arises from the requirement to fold stably into
the correct structure [8, 29, 30]. The free energy of fold-
ing (AG) or stability of a given protein under stabilizing
selection is determined by mutation-selection-drift bal-
ance. This describes the equilibrium at which the rate of
deleterious alleles being removed by selection equals the
rate at which they arise due to mutation [31, 32]. As a
result, proteins in nature are only marginally stable [33].
Because N, affects the efficacy of selection against dele-
terious, destabilizing variants, one might expect proteins
to be more stable for organisms with large effective pop-
ulation sizes [4]. These differences in stability, then, are
expected to impact the extent to which new mutations are
stabilizing or destabilizing [34-37]. In other words, the
starting point affects the mutant’s fitness [38].

That the change in stability for new mutations, AAG,
depends on AG is consistent with larger steps in phe-
notype space being more likely to land further from an
optimum. For example, at one extreme, if a protein were
optimal, all possible mutations would be deleterious or
neutral; at the other extreme, for a protein furthest from
the optimum all possible mutations would be advan-
tageous or neutral; at intermediate values, the relative
fractions in the advantageous and deleterious categories
are expected to vary. If all possible sequences are ranked
by fitness as approximated by the fraction of protein
folded into the active state, the probability density takes
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a form with highest mass in the middle and lowest at the
extremes, stemming from results in statistical physics [39].

When a system is at equilibrium with constant Ne and
constant selection, any changes that fix are largely neu-
tral and independent of N,. A compensatory seascape
where fitness fluctuates about an equilibrium driven by
combinations of slightly deleterious changes and compen-
satory ones [40, 41] is nevertheless possible for changes of
small fitness effect. Compensatory evolution is expected
to affect a larger fraction of changes at small N,, where
there is weaker selection against deleterious changes of
equivalent magnitude and where mutations segregate for
shorter periods of time before fixing and therefore have
less chance of fixing together with interacting mutations
[3,42,43]. The dynamics of fixation themselves are depen-
dent upon N,. In small populations, mutations fix one at
a time, creating more rugged movement on the fitness
landscape. With larger populations, mutations and their
compensatory changes may fix together due to stochas-
tic tunneling [42]. This not only leads to less expected
variance in AG, but also to faster neutral walks across
sequence space, leading to stronger observed epistatic
effects [44].

Further, Goldstein and Pollock as well as others [45]
have implied that given the context dependence of fit-
ness effects of mutations, termed epistasis, allowed and
forbidden (unfit) amino acid states play a greater role
than the relative fitnesses of allowed states. This would
result in a model where changes are either neutral or
impermissible without a major contribution of positive
selection to the compensatory process, corresponding to
a substitution model with a neutral rate plus a shifting
set of invariant substitutions. This is an interesting exten-
sion of a covarion model (involving transitions between
variable and invariant states over time) [46] embedded
in a substitution matrix. This relates to a model pro-
posed by Usmanova and coworkers [47], where states
transition between allowed and disallowed substitution
states as a Markov process. The small differences in fit-
ness values for different allowed amino acid states and
the corresponding selective coefficients for amino acid
transitions may be an artifact of the substitution process
model used in the simulations that generated these results,
however. Future work will therefore be needed to eval-
uate if such a model actually explains protein sequence
evolution well. The probability of fixation of an intro-
duced mutation would be proportional to N, under such a
model.

Inferring fitness effects with mutation-selection models

Mutation-selection models allow the selective coefficients
of amino acid changes to be inferred from sequence
data. Given a set of observed codon substitutions over a
phylogeny, we can assign each character state a fitness
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parameter based on the rate at which that state fixes once
it has arisen. The relationship between the probability of
fixation and inferred fitness of a character is based on the
principles outlined above. The probability P of a substi-
tution occurring therefore depends on ¢ and N, together,
the selective coefficient s, and N,. In contrast to many
standard phylogenetic methods, the processes of muta-
tion and selection can therefore be examined separately in
this framework. This approach has recently become more
commonly used in protein evolution studies, particularly
with the availability more efficient computers [48—53]. It is
of particular interest because it allows putatively adaptive
or deleterious substitutions to be identified and separated
from background noise in order to carefully character-
ize selection on proteins. Crucially, in order to obtain
meaningful results from genomic data in this manner, we
argue that a clear understanding of what is meant by N, is
required and that N, and N, are treated distinctly where
necessary.

By contrast, the most commonly used statistic to infer
selection in coding sequences is the ratio of nonsyn-
onymous to synonymous substitutions (dN/dS) [54, 55].
However, its limitations in terms of capturing evolution-
ary processes have become increasingly clear [45, 56].
For instance, at a given constant selection coefficient
for amino acid replacements, the ratio will vary propor-
tionally with the effective population size, and therefore
cannot provide information about selection coefficients
without additional inference of N,. In models where N,
and s vary differently across sites (s) and phylogenetic
lineages (N.) and are independently parameterized, they
may in fact become identifiable. Furthermore, the dN/dS
framework does not consider variable fitness effects con-
ferred by different amino acid changes that can vary in
terms of the severity of their impact on the protein struc-
ture. It also does not consider that exchanges between a
given pair of amino acids may be favored in one direc-
tion, from a less fit to a more fit state, but disfavored in
the other. These models are therefore consistent only with
diversifying but not directional selection [45, 57, 58]. On
the other hand, the mutation-selection framework models
the probability of introducing a particular kind of muta-
tion by multiplying the per site, per individual mutation
rate by the census population size. Once introduced, a
mutation’s probability of fixation depends on the selec-
tive coefficient, the frequency at which it’s introduced
into the population, and the population’s effective size.
Applied to real populations with real sizes, structures, and
complexities, the concept of the effective population size
and its interpretation should be carefully considered. As
populations deviate from abstract models, the notions of
population size relevant for the introduction of a new
mutation and its subsequent probability of fixation are not
the same.

Page 5 of 9

To describe the number of new mutations that may
become available to a population as a forward look-
ing measure, the relevant parameter is the current cen-
sus population size. New mutations are introduced at
frequency 1/2N, in a diploid population. The histori-
cal effective population size is important as a backward
looking measure to describe the past effects of selection
on mutations in a population [31]. In this framework,
the probability of fixation of an amino acid replacement
relative to a neutral variant is approximately described
by Kimura’s diffusion equation [5], where the selection
coefficient s and N, determine amino acid substitution
properties. In this case, N, is the effective size of the pop-
ulation over a specific period of history and specific to
lineages of phylogenetic trees where selection has been
acting on the system in question. Where population sizes
have changed rapidly, this may be a very different quan-
tity than is relevant to describe the trajectories of existing
or future variation. Furthermore, the relevant timescales
for determining N, will not be constant across mutations.
As selection acts more rapidly on variants conferring
large fitness effects, the properties of these variants will
reflect a more recent N, than neutral variants which will
have experienced the effects of population parameters
for a longer history [59, 60]. Generally, the probability
of fixation of any particular mutation will depend on
N, at the time it arose and the range of N, values dur-
ing the period of time during which it existed at low
frequency.

Local variation in N,

Demographic factors such as time-varying population
sizes, inbreeding, or unequal sex ratios typically cause N,
and N, to deviate from N, in a uniform manner across the
entire genome. Other factors may create additional, local
variation in specific parts of the genome. For instance, in
species with heterogametic sexes, sex chromosomes have
reduced effective population sizes and census population
sizes relative to autosomes given their mode of transmis-
sion. Organellar genomes, such as those of mitochondria,
show diverging locus-specific population sizes. While N,
for mitochondria will be higher than that for autosomes
due to the high copy number of mitochondria in each
cell, small inter-generational bottlenecks and exclusive
transmission through the female germ line leads to a
smaller N, than seen in the autosomal genome. In accord
with these predictions, rates of both heterozygosity and
divergence have been shown to differ between autosomes
and sex chromosomes (see, for instance, the fast-X effect
[61]). Further, sex differences in the variance of repro-
ductive success (a typical consequence of anisogamy)
can lead to additional differences in N, between sex
chromosomes and autosomes that are not reflected in
differences in N,.
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According to the population genetics perspective, loci
linked to selected sites exhibit locally reduced effective
population sizes due to genetic hitchhiking, background
selection, and Hill-Robertson interference [62—66]. For
neutral loci, this is of little concern as the probabil-
ity of fixation of a neutral mutation is 1/2N, and does
not depend on N, at all. However, the effects of selec-
tion on linked sites drive up the variability in repro-
ductive success at the focal site, increasing the rate of
genetic drift and locally decreasing the depth of the local
genealogies [67]. This leads to regions of the genome
experiencing higher rates of recombination exhibiting
lower levels of linkage and therefore less local reduc-
tion in N, due to selection on linked sites ([68—70] and
reviewed in [71]). As the fixation of a given mutation
depends on the product of the selection coefficient and
the ratio N,/N¢, high rates of recombination can increase
the relative rates of fixation of beneficial mutations
(and decrease deleterious ones) compared to functionally
equivalent mutations in regions of the genome with lower
recombination rates or higher densities of constrained
loci [72-75].

Where it is feasible to model this local rescaling of
the coalescent rate due to selection at linked loci with
an explicit model based on the biological process it may
be advantageous to our understanding of protein evo-
lution to do so. To account for interference between
linked sites, the fixation process can be modeled in linked
blocks. Here, the probability of fixation for linked (but
not functionally interacting) sites derives from the addi-
tive selective coefficients across the set of linked loci and a
measure of N, call it Ne gesmograpnic- This parameter scales
the underlying Kingman coalescent tree of the population
to account for all of the selective neutral processes that
create deviations from the Wright-Fisher expectations.
There are several possible solutions to implement the
computation, including the use of Approximate Bayesian
Computation based on simulation [76], inferring probable
observed changes in a phylogenetic context, or approxi-
mating the effects of linkage through a sampling of the
expected number of co-segregating changes coupled to
a background distribution of s values. For longer evo-
lutionary timescales, recombination can be incorporated
into models of sequence evolution [77]. This would then
cleanly separate N, and s in mutation-selection models
and prevent parameter bleed [78] where N, and s would
otherwise have co-linear effects on the shape of underly-
ing local genealogies. At present, such approaches have
only been implemented on a limited scale, and there
exists ample scope to develop models that describe the
processes driving protein evolution in a more elaborate
manner. The identifiability of mutation-selection model
parameters under different sets of assumptions is a cur-
rent research topic [56].
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Further issues related to model realism

Pitfalls in interpretation of N,

Great care must be taken in estimating population size
parameters from one aspect of observed data with the goal
of using it to infer or predict other evolutionary parame-
ters. Though they may often be correlated, estimates of N,
must be considered independently of measures of N,. If N,
is estimated as a parameter from a model, it is not simply
the mean N, over the branch, but exhibits more complex
dynamics, and when derived from an observable statis-
tic of a natural population that may not have a genealogy
well-represented by a Kingman coalescent may not be
serve as an appropriate estimate for N, in other contexts.
Observations of segregating diversity can be used to esti-
mate forward looking N, [79], but are best considered
more strictly as estimates of future segregating diversity.

Unlike N, which is less a physical characteristic of a
population than a descriptive one, N, may in theory be
unambiguously observed in nature. Outside of highly pro-
scribed settings, however, actually doing so is difficult.
Common methods include mark-and-recapture studies
[80], plot sampling [81], or simply using body mass as a
proxy for the inverse of the population size [27]. Proper
estimation of N, is critical when mutation rates are esti-
mated independently as a per base, per replication rate,
as this rate is only useful in an evolutionary setting when
scaled by the census population size.

Ratios of statistics involving common definitions of
N, such as dN/dS can be particularly useful as back-
ward looking estimators [82]. Where dN is approximately
2unsNe /N, and us/(2N.), the N, terms cancel. With
external estimates of the relative rates of non-synonymous
and synonymous mutation (uy/us) this gives us a direct
estimate of 25N, a population-scaled selection coefficient
often referred to as S in the protein evolution literature
and y by population geneticists. Any difficulties in cor-
rectly parameterizing or estimating N, in this case will
result in complementary problems in estimating s, and
dN /dS has been known to perform poorly as an estimator
in certain cases [82—85].

Genomic models not accounting for heterogeneity in N,
will compound difficulties in disentangling s from S or
y. Differences in recombination rate between loci may be
more challenging to account for than the reductions in N,
that sex chromosomes experience. When N is treated as
a mechanistic parameter, it is important that it is accu-
rately defined and reflects the effective population size
without absorbing mis-specifications in the model (mis-
parameterizing one parameter with effects that should
be fit with a different parameter) [78]. This becomes
particularly acute when N, is used in combination with
s, a critical parameter for hypothesis testing in molec-
ular evolution, for example when studying molecular
adaptation.
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A model that does not account for genomic hetero-
geneity in the mutation rate (associated with variables
such as replication timing, heterozygosity and recombina-
tion rate) might also lead to incorrect inference of local
Ne. In order to describe protein evolution realistically, an
appropriately complex model of selection that is robust
to mutation, linkage, epistasis, and covarion-like behav-
iors that are induced is therefore likely necessary. Here,
epistasis is conceptualized as a discrete biochemical pro-
cess where a change at one position in a protein directly
affects amino acid fitnesses at other positions in the same
or other proteins, changing probabilities of fixing intro-
duced mutations. When modeled as a site-independent
process, this gives rise to covarion-like behavior, where
rates of change at a position shift over time [86, 87]. In
the simplest form ([46]), this involves a shift between a
substitutable position and an invariant site.

Conclusions

We have laid out how multiple distinct parameters associ-
ated with population size can jointly be used in mechanis-
tic models of protein evolution. The goal of this discussion
is to frame an understanding of population size that is
cleanly separable from selection, and that has mechanis-
tic meaning for the process of protein evolution. With
this, models that capture the appropriate level of biologi-
cal complexity to describe observed protein evolution data
can be developed, enabling characterization of lineage-
specific selective coefficients in comparative genomics.
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dN: The non-synonymous nucleotide substitution rate; dS: The synonymous
nucleotide substitution rate; AG: The Gibbs free energy (of protein folding);
AAG: The change in the Gibbs free energy (of protein folding); N: The size of a
population; N¢: The census population size; Ne: The effective population size; s:
The selective coefficient; S or y: The population scaled selective coefficient; u:
The mutation rate
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