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Abstract

Background: A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7
was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was
performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on
genes involved in DNA repair, recombination and replication (3R genes).

Results: More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of
non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion
of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport
and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed.
Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and
metabolism, transcription, energy production and conversion.

Conclusions: We have identified unique genomic signatures of the lineage 7 strains. The high frequency of
nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation.
The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion
period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental
stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental
adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.

Keywords: Mycobacterium tuberculosis, Lineage 7, Whole genome sequencing, Single nucleotide polymorphism,
Mutations, 3R genes, Amhara Region, Ethiopia

Background
Tuberculosis (TB) has been a major cause of morbidity and
mortality among humans for millennia. Each year, approxi-
mately 9 million people contract TB and 1.5 million die
from the disease [1]. TB is caused by bacterial strains
belonging to the Mycobacterium tuberculosis complex
(MTBC). Whole genome sequencing (WGS) analysis classi-
fies MTBC into seven main lineages (lineages 1–7); lineages
2, 3 and 4 belong to the evolutionary modern group and

are considered more recently diversified compared to the
ancient lineages of 1, 5 and 6 [2]. An improved understand-
ing of the evolutionary constraints and facilitators on nat-
ural populations of MTBC strains is required to develop
TB control strategies that efficiently consider the dynamics
of mycobacterial evolution.
MTBC and the human host have a long-term co-

evolutionary relationship. It is presumed that M. tuber-
culosis originated in Africa and co-evolved into modern
lineages with the out-migration of humans from Africa
70–80 thousand years ago [3]. The lineage distribution
among cases caused by M. tuberculosis exerts distinct
geographical associations worldwide [2, 4]. While line-
ages 1 and 3 are prevalent in East Africa, Central, South-
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and South-East Asia, lineages 2 and 4 are the most widely
distributed worldwide. Lineages 5 and 6, which are also
known as M. africanum West Africa 1 and West Africa 2,
respectively, are localized in West Africa [5, 6]. Lineage 7
is a M. tuberculosis lineage recently discovered in north-
western Ethiopia and among Ethiopian immigrants in
Djibouti [7–10].
We previously investigated the clinical relevance of M.

tuberculosis lineage 7 as compared to other lineages and
found that lineage 7 is associated with prolonged patient
delay and slow growth in vitro [11]. Furthermore, phylo-
genetic characterization of lineage 7 strains by myco-
bacterial interspersed repetitive unit-variable-number
tandem-repeat (MIRU-VNTR) revealed deep phyloge-
netic branching and recent expansion of this lineage
[11]. Factors that may have contributed to the recent
expansion are not known. It also remains to be deter-
mined which factors may have contributed to growth
rate and how this relates to the maintained fitness of
lineage 7 strains.
Thirty M. tuberculosis lineage 7 strains were subjected

to WGS. The genomic profiles were analyzed, evolution
was characterized and potential drivers of the recent
phylogenetic expansion were identified. Single nucleo-
tide polymorphisms (SNPs) specific to lineage 7 strains
were specified. We focused specifically on the presence
of repair, recombination and replication (3R) gene muta-
tions relative to the timing of pre- and post-expansion,
and on mutations that may be associated with the suc-
cess of slow-growing lineage 7M. tuberculosis strains.

Methods
Bacterial strains, genotyping and drug susceptibility testing
This study included 30M. tuberculosis isolates that were
cultivated from sputum samples collected from pulmon-
ary TB patients presenting at selected health care facilities
in the Amhara Region of Ethiopia during the period
2008–10 as previously described [9, 10]. The study was
approved by the Regional Committee for Medical
Research Ethics in Eastern Norway (REK Øst) and the
Ethiopian Science and Technology Ministry in Addis
Ababa, Ethiopia. Written informed consent was ob-
tained from the study participants before the study
was commenced.
Strains defined as lineage 7 were identified by spoligo-

typing as SIT910 and SIT1724 [9] as previously described
[3, 8]. The strains were transferred to Oslo University
Hospital, Norway and checked for purity by culturing on
Middlebrook 7H10 agar, chocolate agar, and MGIT™
Middlebrook 7H9 in a BACTEC™ 960 (BD, USA) follow-
ing the manufacturer’s instructions. Drug susceptibility
testing (DST) was performed by the proportional absolute
concentration [12] and BACTEC™ MGIT™ 960 (BD, USA)
following the manufacturer's instructions [13].

DNA isolation and whole genome sequencing
Genomic deoxyribonucleic acid (gDNA) was isolated from
M. tuberculosis lineage 7 strains grown on Middlebrook
7H10 agar according to standard procedures [14]. Gen-
omic libraries were paired-end sequenced using the
MiSeq Gene and Small Genome Sequencer (Illumina,
USA) according to the manufacturer’s specifications
(GATC Biotech AG, Germany). Samples were prepared
to produce a mean fragment size ~300 bp. To optimize
downstream analyses, quality control was performed
using the Qualimap [15] and FASTQC programs (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Sequence data have been deposited in the European
Nucleotide Archive with the study accession code
PRJEB13960.

Bioinformatics analyses
Paired-end lineage 7 genome sequence reads were
mapped to the genome sequence of the M. tuberculosis
H37Rv reference strain (version NC_000962.3) using
BWA aligner [16]. The genome sequence mapping re-
sults were visualized according to the WGS of the
H37Rv reference strain and its genome annotation using
Unipro UGENE. In order to identify SNPs uniquely as-
sociated with lineage 7 strains, the sequences were com-
pared with those available from previously sequenced
MTBC strains stored on publicly available databases
(Additional file 1). Comparative SNP typing was per-
formed on 161 isolates (33 lineage 7 and 128 representa-
tive of lineages 1–6) using the Unified Genotyper of the
Genome Analysis Toolkit (GATK). In-house Python
modules were applied to all generated Variant Call For-
mat (VCF) files in parallel to comparatively analyse and
filter the SNPs detected, and to produce a comparative
multiple sequence alignment of all positions for which a
SNP was called in at least one of the strains in the
complete dataset. SNPs were retained if they were sup-
ported by 5 reads with a quality control (QC) score ≥ 30.
SNPs in PE/PGRS genes, mobile elements, and those
linked to insertion/deletion regions were excluded from
the analysis. Indels were mapped by combining Break-
Dancer [17] and Pindel [18] outputs. All DNA sequence
structural variations identified were inspected manually.
Genes harbouring nsSNPs or indels were grouped ac-
cording to the different classes of the Clusters of Ortho-
logous Groups (COG) classification [19, 20]. Deletions
were visualised using the matplotlib library.

Phylogeny and evolutionary predictions
Phylogeny was inferred using RaxML (version 8.1.3).
RaxML was used for Maximum likelihood (ML) based
estimates of the MTBC phylogeny and 1000 bootstrap
replicates were performed to assess statistical support.
The phylogenetic trees were visualized using FigTree

Yimer et al. BMC Evolutionary Biology  (2016) 16:146 Page 2 of 10

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


(version 1.4.0). The substitutions leading to each SNP
were mapped to the phylogenetic tree using Mesquite
version 3.02 using the parsimony ancestral state recon-
struction method (Mesquite: a modular system for evo-
lutionary analysis, Version 3.02) [21]. Identification of the
ML-based common ancestor (MLCA) and the presence
of a clock-like signal in this dataset were investigated by
plotting the root-to-tip distance against time using a
linear regression model using Path-O-Gen software.

Statistical analysis
The binomial test was used to compare the sSNPs vs
nsSNPs distribution of COG categories in lineage 7
strains. We took into account the number of SNPs in
each category and the total length of the genes where

mutations are located. For each cell, the binomial test
was calculated using Excel as follows: BINOMIAL DIST
(Number of SNPs, Total number of SNPs, gene length/
Total gene length, 1).

Results
MTBC lineage 7 strains are originally deeply rooted in the
phylogenetic tree
A phylogenetic tree was built based on the complete
number of SNPs extracted from genomic DNA se-
quences as compared to a diverse set of whole genome
sequences from 161 MTBC WGS (Fig. 1a). Lineage 7
strains form a distinct group which is positioned deeply
between the “ancient” and evolutionary “modern” line-
ages. Furthermore, lineage 7 strains were shown to

a

b

Fig. 1 a Maximum likelihood (ML) tree including strains belonging to all MTBC lineages. The ML tree is based on all identified polymorphic sites.
b ML tree of lineage 7 isolates included in this study
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exhibit a recent expansion (Fig. 1a). Bayesian statistical
methods employed to estimate the time of the primary
lineage 7 expansion suggested that it started approxi-
mately 310 years ago (Additional file 2).

Lineage 7 strains exhibit a high number of nsSNPs in
metabolic genes
A total of 3215 SNPs were observed in lineage 7 when
compared to other MTBC lineages (Fig. 1b). The propor-
tions of synonymous SNPs (sSNPs) and non-synonymous
SNPs (nsSNPs) distribution in the lineage 7 isolates were
compared. sSNPs and nsSNPs accounted for 1140
(35.45 %) and 2075 (64.5 %) events, respectively, with an

overall SNP ratio of 1.8. The number of SNPs in inter-
genic regions was 334.
More than 800 SNPs specific to lineage 7 isolates were

identified when compared to the WGS of isolates that
belong to the different MTBC lineages. The SNP distri-
bution in the lineage 7 strains showed variation as
shown in Fig. 2a.
We analyzed the distribution of the total 3215 SNPS

observed in lineage 7. Accordingly, 1974 SNPs were lo-
cated in the genomic coding regions that were classified
in the following cluster of orthologous gene (COG)
categories: secondary metabolite biosynthesis, transport,
and catabolism (Q) (n = 280); energy production and
conversion (C) (n = 205); lipid transport and metabolism

Fig. 2 a Distribution of all identified SNPs in lineage 7 strains based on the Cluster of Orthologous Classification (COG). The green color defines
the synonymous SNPs and the red color the non-synonymous SNPs. b Similarity matrix based on whole genome analysis. The percentages indicated
in each box correspond to the identity between two isolates at the genomic level. Letter codings are described as follows: [C] Energy production and
conversion, [D] Cell cycle control, cell division, chromosome partitioning, [E] Amino acid transport and metabolism, [F] Nucleotide transport
and metabolism, [G] Carbohydrate transport and metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, [K]
Transcription, [L] Replication, recombination and repair, [M] Cell wall/membrane/envelope biogenesis, [N] Cell motility, [O] Post-translational
modification, protein turnover, and chaperones, [Q] Secondary metabolites biosynthesis, transport, and catabolism, [T] Signal transduction
mechanisms, [U] Intracellular trafficking, secretion, and vesicular transport, [V] Defense mechanisms
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(I) (n = 185); amino acid transport and metabolism (E)
(n = 170); transcription (K) (n = 154); signal transduction
mechanisms (T) (n = 143); inorganic ion transport and
metabolism (P) (n = 132); replication, recombination,
and repair (L) (n 126); coenzyme transport and metabol-
ism (H) (n =125); carbohydrate transport and metabolism
(G) (n = 116); cell wall/membrane/envelope biogenesis
(M) (n = 109); posttranslational modification, protein turn-
over, and chaperones (O) (n = 72); cell cycle control, cell
division, chromosome partitioning (D) (n = 52); nucleotide
transport and metabolism (F) (n = 50); defense mecha-
nisms (V) (n = 43); intracellular trafficking, secretion, and
vesicular transport (U) (n =12) (Fig. 2b and Table 1).
Lineage 7 strains exhibited a high proportion of muta-

tions inducing an amino acid change in genes involved
in carbohydrate transport and metabolism, energy pro-
duction and conversion, defense mechanisms, secondary
metabolites biosynthesis, transport and catabolism, inor-
ganic ion transport and metabolism, and post-translational
modification, protein turnover, and chaperone. In contrast,
a low frequency of mutation was observed in genes in-
volved in nucleotide transport and metabolism, intra-
cellular trafficking, secretion, and vesicular transport,
and cell motility (Fig. 2b and Table 1).
To elucidate drivers of recent lineage 7 expansion,

mutations in major COG categories before and after

the phylogenetic expansion period were compared. Ac-
cordingly, the number of nsSNPs in 3R genes (COG
category L) were significantly higher after than before
the expansion started (nsSNP/sSNP ratios of 2.3 and
1.2, respectively, P-value < 0.05, χ2 test) (Fig. 3).
The number of nsSNPs in genes involved in inorganic

ion transport and metabolism were significantly higher
before than after the expansion began (nsSNP/sSNP
ratios of 3.9 and 2.5, respectively, P-value < 0.05, χ2 test)
(Fig. 3). Among the genes involved in inorganic ion
transport and metabolism (COG category P), polyphos-
phate kinase (PPK1) exhibited a high number of nsSNP
(Additional file 3). A high number of nsSNPs were also
observed in the following genes: dnaB and Rv2090 (3R
genes), glpk (gene involved in glycerol metabolism);
pks12 and pks8 (genes involved in secondary metabolites
biosynthesis, transport and catabolism); mmpl12, mmpl4
and mmpl3 (genes involved in fatty acid transport); and
mbtE and accA3 (genes involved in long fatty acid syn-
thesis) (Additional file 3).

Deletion analyses
A total of 22346 bp deletion events occurred along the
WGS phylogeny. The specific sites of the deleted genes
including their functional categories were: Rv2650c-
Rv2659c (insertion sequences and phages); lppO or

Table 1 Distribution of SNPs according to the Clusters of Orthologous Groups (COG) classification. The binomial test was calculated
using Excel as follows: BINOMIAL DIST (Number of SNPs, Total number of SNPs, Gene length/Total gene length, 1)

Cluster of Orthologous Categories COG
codes

Nb of
nsSNPs

Nb of
sSNPs

Total nb
of SNP

Nb of
genes

Total gene
length

BINOMIAL
TEST

Secondary metabolites biosynthesis, transport and catabolism Q 169 111 280 85 186303 0.016339104

Energy production and conversion C 128 77 205 104 141315 0.00956263

Lipid transport and metabolism I 110 75 185 86 108423 0.551376551

Amino acid transport and metabolism E 112 58 170 85 111717 0.075317667

Transcription K 100 54 154 68 60555 0.999999395

Signal transduction mechanisms T 102 41 143 43 55596 0.99999919

Inorganic ion transport and metabolism P 92 40 132 70 100593 0.000946095

Replication, recombination and repair L 80 46 126 51 75246 0.463792377

Coenzyme transport and metabolism H 83 42 125 60 63582 0.955338675

Carbohydrate transport and metabolism G 83 33 116 57 82752 0.017486939

Cell wall/membrane/envelope biogenesis M 70 39 109 57 70737 0.164200506

Post-translational modification, protein turnover, and chaperones O 41 31 72 42 54294 0.016391663

Cell cycle control, cell division, chromosome partitioning D 34 18 52 22 38130 0.059214452

Nucleotide transport and metabolism F 28 22 50 33 36285 0.073929704

Defense mechanisms V 29 14 43 26 34749 0.017540819

Intracellular trafficking, secretion, and vesicular transport U 6 6 12 7 8544 0.310996283

Cell motility N 1 0 1 0 0 1

Not in COGs R 441 228 669 386 325323 0.999999959

General function prediction only R 250 136 386 189 238986 0.156980544

Function unknown S 116 69 185 106 101895 0.838428538

Yimer et al. BMC Evolutionary Biology  (2016) 16:146 Page 5 of 10



Rv2290 (cell wall and cell processes); sseB or Rv2291
(intermediary metabolism and respiration); rmlB3 (Rv
3468), mhpE (Rv3669), ilvB2 (Rv 3470) (intermediary
metabolism and respiration); Rv2645-Rv2647 (insertion
sequences and phages); Rv2645 (unknown functional
category); Rv2646 (insertion sequences and phages); and
Rv1573-Rv1587(insertion sequences and phages) (Fig. 4).

Discussion
This is the first genomic study that provides an insight
into the recent evolution and drivers of fitness for sur-
vival among M. tuberculosis lineage 7 strains. Genomic
phylogenetic tree analysis positioned lineage 7 between
“ancient” and “modern” lineages, confirming the findings
in previous MIRU-VNTR studies [5, 6]. More than 800
SNPs specific to M. tuberculosis lineage 7 strains were
identified, indicating that the bacterium was accumula-
ting specific mutations for a long time before the phylo-
genetic expansion began.
In contrast to the deeply rooted M. canettii, which

grows faster than MTBC strains of other lineages [22],
lineage 7 strains grow slowly in vitro [11]. To identify
SNPs that potentially could be associated with the ex-
pansion event, the proportion of nsSNP and sSNP muta-
tions in functional components according to COG were
compared. Mutations in genes involved in inorganic ion
transport and metabolism were significantly higher be-
fore rather than after the expansion started while muta-
tions in 3R genes were significantly higher after the
expansion began. The significant increase of nsSNPs in
3R genes corroborates our previous finding on M.

tuberculosis adaptive responses [23–25] and may be re-
lated to fitness for survival. This could be a consequence
of selected critical mutations induced at a specific time
point, presumably at an early stage of the lineage 7 ex-
pansion, leading to a transient or constitutive adapted
mutator phenotype.
Other factors may also have contributed to the recent

expansion. Hosts with reduced immune competence due
to poor nutrition could have facilitated lineage 7 strains
to evolve rapidly leading to more mutations and hence
diversity. In addition, poor living conditions, frequent
drought and rapid population growth in the country may
have given lineage 7 ample opportunity for diversification.
The significant increase in nsSNP in inorganic ion

transport and metabolism before the expansion period
may indicate a coping strategy adopted by lineage 7
strains against a potential environmental stress factor to
which the bacteria were exposed. M. tuberculosis may
encounter a multitude of stress factors (e.g. oxidative,
acidic, nutrient, membrane damage, heat shock and
ribosomal stress factors) when interacting with the host
that potentially induce adaptive responses enabling im-
proved survival [26]. Specifically, the high proportion of
nsSNP observed in the polyphosphate kinase 1 (PPK1)
gene may indicate possible exposure of lineage 7 strains
to stressful environmental conditions. Previous studies
showed that the PPK1 gene plays a crucial role in bacter-
ial survival under conditions of stress including lag-
phase, under nutrient starvation and oxidative stress [27,
28]. It may be speculated that lineage 7 strains accumu-
lated mutations to adapt to such types of stress before

Fig. 3 Comparison of the ratio of nsSNP/sSNP. Observed differences in the ratio of nsSNP/sSNP before and after the expansion of lineage 7
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the recent expansion started. An earlier study showed that
bacteria without the ability to adapt to oxidative and
nitrosative stress grow slowly in macrophages and are
likely to die [29]. Additional transcriptomic and proteomic
studies are warranted to further investigate the adaptive
responses of lineage 7 strains to stress factors that are

likely to be associated with the timing of the recent expan-
sion. A significant decrease of nsSNPs in genes involved
in inorganic ion transport and metabolism was observed
after the recent expansion of lineage 7 started (Fig. 3).
Very low levels of nsSNPs have previously been attributed
to the effect of purifying selection [30].

Fig. 4 List of specific deletions identified in all lineage 7 isolates included in this study. Deletions were identified by calculating the coverage rate
throughout the genome using bedtools on the alignment files generated by samtools. Each line corresponds to the coverage rate for each strain.
The gray line corresponds to a control strain that does not include any of the identified deletions specific for the lineage isolates. For each
deletion, the information is: genomic coordinates, size of the deleted region and the genes concerned.
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A high frequency of nsSNPs mutation in the dnaB gene
was observed. A former biochemical study indicated that
the dnaB gene plays an important role in both initiation
and elongation of DNA helicase [31]. A very high propor-
tion of nsSNPs in the glpk gene, involved in glycerol
utilization [6], was also observed. An earlier study identi-
fied the glpk gene as one of the 42 growth-attenuating
genes in M. tuberculosis [32]. Therefore, the high fre-
quency of mutations observed in this gene may be linked
to the slow in vitro growth of lineage 7 strains reported in
our previous study [11]. Further investigations into the
enzymatic function of these genes are warranted to
analyze the effect on in vitro growth of lineage 7 stains.
A number of gene deletions specific to lineage 7

strains were observed. One area of deletion was in the
regions of Rv3468-Rv3470. Valine and isoleucine biosyn-
thesis that involve Rv3470 [32] are essential pathways
required for optimal growth of the bacteria. The deletion
of RV3470 is thus likely to have contributed to the
phenotypic consequences of slow in vitro growth among
lineage 7 strains [11].
To date, the distribution of the “ancient” M. tubercu-

losis lineages, 5, 6 and M. canettii is restricted to Africa,
now supplemented by lineage 7. It is not known why
these three lineages are found only in specific regions of
Africa. The ability to cause secondary cases and/or out-
breaks is considered to be a measure of fitness or success
in MTBC transmission. Given the restricted geographic
distribution, “ancient” M. tuberculosis lineages are not as
successful as “modern” lineages. Despite the fast-growing
nature of M. canettii as compared to other strains, only
60M. canettii strains have been recognized to date [33].
Ancient lineages are being replaced by modern strains; the
prevalence of M. africanum West African 2 in Guinea-
Bissau decreased from 51 % to 39 % between 1989 and
2008 [34]. The prevalence of M. africanum lineages in
other countries including Côte d’Ivoire, Ghana and
Cameroon is also declining [35–38]. More studies are
needed to characterize the transmission pattern of the
recently identified M. tuberculosis lineage 7 strains.
Results of a previous study indicated that natural vari-

ation among clinical isolates may change epidemiologic
patterns in a population [39]. Infection with M. tubercu-
losis strains that illicit pro-inflammatory cytokines are
very well controlled in healthy persons with effective
innate responses [39]. In contrast, another study demon-
strated that a slower growing M. tuberculosis strain
causing a less protective innate immune response may
more effectively elicit active disease and increase trans-
mission in the community [40]. Lineage 7 accounted for
16 % of the distribution and was the second largest clus-
ter among the strains collected in our previous study [9].
This shows that lineage 7, despite growing slowly in
vitro, is responsible for significant transmission in a

heterogeneous community. This may indicate that the
fitness of lineage 7 strains results in relatively efficient
transmission of TB.
Lineage 7 is prevalent in the Amhara Region of

Ethiopia (9). An earlier study by Firdessa et al. [8]
reported lineage 7 strains from the Woldiya area of the
Amhara Region. Genotyping data from the national
prevalence survey in Ethiopia reported two SIT910
lineage 7 strains from East Gojjam Zone of the Amhara
Region [41]. Our study included a higher number of
lineage 7 strains than any other study to date, which
might suggest that the Amhara Region of Ethiopia may
be the cradle of M. tuberculosis lineage 7.

Conclusions
TB caused by M. tuberculosis lineage 7 strains is an emer-
ging disease in Ethiopia and the Horn of Africa. Due to
the high mobility and migration of people in this region,
the presence of ecological and individual risk factors, and
the increasing trend of surveillance, it is likely that the
number of MTBC lineage 7 cases diagnosed will increase.
This study identified unique genomic signatures asso-

ciated with MTBC lineage 7 strains and identified SNPs
in genes possibly related to the clinical and microbio-
logical features observed. We suggest that the relatively
high proportion of nsSNPs in 3R genes may have con-
tributed to the recent phylogenetic expansion of lineage
7 strains that started approximately 310 years ago. The
high frequency of mutations in genes involved in inor-
ganic ion transport and metabolism before the expansion
period may indicates an adaptive response of lineage 7
strains to stress factors experienced by the bacteria. The
high proportion of nsSNPs and deletions observed in
specific genes may have contributed to phenotypic con-
sequences including slow growth. Further functional
biochemical studies addressing specific SNPs and gene
deletions associated with lineage 7 strains are warranted
to delineate the relative association to virulence and rela-
tion to clinical presentation.
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analysis of WGS. (XLSX 12 kb)
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