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Revisiting phylogenetic signal; strong or
negligible impacts of polytomies and
branch length information?
Rafael Molina-Venegas* and Miguel Á. Rodríguez

Abstract

Background: Inaccurate estimates of phylogenetic signal may mislead interpretations of many ecological and
evolutionary processes, and hence understanding where potential sources of uncertainty may lay has become a priority
for comparative studies. Importantly, the sensitivity of phylogenetic signal indices and their associated statistical tests to
incompletely resolved phylogenies and suboptimal branch-length information has been only partially investigated.

Methods: Here, we use simulations of trait evolution along phylogenetic trees to assess whether incompletely resolved
phylogenies (polytomic chronograms) and phylogenies with suboptimal branch-length information (pseudo-
chronograms) could produce directional biases in significance tests (p-values) associated with Blomberg et al.’s K
and Pagel’s lambda (λ) statistics, two of the most widely used indices to measure and test phylogenetic signal.
Specifically, we conducted pairwise comparisons between the p-values resulted from the use of “true”
chronograms and their degraded counterparts (i.e. polytomic chronograms and pseudo-chronograms), and computed
the frequency with which the null hypothesis of no phylogenetic signal was accepted using “true” chronograms
but rejected when using their degraded counterparts (type I bias) and vice versa (type II bias).

Results: We found that the use of polytomic chronograms in combination with Blomberg et al.’s K resulted in
both, clearly inflated estimates of phylogenetic signal and moderate levels of type I and II biases. More importantly,
pseudo-chronograms led to high rates of type I biases. In contrast, Pagel’s λ was strongly robust to either incompletely
resolved phylogenies and suboptimal branch-length information.

Conclusions: Our results suggest that pseudo-chronograms can lead to strong overestimation of phylogenetic signal
when using Blomberg et al.’s K (i.e. high rates of type I biases), while polytomies may be a minor concern given other
sources of uncertainty. In contrast, Pagel’s λ seems strongly robust to either incompletely resolved phylogenies and
suboptimal branch-length information. Hence, Pagel’s λ may be a more appropriate alternative over Blomberg et al.’s K to
measure and test phylogenetic signal in most ecologically relevant traits when phylogenetic information is incomplete.

Keywords: BLADJ, Blomberg’s K, Pagel’s lambda, Phylogeny calibration, Phylogenetic resolution, Pseudo-chronograms

Background
Phylogenetic signal, i.e. the degree of phylogenetic
constraint in species resemblance [1], is nowadays a
central foundation for many disciplines in evolutionary
ecology research, including macroecology [2, 3], macroevo-
lution [4–6], conservation biology [7], and the recently
emerged field of community phylogenetics [8, 9]. Import-
antly, inaccurate estimates of phylogenetic signal may

mislead interpretations of many ecological and evolu-
tionary processes [10, 11], and hence understanding
where potential sources of uncertainty may lay has
become a priority for comparative studies.
The rapid increase of available molecular data, published

phylogenies, and major advances in phylogenetic methods
have allowed analyses involving phylogenies with dozens to
hundreds of species (e.g. [12, 13]). Although the phylo-
genetic position of many species remains unresolved
[14], deep phylogenetic relationships are relatively well-
known for some lineages, thus constituting “backbone”
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working phylogenies for different groups of organisms
such as flowering plants [15] and birds [16, 17]. An ex-
tended approach to build more complete phylogenies is to
assemble supertrees combining these backbone phylogenies
with smaller, overlapping trees [18, 19], and then add
missing species as polytomies using taxonomy as a
guide (e.g. [12]; see Fig. 1). However, the branching
structure of the resulting supertrees, which usually have
numerous terminal polytomies and few deeper poly-
tomies, may lead to distorted estimates of phylogenetic
signal [20].
Another shortcoming of supertrees is that they usually

lack accurate branch-length information. Because supertrees
are constructed by assembling, grafting or subsetting
published phylogenies from different sources, branch-
length data is missing (i.e. the resultant supertrees only
provide topological information) and it has to be added
afterwards [21]. For example, many plant community
ecology studies conducted over the last decade have
made use of phylogenetic hypotheses derived from
supertree topologies (e.g. APG IV [15]) calibrated with
the Branch Length Adjuster algorithm (BLADJ). This
algorithm (implemented in Phylocom software [22]) as-
signs published age divergences (provided by the user) to
particular nodes in the target topology, and then places
the remaining nodes evenly between them. The resulting
time-calibrated trees are actually pseudo-chronograms
that show lower variability in branch length than well-
calibrated phylogenies –i.e. using molecular clocks (diver-
gence-time estimates based on nucleotide substitutions
per site; [23], Fig. 2). Although the use of pseudo-
chronograms has become common practice in some
fields of evolutionary ecology such us community phylo-
genetics, the extent to which pseudo-branch lengths could
affect estimates of phylogenetic signal has been only par-
tially addressed (see [24], and below).

Amongst the indices that quantify phylogenetic signal
in continuous traits (see [24] for an extensive review),
Blomberg et al.’s K [1] and Pagel’s lambda (λ) [25] are the
most widely used in ecology. Both indices assume the
classic Brownian motion (BM) evolutionary model (i.e.
random walk divergence in species resemblance), and
their values vary from 0 to 1 for λ and from 0 to > > 1
for K. In both cases, values close to 0 indicate no phylo-
genetic signal –the trait has evolved independently of
phylogeny and close relatives are not more similar than
distant relatives–; values close to 1 indicate trait evolution
according to BM; and, in the case of K, values >1 reflect
that close relatives are more similar than expected under
BM. Unlike other phylogenetic signal metrics, being
model-based provides both indices with the advantage
of allowing direct comparison of phylogenetic signal
strengths not only across traits but also across different
phylogenetic trees. This is at least known to be the case
for well resolved phylogenies with accurate branch
lengths. But how reliable would K and λ be when ap-
plied to low-quality phylogenetic trees?
This question has been partially addressed by Münkemüller

et al. [24] by comparing simulated phylogenies with and
without terminal polytomies (i.e. polytomies that occur
towards the phylogenetic tips). These authors concluded
that both indices and their associated statistical tests were
virtually unaffected by terminal polytomies. Still, they
could not discard that polytomies occurring deeper in the
phylogeny –as in real supertrees (e.g. [26]; see Fig. 1) –
could lead to biased estimates. Interestingly, in a similar
simulation analysis focussed on Blomberg et al.’s K Davies
et al. [20] found precisely this; i.e. that K yielded inflated
estimates of phylogenetic signal in highly polytomic trees
at both terminal and deeper levels. However, these authors
did not investigate the effects of polytomies on either the
statistical significance of K or the performance of λ.

Fig. 1 Schematic representation of the typical procedure to assembly supertrees by sticking missing species to a well-resolved backbone tree
using taxonomy as a guide. Vertical bars represent missing species (a). Based on taxonomical knowledge, half of the species are classified in the
families A and B, respectively, and thus they are added as relatively deep polytomies in the most derived node that unequivocally contains the
species (b). Within each family, the species are classified in three different genera (G1-G6), and they are consequently regrouped as terminal polytomies
following the same rationale as in the previous step (c)
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Münkemüller et al. [24] also explored the effects of omit-
ting branch length information (i.e. setting all branches to
unity) and only found that Blomberg et al.’s K statistical test
responded slightly positively to this treatment (i.e. lower,
more statistically significant p-values than those obtained
when using “true” branch lengths). Given other poten-
tial sources of uncertainty, they interpreted this as a
negligible effect. However, their conclusion contrasts
with propositions advanced by Pavoine & Ricotta [27],
who, based on the underlying mathematics of K,
hypothesized that lacking branch lengths could decrease
the power of this index to detect phylogenetic signal. Thus,
the extent to which the quality of available branch length
information could affect this index remains unclear.
Here, we use simulations of trait evolution along phylo-

genetic trees to assess whether incompletely resolved phy-
logenies (polytomic chronograms) and phylogenies with
suboptimal branch length information (pseudo-chrono-
grams calibrated with BLADJ) could produce directional
biases in significance tests associated with Blomberg et al.’s
K and Pagel’s λ.

Methods
Phylogenetic trees simulations
We used the function pbtree in phytools R package [28]
to obtain simulated, fully-resolved and perfectly dated
phylogenies (hereafter “true” chronograms). Specifically,
we generated five sets of pure-birth ultrametric phylogenies
(N = 1000 phylogenies per set) containing n species (tips),
with n equal to 50, 100, 200, 400 and 1000 respectively (see
[24] for a similar approach). This dataset comprises a wide
array of phylogenies of varying degrees of tree stemminess
and tree imbalance (see Additional file 1: Figure S1), which
prevent us from obtaining biased results due to tree shape.
Nevertheless, we also tested for potential effects of tree
shape on the results (see below).

We derived two types of distorted phylogenies from
the “true” chronograms. The first type was intended to
replicate common patterns of polytomy distribution in
commonly-used supertrees, which usually show a high
density of terminal polytomies and few deeper polytomies
(e.g. supertrees based on the backbone topology provided
by APG IV for angiosperm plants [15]). To do so, we
followed two different node-collapsing strategies. First, we
generated gradually unresolved phylogenies (hereafter
polytomic chronograms) by randomly collapsing 20, 40,
60 and 80% of the nodes placed above half of the height of
the “true” chronograms (shallow-nodes strategy). Second,
we generated gradually unresolved phylogenies by ran-
domly collapsing 20, 40, 60 and 80% of all the nodes of
the “true” chronograms (all-nodes strategy). Note that
although the latter strategy may lead to less realistic
topologies than the former (i.e. high density of poly-
tomies towards the root of the trees), it has been previ-
ously used to analyze robustness of Blomberg et al.’s K
to incompletely resolved phylogenies [20].
The second type of distorted phylogenies consisted of

pseudo-chronograms calibrated with BLADJ using a cer-
tain fraction of the whole set of node ages of the “true”
chronograms (i.e. 5, 15, 25 and 35% of the nodes, respect-
ively). To do so, we divided each “true” chronogram into
five equally sized time-slices, and then selected a propor-
tional number of nodes from each time-slice at random
(with a minimum of one single node per time-slice), in
such a way that the sum of selected nodes across time-
slices was equal to the total number of nodes to be fixed
for each treatment (i.e. 5, 15, 25 and 35% of the whole set
of node ages of each “true” chronogram, respectively). The
root-node was fixed in all cases, in order to retain the
height of the “true” chronograms in the derived pseudo-
chronograms. Subsequently, the ages of all non-fixed nodes
were deleted, and replaced with pseudo-ages using BLADJ.
That is, non-fixed nodes were assigned with new ages that

Fig. 2 Comparison between the branching structure of a simulated “true” chronogram (a) and that of the same tree topology with branch
lengths reassigned after using BLADJ (pseudo-chronogram) (b). The highlighted nodes in the pseudo-chronogram were fixed, and unknown
nodes were placed evenly between fixed nodes. Note the marked difference in branch length variability between both branching structures
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distributed them evenly among the fixed nodes. This pro-
cedure was intended to replicate the branch length struc-
ture of commonly used pseudo-chronograms (typically in
community phylogenetic studies), which show low variabil-
ity in branch length compared to that of “true” chrono-
grams (Figs. 2 and 3). Finally, in order to explore the
potential interaction between polytomies and suboptimal
branch-length information, we derived an extra set of
polytomic pseudo-chronograms by applying the shallow
node-collapsing strategy to the pseudo-chronograms as
described above.

Trait evolution with variable degree of phylogenetic
signal
We simulated the evolution of continuous traits with
varying degrees of phylogenetic signal using the fastBM
function in phytools R package [28]. To do so, we first
rescaled the “true” chronograms by multiplying the off-
diagonal elements of the variance-covariance matrix by
a down-weighting coefficient λ (ranging from 0.1 to
0.9), and then we simulated trait evolution along the
branches of the rescaled phylogenies following a Brownian
motion (BM) model of evolution (root value a = 0 and

instantaneous variance σ2 = 1). Briefly, a BM model on
a phylogeny describes purely neutral (random) evolu-
tion of a trait with variance proportional to the square
root of branch lengths [29]. Thus, nine traits with
varying degrees of phylogenetic signal were generated
for each of the “true” chronograms. This procedure
was intended to replicate the multiple scenarios of trait
evolution leading to a continuum between very weak
phylogenetic signal (close to random distribution of
trait values across species, λ = 0.1) and some resem-
blance among close relatives (close to BM expectation,
λ = 0.9).

Directional biases in estimates of phylogenetic signal
We used the phylosig function in phytools R package
[28] to obtain the values of Blomberg et al.’s K and
Pagel’s λ statistics and their corresponding p-values for
each simulated trait and “true” chronogram and its de-
rived polytomic chronogram and pseudo-chronogram.
The statistical significance of K was assessed based on
comparison of the observed phylogenetically independ-
ent contrasts and the expected contrast under 999 ran-
domizations [1], whereas the statistical significance of λ

Fig. 3 Frequency histograms showing differences in branch length variability (standard deviation) between “true” chronograms and pseudo-chronograms
calibrated with BLADJ (fixing 5% of the nodes). Note that overall, pseudo-chronograms show lower branch length variability (i.e. branch lengths are more
homogeneous) than perfectly dated “true” chronograms
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was assessed based on comparison of the likelihood a
model accounting for the observed λ with the likelihood
of a model that assumes complete phylogenetic inde-
pendence [25] (both statistical tests are completely im-
plemented within the phylosig function [28]).
We quantified the frequency of strong shifts in the

p-values that occurred due to the use of polytomic
chronograms and pseudo-chronograms instead of the
“true” chronograms (Fig. 4). To do so, we focused on
individual pairwise comparisons, each involving a “true”
chronogram and its degraded counterpart. Specifically, we
computed the frequency with which the null hypothesis
of no phylogenetic signal was accepted using a “true”
chronogram (nominal α = 5% level), but rejected when
using its polytomic chronogram and pseudo-chronogram
versions, respectively (nominal α = 1% level; type I biases).
In addition, we used a similar procedure to quantify the
extent to which both types of degraded chronograms led
to type II biases. That is, we computed the frequency with
which the null hypothesis of no phylogenetic signal was
rejected using a “true” chronogram (nominal α = 1% level),
but accepted using its polytomic chronogram and pseudo-
chronogram versions, respectively (nominal α = 5% level).
In both cases, we employed different nominal α-errors to
screen out potential errors arising from marginally signifi-
cant (or non-significant) p-values.
In order to test for potential effects of tree steaminess

(i.e. the distribution of branching events within a tree
[30]) on the results, we repeated the analyses described
above considering only those trees that were below and
above the 10 and 90 deciles of the distribution of the
gamma statistic [30] within each sample size category,
respectively. Low and high values of the gamma statistic
correspond to phylogenetic trees that show longer inter-

nodal distances towards the tips (“tippy” trees) and the
root (“stemmy” trees), respectively (see Additional file 1:
Figure S1). Similarly, in order to test for potential effects
of tree imbalance on the results, we repeated the ana-
lyses described above considering only those trees that
were below and above the 10 and 90 deciles of the distri-
bution of the Colless’ statistic [31]. Low and high values
of the Colless’ statistic correspond to phylogenetic trees
that are highly balanced and unbalanced, respectively.
All the analyses were conducted in R version 3.2.2 [32].

Results
As expected, polytomic chronograms led to inflated es-
timates of phylogenetic signal using Blomberg et al.’s K
(Additional file 2: Figure S1), but only resulted in mod-
erate type I and II biases (Fig. 5). Both types of biases
were more frequent at intermediate-to-high degrees of
phylogenetic signal in small-sized phylogenies, and they
shifted progressively towards intermediate-to-low degrees
as phylogeny size increased. We found no significant
differences between both node-collapsing strategies,
which led to virtually identical results (see Additional
file 1: Figure S2).
The relatively poor performance of K caused by poly-

tomies seemed less of a problem compared with the effect of
pseudo-branch lengths. In this case, estimates of phylogen-
etic signal were also inflated (Additional file 2: Figure S2),
and very high type I biases dominated at all instances (Fig. 6).
Further, type I biases increased slightly with sample size. As
well, the incidence of both types of bias shifted pro-
gressively from higher to lower degrees of phylogenetic
signal as sample size increased. Overall, tree shape (i.e.
tree stemminess and tree imbalance) was not a significant
factor driving the observed directional biases (Additional

Fig. 4 Schematic representation of the analysis conducted to quantify the frequency of strong shifts in the p-values (i.e. directional biases)
derived from the use of polytomic chronograms (P2) and pseudo-chronograms (P3) instead of the “true” chronograms (P1)
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file 1: Figure S3–S6). However, small-sized (n = 50 sp) bal-
anced trees showed slightly higher type I biases due to
pseudo-branch lengths than unbalanced trees (Add-
itional file 1: Figure S6). Finally, we found no evidence
for interaction between polytomies and pseudo-branch
lengths on estimates of phylogenetic signal (Additional
file 1: Figure S7).
Importantly, estimates of phylogenetic signal using

Pagel’s λ were largely unaffected by polytomies and
pseudo-branch lengths (Additional file 2: Figure S3

and S4), and both types of distorted chronograms
showed type I and II biases below 5% in almost all
cases (data not shown). Only small (n=50 sp), heavily
polytomic trees (80% of nodes collapsed) showed
slight levels of type II biases (between 5 and 10%).

Discussion
Erroneous estimates of phylogenetic signal might mislead
inferences drawn from evolutionary ecology studies and
many downstream disciplines such us community

Fig. 5 Graphical representation of the frequency of type I and II biases when quantifying phylogenetic signal using Blomberg et al.’s K and polytomic
chronograms (shallow-nodes strategy). The x-axis represents the degree of phylogenetic signal in the traits (λ-transformations). The percentages above
the figures refer to the nodes that were randomly collapsed to generate the polytomic chronograms (see Additional file 1: Figure S2 for results derived
from an alternative node-collapsing strategy)
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phylogenetics, macroevolution and conservation biol-
ogy. In this study, we focused on two of the most
widely used indices to measure and test phylogenetic sig-
nal in ecological traits, and illustrated how polytomic chro-
nograms and especially pseudo-chronograms calibrated
with BLADJ, which have been extensively used in the litera-
ture (typically in the field of community phylogenetics),
may frequently lead to spurious estimates of phylogenetic
signal.
Previous work noticed that polytomies could produce

directional biases in different phylogenetic analyses [33–35]

and, importantly, Davies et al. [20] found that Blomberg et
al.’s K yielded inflated phylogenetic signal estimates in
highly polytomic trees. However, these authors did not
check for the existence of directional biases in significance
tests associated with K. We have done so here and only
found moderate rates of type I and II biases, which might
be of minor concern given other sources of uncertainty
(i.e. suboptimal branch-length information). Further, al-
though the optimal solution would be to invest in the
necessary resources for producing fully-resolved phyloge-
nies, directional biases associated to polytomies may be

Fig. 6 Graphical representation of the frequency of type I and II biases when quantifying phylogenetic signal using Blomberg et al.’s K and
pseudo-chronograms calibrated with BLADJ. The x-axis represents the degree of phylogenetic signal in the traits (λ-transformations). The percentages
above the figures refer to the nodes that were fixed to generate the pseudo-chronograms
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partially mitigated by applying either rarefaction-based
solutions (e.g. [20, 36]) or model-based approaches [37].
Nonetheless, and despite the topology of many species-
rich clades remains largely unresolved [14], it is theoretic-
ally a matter of time and effort before we get to make
comprehensive, fully-resolved topologies.
However, our results suggest that non accurate branch

lengths could be a much more pervasive problem than
phylogenetic resolution. Previous work already pointed
out the importance of branch length information in
phylogenetic analyses (e.g. [38, 39]). Here, we have re-
ported strong type I biases in estimates of phylogenetic
signal using Blomberg et al.’s K and phylogenies with
pseudo-branch lengths. This contrasts with Münkemül-
ler et al.’s conclusion that the effect of branch length
information is rather negligible for K (and other phylo-
genetic signal indices), despite these authors detecting
lower p-values in the Blomberg et al.’s K tests derived
from phylogenies missing branch lengths (i.e. significant
but erroneous estimates of phylogenetic signal). We think
the apparent differences between Münkemüller et al.’s re-
sults and ours arise simply from the way in which the data
were analysed in each study. Unlike the individual pairwise
comparisons we used here, Münkemüller et al. sought for
significant differences between distributions of p-values as
a whole, using general additive models (see “model-based
sensitivity analyses” in [24]). Although this approach
might be appropriated to elucidate strong directional
trends in data, individual responses between particular
“true” phylogenies and the corresponding degraded
trees could have gone unnoticed, thus leading to under-
estimation of the effect of branch length information. Fur-
ther, Pavoine & Ricotta [27] hypothesized that non-accurate
or non-available branch lengths could decrease the power of
Blomberg et al.’s K to detect phylogenetic signal, and
warned against the use of this index when branch
lengths are missing. Our results suggest that rather than
decrease the power of the statistic, pseudo-branch lengths
could lead to strong overestimation of the signal (i.e. high
rates of type I biases).
Unlike Blomberg et al.’s K statistic, our results sug-

gest that Pagel’s λ is strongly robust to either poly-
tomies and pseudo-branch lengths. This is much in
line with previous evidence that showed that Pagel’s λ
is robust to incomplete phylogenetic information (i.e.
omission of branch lengths) in phylogenetic compara-
tive analyses [40]. However, Pagel’s λ has a clear dis-
advantage over Blomberg et al.’s K; the former will
fail to detect phylogenetic signals stronger than
Brownian motion expectation, as may occur in highly
conserved traits (e.g. [41]). Nevertheless, it may be a
minor concern regarding most ecologically relevant
traits, which often exhibit phylogenetic signal below
this threshold (i.e. K and λ < 1).

It is important to note that many studies that have
made use of pseudo-chronograms calibrated with BLADJ
to estimate phylogenetic signal using Blomberg et al.’s K
do not specify the percentage of nodes that were fixed
for branch length calibration (e.g. [42–45]), and it is
often rather low, which may increase the risk to obtain
spurious estimates of phylogenetic signal. For instance,
in plant ecological studies, a fairly standardized practice
for generating pseudo-chronograms with BLADJ is to
use plant clade age estimates from Wikström et al. [46].
However, this set of calibration points (available in
Phylocom package) includes only 120 clades at the
family level or less than 30% of the 413 families recog-
nized by APG IV [47]. Thus, given the strong sensitivity of
Blomberg et al.’s K statistic to non-accurate branch
lengths, estimates of phylogenetic signal that rely upon
this index and pseudo-chronograms calibrated with
BLADJ should be accompanied by detailed information
about the calibration process (i.e. the number of nodes of
the phylogeny that are fixed). As well, low but significant
phylogenetic signals estimated with Blomberg et al.’s K on
large-sized pseudo-chronograms should be interpreted
with particular caution, given the probability of making
type I biases when phylogenetic signal is rather low seems
to increase with sample size.
The most notable feature of pseudo-chronograms cali-

brated with BLADJ is they show lower branch length varia-
bilitythan well-calibrated trees (i.e. “true” chronograms;
Fig. 3). Thus, our conclusions may also apply to other cali-
bration methods that also generate pseudo-chronograms of
artificially low variability in branch length (e.g. Graphen’s
rho transformation [48]) in comparison with that expected
from the true chronograms. It is worthy to mention
that the branching pattern of the pure-birth trees used
in our analyses may differ to some extent from that of
real chronograms, which may limit the scope of the
conclusions of the present study. Nevertheless, variability
in branch length of real chronograms is expected to be
higher than that of pseudo-chronograms, given the com-
plex evolutionary dynamics that characterize natural
evolution.
Finally, the distorted effects of polytomies and pseudo-

branch lengths in estimates of phylogenetic signal could
also affect other indices that show similar properties as
Blomberg et al.’s K. For example, the phylogenetic
signal-representation curve approach (PSR), a method
for estimating phylogenetic signal built upon sequential
phylogenetic eigenvector regression (PVR), has been dem-
onstrated to strongly correlate with Blomberg et al.’s K
[49]. Hence, the use of pseudo-chronograms in studies of
phylogenetic signal and other phylogenetic analyses should
be done with caution. Nevertheless and in the light of our
results, Pagel’s λ seems a more appropriate alternative over
Blomberg et al.’s K to measure and test phylogenetic signal
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in most ecologically relevant traits when phylogenetic
information is incomplete.

Conclusions
Our results suggest that pseudo-chronograms calibrated
with BLADJ can lead to strong overestimation of phylo-
genetic signal when using Blomberg et al.’s K (i.e. high
rates of type I biases), while polytomies may be a minor
concern given other sources of uncertainty (i.e. incorrect
branch lengths). Importantly, other calibration methods
that also generate pseudo-chronograms of artificially low
variability in branch length (e.g. Graphen’s rho trans-
formation) may lead to similar spurious estimates of
phylogenetic signal. In contrast, Pagel’s λ seems strongly
robust to either polytomies and pseudo-branch lengths,
and hence may be a more appropriate alternative over
Blomberg et al.’s K to measure and test phylogenetic
signal in most ecologically relevant traits when phylo-
genetic information is incomplete.
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