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Abstract

Background: The ecological differentiation of insects with parasitic life-style is a complex process that may involve
phylogenetic constraints as well as morphological and/or behavioural adaptations. In most cases, the relative
importance of these driving forces remains unexplored. We investigate here this question for the “Eupelmus
urozonus species group” which encompasses parasitoid wasps of potential interest in biological control.
This was achieved using seven molecular markers, reliable records on 91 host species and a proxy of the
ovipositor length.

Results: After using an adequate partitioning scheme, Maximum likelihood and Bayesian approaches provide
a well-resolved phylogeny supporting the monophyly of this species group and highlighting its subdivision
into three sub-groups. Great variations of both the ovipositor length and the host range (specialist versus generalist)
were observed at this scale, with these two features being not significantly constrained by the phylogeny. Ovipositor
length was not shown as a significant predictor of the parasitoid host range.

Conclusions: This study provides firstly the first evidence for the strong lability of both the ovipositor’s length
and the realised host range in a set of phylogenetically related and sympatric species. In both cases, strong
contrasts were observed between sister species. Moreover, no significant correlation was found between these
two features. Alternative drivers of the ecological differentiation such as interspecific interactions are proposed
and the consequences on the recruitment of these parasitoids on native and exotic pests are discussed.

Keywords: Ecological specialization, Ectoparasitoid, Host range evolution, Molecular phylogeny, Morphological
adaptation, Ovipositor, Phylogenetic constraint

Background
Ecological speciation is a process in which polymorph-
ism within populations (e.g. in resource use or habitat
preference) ultimately induces the appearance of two
sister species, each adapted to a different niche [1–4].
According to Rundle and Nosil [2], three principal com-
ponents must be involved: i) a source of divergent selec-
tion, ii) a form of reproductive isolation, and iii) a genetic

mechanism linking divergent selection to reproductive
isolation. Among plant-feeding insects, several empirical
studies support this scenario [1, 5, 6], which can also
occur for insects with a parasitic lifestyle, in particular
within the upper trophic levels. For such organisms, eco-
logical differentiation between sister species can also be
driven by the ecological differentiation of their hosts via a
process called sequential or cascading speciation [7–9]. If
pervasive enough, such processes should lead to the clus-
tering of phylogenetically related specialists.
Additionally, transitions between generalists to spe-

cialists (and vice-versa) are also occurring and, so far,
empirical data provide a mixed picture about the
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relative frequencies of evolution toward specialisation
and generalization [10–13]. However, transitions from
generalist ancestors to specialized species are probably
recurrent as (i) generalist species are unlikely to pro-
duce “jack-of-all trades-master of none” genotypes be-
cause of genetic or physiological trade-off [14–16]; (ii)
the subsequent acquisition of specialized genotypes
may be a primary step towards speciation [17–19];
and (iii) specialist species may be more prone to ex-
tinction [13, 20]. At a phylogenetic level, both kinds
of transitions should lead to the mixing of both spe-
cialists and generalists within the same cluster.
Questions of (i) the host range (specialist versus gener-

alist) of ancestral species of current specialists and (ii)
the distribution of host ranges within a phylogeny were
recently addressed by Hardy and Otto [21]. They illus-
trated them using two notions, respectively “the musical
chairs hypothesis” (specialists originate from specialists
through host switch) and the “oscillation hypothesis”
(specialists originate from generalists, with some special-
ists widening their host range before the next speciation
event). The extent to which one of these scenarios is
more frequent has nevertheless still to be evaluated
rigorously for the organisms with a parasitic lifestyle.
Parasitoids are organisms (mainly Hymenoptera and

Diptera) whose pre-imaginal life depends on the success-
ful exploitation of a single host [22, 23]. Behind this sim-
ple definition, a great diversity of life history strategies
and physiological adaptations are observed. In particular,
the ovipositor allows egg-laying by the female and is
thus a key organ especially for species that are exploiting
concealed or protected hosts [24, 25]. The features (in
particular the length) of this organ and its ability to
evolve could contribute to drive specialization and/or
speciation. Focusing on the “Eupelmus urozonus species
group” (Hymenoptera: Eupelmidae), we examine here
whether the host range is subject to phylogenetic con-
straints and/or whether the ovipositor length is a signifi-
cant driver of host use.
Within the subfamily Eupelminae (33 genera), the

genus Eupelmus Dalman is the most diverse, with 91
available valid species names in the Palaearctic region
[26]. Species of Eupelmus are primary or facultative sec-
ondary ectoparasitoids whose larvae develop as idio-
bionts on the immature stages (larvae, pupae and more
rarely eggs) of many insects (beetles, flies, moths, wasps
or cicadas) that are concealed or protected in plant tis-
sues (stems, galls, fruits or seeds) [27]. Most Eupelmus
are considered as generalist parasitoids [27, 28]. How-
ever, because of both the extreme sexual dimorphism
characterizing the subfamily and the existence of species
groups possibly hiding cryptic species, the systematics
and the evolutionary ecology of these species remain
poorly understood. This situation is well illustrated with

the “E. urozonus species complex/group” which was re-
peatedly investigated [27, 29–31] until its recent revision
within the Palaearctic region by Al khatib et al. [32, 33],
which identified 11 new species in this region. Semantic-
ally, the term “complex” used in Al khatib et al. [32, 33] is
substituted here by the term “species group” (Al khatib et
al. in preparation). As a consequence of this unsuspected
biodiversity, most of the published host records for these
species are unreliable because all of the common species
with a comparatively short ovipositor (E. gemellus Al kha-
tib, 2015, E. confusus Al khatib, 2015, and especially E.
kiefferi De Stefani, 1898) were misidentified as E. urozonus
Dalman, 1820, while the two common species with a com-
paratively long ovipositor (E. azureus Ratzeburg, 1844 and
E. annulatus Nees, 1834) were both frequently mistreated
under E. annulatus [29, 34].
In the present study, we first provide a reliable mo-

lecular phylogeny of the “E. urozonus species group”
using a multi-locus approach. Then, for most of the
species, we compile host records and data on oviposi-
tor length. We finally carry out a comparative analysis
to evaluate the role of phylogenetic constraints in the
evolution of ovipositor length and host range as well
as the role of the ovipositor’s length in determining
the host range.

Methods
Sampling
A total of 31 species, with 91 individuals, sampled in the
Palaearctic region were included in this study.

– Eighteen of the 21 species within the “urozonus
species group” that were recently revised using both
morphological and molecular characters [32, 33]: E.
acinellus Askew, 2009, E. annulatus, E. azureus, E.
cerris Förster, 1860, E. confusus, E. fulvipes Förster,
1860, E. gemellus, E. janstai Delvare and Gibson,
2015, E. kiefferi, E. longicalvus Al khatib & Fusu,
2015, E. minozonus Delvare, 2015, E. opacus
Delvare, 2015, E. pistaciae Al khatib, 2015, E.
priotoni Delvare, 2015, E. purpuricollis Fusu & Al
khatib, 2015, E. simizonus Al khatib, 2015, E.
tibicinis Bouček, 1963 and E. urozonus.

– Thirteen species were used as outgroup including (i)
species belonging to the three subgenera of
Eupelmus sensu Gibson (1995): Eupelmus [E.
atropurpureus Dalman, 1820, E. matranus Erdős,
1947, E. microzonus Förster, 1860, E. pini Taylor,
1927 and E. vindex Erdős, 1955]; Macroneura
Walker [E. falcatus (Nikol’skaya, 1952) and E.
seculatus Kalina, 1981], and Episolindelia Girault
[E. linearis Förster, 1860, E. testaceiventris
(Motschulsky, 1863) and E. juniperinus thuriferae
Askew, 2000]; and (ii) species belonging to other
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genera within Eupelminae, Reikosiella (Hirticauda)
[R. aff. rostrata (Ruschka, 1921)] and Anastatus
Motschulsky [Anastatus sidereus (Erdős, 1957) and
Anastatus aff. temporalis Askew, 2005]. The species
were identified by the authors using the available
identification keys [29, 31, 35–37].

Specimens were killed with ethyl acetate and preserved
in 95 % ethanol at −20 °C until DNA extraction. After
the DNA extraction, the voucher specimens were pre-
pared as explained in Al khatib et al. (2014) for the mor-
phological examination. The vouchers are deposited in the
following institutions and private collections: AICF,
Lucian Fusu collection, Al. I. Cuza University, Iasi,
Romania; BMNH, Natural History Museum, London, UK;
CBGP, Centre for Biology and Management of Popula-
tions, Montpellier, France; CNC, Canadian National Col-
lection of Insects, Arachnids and Nematodes, Agriculture
& Agri-food Canada, Ottawa, ON, Canada; FALPC, Fadel
Al khatib personal collection, Faculty of Agricultural
Engineering, University of Aleppo, Syria; GDPC, Gérard
Delvare personal collection, Montpellier, France; MNHG,
Museum of Natural History of Geneva, Switzerland;
MNHN, National Museum of Natural History, Paris,
France; NHRS, Naturhistoriska riksmuseet, Stockholm,
Sweden. The depository’s acronyms of voucher specimens
are included in (Additional file 1: Table S2; Additional file
Dryad: doi:10.5061/dryad.115m1). Sampling information
(host-plants, collection dates, and localities) is listed in
Table 1.

Marker choice
Seven markers displaying various rates of molecular
evolution were used: two coding portions of mito-
chondrial genes (Cytochrome oxidase I, COI and Cyto-
chrome b, Cytb), two coding regions of nuclear genes
(the F2 copy of elongation factor 1-alpha, EF-1α and
Wingless, Wg) and three (at least partially) non-coding
regions of other nuclear genes (the mitotic checkpoint
control protein, Bub3; the ribosomal protein L27a,
RpL27a, and the ribosomal protein S4, RpS4). All
these markers were previously used for phylogenetic
analyses in arthropods. COI and Cytb have been used
to resolve insect molecular phylogenies at shallower
taxonomic levels [38–41]. The Wg gene has provided a
useful tool for the reconstruction of phylogenetic rela-
tionships at lower to intermediate taxonomic levels in
different insect groups [32, 38, 41–45]. EF-1α has
proven to evolve at slow rates and provide phyloge-
netic information at deeper levels (i.e. family relation-
ships) [39, 46–51]. The Bub3 gene is more rarely used
[52, 53] for inferring phylogenetic relationships at a
similar taxonomic level as Wg. Finally, ribosomal

proteins RpL27a and RpS4 have been used with suc-
cess to infer the phylogeny of Hymenoptera associated
with oak galls or figs [39, 54–56].

DNA extraction, PCR amplification and sequencing
Genomic DNA was extracted from a single individual
using the Qiagen DNeasy kit (Hilden, Germany) with
some minor modifications with regard to the manu-
facturer’s protocol. Entire specimens were incubated
at 56 °C for 15–17 h and DNA extraction was per-
formed without destruction of the specimens, to
allow subsequent examination of morphology (see §
Sampling). Primer sequences are given in Additional
file 1: Table S1.
For the two mitochondrial genes (COI and Cytb), the

PCR mix was prepared in 20 μl as follows: 1 μl of DNA
(1–55 ng/μl), 14.64 μl of Milli-Q water, 2 μl of 10x PCR
buffer containing MgCl2 (1x), 1 μl of 10 μM primer
cocktail (0.5 μM), 0.16 μl of dNTPs 25 mM each
(0.2 mM) and 0.2 μl of 5 U/μl Taq DNA Polymerase
(Qiagen, Hilden, Germany).
For the nuclear genes (Bub3, EF1-α, RpL27a, RpS4 and

Wg), the PCR mix was realised in 25 μl as follows: 2 μl
of DNA (1–55 ng/μl), 19.825 μl of Milli-Q water, 2.5 μl
of 10x PCR buffer containing MgCl2 (1x), 0.175 μl of
100 μM primer cocktail (0.7 μM), 0.2 μl of dNTPs
25 mM each (0.2 mM) and 0.125 μl of 5 U/μl Taq DNA
Polymerase (Qiagen, Hilden, Germany).
PCR conditions for Wg and COI were as described in

[32]. Those for other genes were as follows: Cytb: 94 °C
for 5 min, followed by 40 cycles of (i) 94 °C for 1 min,
(ii) 50 °C for 1 min, and (iii) 72 °C for 90 s with a final
extension at 72 °C for 10 min; nuclear markers: 94 °C
for 4 min, followed by 40 cycles of (i) 94 °C for 30 s, (ii)
58 °C for EF-1α, 48 °C for Bub3, 57 °C for RpS4 and 55 °C
for RpL27a, (iii) 72 °C for 5 min with final extension at
72 °C for 5 min.
In the absence of amplification or if the signal was too

weak, we improved yields of PCRs by using 2x QIAGEN
Multiplex PCR Master Mix (Qiagen, Hilden, Germany).
In this case, PCRs were performed in a 25 μl reaction
volume: 2 μl of DNA, 16.5 μl of Milli-Q water, 0.125 μl
of 100 μM primer cocktail (0.5 μM) and 6.25 μl of 2x
QIAGEN Multiplex PCR Master Mix (1x) and PCR con-
ditions were as specified in the QIAGEN® Multiplex
PCR kit: 95 °C for 15 min, followed by 40 cycles of (i)
95 °C for 30 s, (ii) 48 °C-58 °C for 90 s, (iii) 72 °C for
1 min, with final extension at 72 °C for 10 min.
All PCRs were performed on a GeneAmp 9700 ther-

mocycler. PCR products were visualized using the QIAx-
cel Advanced System and QIAxcel DNA Fast Analysis
Kit (Qiagen). PCR products were sent to GENOSCREEN
(Lille, France) or to BECKMAN COULTER GENOMICS
(Stansted, United Kingdom) for sequencing in both
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Table 1 Sample information for the specimens included in the phylogenetic analysis

Species Collection
code

Molecular
code

Country Department City N° E° Host insect Associated plant Collection
date

Eupelmus acinellus FAL1363 10235 France Aude Durban-Corbières 42.99825° 2.80690° Mesophleps oxycedrella Juniperus oxycedrus March 2012

Eupelmus acinellus FAL1366 10237 France Var Fayence 43.65513° 6.68813° Mesophleps oxycedrella Juniperus oxycedrus March 2012

Eupelmus annulatus FAL1176 10198 France Alpes-Maritimes Gréolières-les-
Neiges

43.81584° 6.88711° Diplolepis rosae Rosa canina March 2012

Eupelmus annulatus NB783 10354 France Gard Le Castanet 43.98925° 3.70094° Dryocosmus kuriphilus Castanea sativa February
2012

Eupelmus annulatus GDEL4053 10041 Hungary Veszprém Hegyesd 46.933333° 17.522778° Unknown On Quercus cerris June 2010

Eupelmus annulatus LF.an.SW 01 10471 Sweden Öland Mörbylånga 56.61670° 16.507617° Unknown Unknown August
2006

Eupelmus azureus FAL1323 10222 France Ardèche Saint-Georges-les-
Bains

44.85028° 4.82433° Biorhiza pallida Quercus pubescens June 2012

Eupelmus azureus NB773a 10361 France Var La Garde-Freinet 43.30487° 6.43701° Dryocosmus kuriphilus Castanea sativa February
2012

Eupelmus azureus GDEL4048 10034 Italy Piemonte/Cuneo Palanfré 44.165833° 7.50361°1 Unknown Unknown August
2010

Eupelmus azureus L.Loru713 10245 Italy Sardinia Aritzo 39.94743° 9.19968° Dryocosmus kuriphilus Castanea sativa August
2011

Eupelmus azureus PJ10077-21-4 10575 Hungary Vezprém Várpalota 47.19809° 18.21204° Andricus solitarius Quercus pubescens/
Q. cerris

June 2010

Eupelmus azureus PJ11054-2-2 10578 Turkey Bursa Güneybudaklar 40.00560° 29.14982° Andricus fecundator Quercus sp. -

Eupelmus azureus MC-C4 10486 Switzerland Stabio Via Roccoletta 45.84722° 8.92638° Dryocosmus kuriphilus Castanea sativa August
2012

Eupelmus cerris GDEL4109 10118 Hungary Vezprém Hegyesd 46.93333° 17.52278° Unknown On Quercus cerris June 2010

Eupelmus confusus FAL1278 10443 France Ardèche Saint-Georges-
Montpellier

43.6104° 3.77227° Bactrocera oleae Olea europaea October
2011

Eupelmus confusus FAL1519 10412 France Haute-Corse Lumio 42.55879° 8.81299° Bactrocera oleae Olea europaea September
2012

Eupelmus confusus FAL1051 10145 Italy Liguria Bussana-Vecchia 43.84026° 7.82905° Myopites stylata Dittrichia viscosa January
2011

Eupelmus confusus FAL1108 10250 Spain Logroño La Rioja - - Myopites stylata Dittrichia viscosa March 2012

Eupelmus confusus LF.ma.GR 01 10425 Greece Seres Kerkini Lake
Nat.Park

41.27833° 23.21955° Unknown Unknown June 2008

Eupelmus confusus LF.ma.GR 02 10426 Greece Seres Kerkini lake 41.20180° 23.07747° Unknown Unknown September
2007

Eupelmus confusus GDEL4173 10596 France Hérault Laroque 45.91722° 3.74361° Unknown On Quercus
pubescens

July 2013

Eupelmus confusus LF.ma.IR 05 10424 Iran Kerman Bidkhan 29.59725° 56.48600° Unknown On Salix alba May 2012
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Table 1 Sample information for the specimens included in the phylogenetic analysis (Continued)

Eupelmus confusus LF.ma.CY 01 10427 Cyprus Lemesos Lemesos 34.73189° 33.05175° Apomyelois ceratoniae &
Asphondylia gennadii

Ceratonia siliqua May 2009

Eupelmus fulvipes FAL1221 10200 France Alpes-Maritimes Gréolières-les-
Neiges

43.81584° 6.88711° Diplolepis rosae Rosa canina March 2012

Eupelmus fulvipes LF.ro.RO 02 10656 Romania Constanţa Hagieni & Negru
Voda

- - Diplolepis spinosissimae Rosa sp. -

Eupelmus fulvipes LF.ro.GE 01 10657 Germany Rottenburg-
Wurmlingen

- - Diplolepis rosae Rosa sp. October
2011

Eupelmus gemellus FAL1260 10438 France Var Porquerolles 42.99534° 6.2044° Bactrocera oleae Olea europaea -

Eupelmus gemellus FAL1359 10230 France Alpes-Maritimes Biot 43.63455° 7.082490° Mesophleps oxycedrella Juniperus oxycedrus March 2012

Eupelmus gemellus NB441 10415 France Haute-Corse Bisinchi 42.48983° 9.32797° Dryocosmus kuriphilus Castanea sativa June 2012

Eupelmus gemellus FAL1004 10130 Italy Liguria Bussana-Vecchia 43.84026° 7.82905° Myopites stylata Dittrichia viscosa January
2011

Eupelmus gemellus FAL1508 10405 Italy Sardinia Province
d’Oristano

39.70041° 8.739690° Unknown On Pistacia lentiscus October
2012

Eupelmus janstai GDEL4046 10032 Czech
Republic

Břeclav Pavlov 48.867500° 16.654166° Unknown On T. platyphyllos July 2010

Eupelmus kiefferi NB674b 10341 France Alpes-Maritimes Granile 44.03942° 7.57575° Dryocosmus kuriphilus Castanea sativa March 2012

Eupelmus kiefferi NB666 10325 France Haute-Corse Muratu 42.55139° 9.30929° Dryocosmus kuriphilus Castanea sativa December
2012

Eupelmus kiefferi FAL1070 10151 Italy Liguria Bussana-Vecchia 43.84026° 7.82905° Myopites stylata Dittrichia viscosa January
2012

Eupelmus kiefferi FAL1109 10167 Spain Logroño La Rioja - - Myopites stylata Dittrichia viscosa March 2012

Eupelmus kiefferi FAL1511 10406 Lebanon Bakhoun Fanar - - Myopites stylata Dittrichia viscosa March 2012

Eupelmus kiefferi GDEL4045 10030 Hungary Szombathely Köszeg 47.363888° 16.52500° Unknown On Salix cinerea June 2010

Eupelmus kiefferi MC-C124 10492 Switzerland Riviera Monte Ceneri 46.136944° 08.902500° Dryocosmus kuriphilus Castanea sativa July 2012

Eupelmus kiefferi LF.ma.RO 01 10423 Romania Botoşani Leorda - - Unknown Unknown July 2007

Eupelmus kiefferi ZL.fu.RO 05 10585 Romania Mures Sovata 46.54482° 24.96769° Diplolepis mayri Rosa canina March 2012

Eupelmus kiefferi LF.fu.GE 02 10658 Germany Rottenburg-
Wurmlingen

- - Diplolepis rosae Rosa sp. October
2013

Eupelmus kiefferi LF.fu.SL 01 10467 Slovakia Muranska Planina Predna Hora - - Unknown Unknown July 2009

Eupelmus kiefferi GDEL4043 10028 Czech
Republic

Trutnov Vilantice 50.365833° 15.737222° Unknown Unknown July 2010

Eupelmus kiefferi LF.fu.ES 01 10463 Estonia Tartu Rannu Parish - - Unknown Unknown June 2010

Eupelmus kiefferi FAL1524 10593 Algeria Tigzirt Tigzirt - - Myopites stylata Dittrichia viscosa Februry
2013

Eupelmus longicalvus GDEL4038 10019 Italy Friuli Venezia
Giulia

Chiusaforte 46.405277° 13.445000° Unknown Unknown July 2008
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Table 1 Sample information for the specimens included in the phylogenetic analysis (Continued)

Eupelmus longicalvus LF.ma.SW 02 10429 Sweden Gotland Gotlands
commun

57°32.207’ 18°20.273’ Unknown Unknown July 2004

Eupelmus longicalvus GDEL4191 10603 Italy Friuli-Venezia
Giulia

Chiusaforte 46.39944° 13.45944° Unknown Unknown July 2008

Eupelmus minozonus GDEL4030 10009 Hungary Veszprém Hegyesd 46.93333° 17.52278° Unknown On Quercus cerris June 2010

Eupelmus minozonus GDEL4030 10010 Hungary Veszprém Hegyesd 46.93333° 17.52278° Unknown On Quercus cerris June 2010

Eupelmus minozonus GDEL4030 10011 Hungary Veszprém Hegyesd 46.93333° 17.52278° Unknown On Quercus cerris June 2010

Eupelmus opacus LF.ur.GR 01 10459 Greece Seres Krousia Mts site 41°11’32,4” 23°03’59,5” Unknown Unknown June 2007

Eupelmus opacus LF.ur.SW 02 10460 Sweden Östergötland Ödeshögs
kommun

58°18.452’ 14°37.859’ Unknown Unknown August
2005

Eupelmus pistaciae GDEL4027 10004 France Hérault Cazevieille 43.752222° 3.770000° Megastigmus pistaciae Pistacia terebinthus October
2010

Eupelmus pistaciae GDEL4027 10005 France Hérault Cazevieille 43.752222° 3.770000° Megastigmus pistaciae Pistacia terebinthus October
2010

Eupelmus pistaciae GDEL4027 10507 France Hérault Cazevieille 43.752222° 3.770000° Megastigmus pistaciae Pistacia terebinthus October
2010

Eupelmus priotoni GDEL4051 10038 France Aveyron Sauclières 43.96389° 3.355833° Unknown Unknown June 2011

Eupelmus purpuricollis LF.ur.GR 02 10650 Greece Seres nr Neo Petritsi 41°18’49,8” 23°16’35,6” Unknown Unknown July 2008

Eupelmus purpuricollis LF.ur.GR 03 10651 Greece Seres Kerkini 41°11’32,4” 23°03’59,5” Unknown Unknown July 2007

Eupelmus simizonus GDEL4142 10297 France Ardèche Les Vans 44.387222° 4.154444° Unknown On Quercus
pubescens

July 2012

Eupelmus tibicinis GDEL4148 10299 France Ardèche Chassagnes 44.403888° 4.178333° Unknown On Quercus
pubescens

July 2012

Eupelmus tibicinis GDEL4149 10300 France Ardèche Berrias-et-
Casteljau

44.39389° 4.194722° Unknown Unknown July 2012

Eupelmus tibicinis GDEL4175 10598 France Hérault Laroque 45.91722° 3.74361° Unknown On Quercus
pubescens

July 2013

Eupelmus urozonus NB677 10333 France Lot Aynac 44.78155° 1.85896° Dryocosmus kuriphilus Castanea sativa January
2012

Eupelmus urozonus FAL1518 10410 France Haute-Corse Lumio 42.55879° 8.81299° Bactrocera oleae Olea europaea September
2012

Eupelmus urozonus FAL1060 10148 Italy Liguria Bussana-Vecchia 43.84026° 7.82905° Myopites stylata Dittrichia viscosa January
2011

Eupelmus urozonus L.Loru235 10241 Italy Sardinia Desulo 39.99198° 9.23053° Dryocosmus kuriphilus Castanea sativa July 2011

Eupelmus urozonus FAL1106 10165 Spain Logroño La Rioja - - Myopites stylata Dittrichia viscosa March 2012

Eupelmus urozonus NB1117 10251 Greece Crete Gournes 35.32822° 25.28388° Myopites stylata Dittrichia viscosa March 2012

Eupelmus urozonus MC-C100 10488 Switzerland Riviera Monte Ceneri 46.136944° 8.902500° Dryocosmus kuriphilus Castanea sativa July 2012
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Table 1 Sample information for the specimens included in the phylogenetic analysis (Continued)

Eupelmus urozonus PJ10077-2-6 10573 Hungary Vezprém Várpalota 47.198091° 18.21204° Andricus lucidus Quercus pubescens/
Q. cerris

November
2010

Eupelmus urozonus LF.fu.RO 01 10464 Romania Neamţ Podoleni Unknown Unknown September
2012

Eupelmus urozonus LF.ur.IR 02 10457 Iran Kerman Bidkhan - - Unknown Ephedra sp. March 2010

Eupelmus vindex GDEL4054 10042 Hungary Veszprém Hegyesd - - Unknown Unknown June 2010

Eupelmus vindex LF.vi.RO 02 10468 Romania Iaşi Iaşi - - Unknown Unknown June 2007

Eupelmus vindex LF.vi.RO 01 10469 Romania Tulcea Letea - - Unknown Unknown May 2007

Eupelmus microzonus GDEL4116 10192 France Haute-Corse Aléria 42.128611° 9.465556° Bruchophagus sp. Asphodelus ramosus September
2011

Eupelmus
atropurpureus

PJ11159_23_1 10580 Spain Aragón Huesca Unknown Poaceae November
2011

Eupelmus pini GDEL4058 10048 France Alpes-Maritimes Guillaumes 44.070833° 6.853056° Unknown Dead trunk of Pinus
sylvestris

August
2009

Eupelmus matranus FAL1491 10318 France Alpes-Maritimes Sophia-Antipolis 43.61671° 7.07550° Unknown On Quercus ilex October
2012

Eupelmus falcatus GDEL4088 10090 Hungary Veszprém Nagavászony 47.021667° 17.724167° Unknown Unknown June 2010

Eupelmus seculatus GDEL4089 10091 France Gard Beauvoisin 43.712500° 4.307222° Unknown Unknown August
2011

Eupelmus linearis GDEL4069 10062 France Lozère Cocurès 45.30555° 4.59194° Unknown Unknown July 2011

Eupelmus linearis GDEL4073 10066 Hungary Veszprém Nagavászony 47.021667° 17.724167° Unknown Unknown June 2010

Eupelmus
testaceiventris

GDEL4078 10075 Cameroon Adamaoua Osséré Gadou 7.173056° 13.623056° Unknown Unknown November
2008

Eupelmus juniperinus
thuriferae

GDEL4064 10057 France Hautes-Alpes Saint-Crépin 44.710556° 6.606389° Unknown On Juniperus
thurifera

August
2008

Reikosiella aff. rostrata NB670 10336 France Drôme Génissieux 45.09059° 5.07161° Dryocosmus kuriphilus Castanea sativa February
2012

Reikosiella aff. rostrata NB810 10350 France Alpes-Maritimes Tende 44.056689° 7.579353° Dryocosmus kuriphilus Castanea sativa March 2012

Anastatus sidereus GDEL4098 10105 France Alpes-Maritimes Fontan 44.026389° 7.577778° Unknown Unknown July 2010

Anastatus aff.
temporalis

GDEL4100 10107 France Gard Générac 43.719444° 4.353611° Unknown Unknown August
2011
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directions. All sequences were deposited in GenBank
(Additional file 1: Table S2).

Sequence alignment and phylogenetic analysis
Alignment
Sequences were aligned using Muscle [57] with the de-
fault settings as implemented in SeaView v4.4.1 [58] and
subsequently visually checked. To assess the impact of
indels on the phylogenetic resolution, highly divergent
blocks present in Bub3, RpS4 and RpL27a alignments
were either included in or excluded from the analyses.
These blocks were removed using Gblocks [59] with the
default settings as implemented in SeaView. Alignments
of COI, Cytb, EF-1α and Wg were translated to amino
acids using Mega v5.1 [60] to detect potential frame-
shift mutations and premature stop codons, which may
indicate the presence of pseudogenes.

Gene by gene analysis
To detect (i) possible inconsistencies linked to contam-
ination during laboratory procedures, (ii) poor-quality
sequences, (iii) possible pseudogenes or other artefacts,
and (iv) to evaluate the impact of the Gblock procedure
on the individual phylogenetic resolution, genes were
first analysed separately using a maximum likelihood ap-
proach (ML).

Concatenated datasets analysis
Phylogenetic analyses were performed on concatenated
nucleotide sequences using both ML and Bayesian
methods. Four partitioning schemes were compared: (i)
two partitions: one for the two mitochondrial genes
(COI and Cytb) and another for all nuclear markers
(Wg, EF-1α, Bub3, RpS4 & RpL27a); (ii) six partitions:
one for the two mitochondrial markers (COI and Cytb)
and one for each nuclear marker (Wg, EF-1α, Bub3, RpS4
and RpL27a); (iii) seven partitions: one for the 1st and
2nd codon positions of the mtDNA, one for the 3rd
codon positions of mtDNA, and one for each nuclear gene
(Wg, EF-1α, Bub, RpS4 and RpL27a); (iv) nine partitions:
same as above with Wg and EF-1α further partitioned by
codon position (1st and 2nd codon positions versus 3rd
positions).
Bayes factors (BF) [61, 62] were used to compare the

four partitioning schemes. Harmonic means of the likeli-
hood scores were used as estimators of the marginal
likelihoods. Following [61] and [63], Bayes factors were
calculated using the following formula: BF = 2 × (lnM1-
lnM0) + (P1-P0) × ln (0.01) where lnMi and Pi are the
harmonic-mean of the ln likelihoods and the number of
free parameters of the model i, respectively. BF values
were interpreted following [61] and [62], with BF values
between 2 and 6, between 6 and 10 and higher than 10
indicating positive evidence, strong evidence, and very

strong evidence favouring one model over the others
respectively.

Evolution models and phylogenetic reconstruction
For the separated and concatenated datasets, the best-
fitting model was identified using the Akaike information
criterion (AIC) as implemented in jModelTest v0.1.1 [64].
For both gene-by-gene and concatenated analyses, maxi-

mum likelihood analyses and associated bootstrapping
were performed using RAxML v8.0.9 [65]. The GTRCAT
approximation of models was used for ML bootstrapping
(1000 replicates). Bootstrap percentages (BP) ≥85 % were
considered as strong support and BP < 65 % as weak.
Bayesian analyses were performed only on the

concatenated dataset using a parallel version of MrBayes
v3.2.2 [66]. Model parameters for each data partition were
independently estimated by unlinking parameters across
partitions. Parameter values for the model were initiated
with default uniform priors, and branch lengths were
approximated using default exponential priors. Bayesian
inferences were estimated using two simultaneous, in-
dependent runs of Markov Chain Monte Carlo (MCMC),
including three heated and one cold chains. The
Metropolis-coupled MCMC algorithm [67] was used to
improve the mixing of Markov chains. Analyses were run
for 20 × 106 generations with parameter values sampled
every 2000 generations. To ensure convergence, 40 × 106

generations were used for the most complex partitioning
scheme (9 partitions) with parameter values sampled
every 4000 generations. To increase and improve the swap
frequencies of states between cold and heated chains, the
heating temperature (T) was set to 0.01 for the most com-
plex partitioning scheme cleaned with Gblocks and to
0.02 for all other datasets. Convergence was assessed using
the standard deviation of split frequencies given by
MrBayes and the Effective Sample Size (ESS), as estimated
using Tracer v1.6.0 [68]. The first 25 % of the tree samples
from the cold chain were discarded and considered as
burn-in. Posterior probabilities (PP) ≥ 0.95 were consid-
ered as strong support and PP < 0.90 as weak.
Analyses were conducted using the CIPRES Science

Gateway (www.phylo.org) [69].

Evolutionary properties of marker sequences
For each partition of the concatenated datasets (without
Gblocks cleaning), base composition, substitution rates,
and among sites rate variation (α) were estimated and
compared. We also compared rate variation among par-
titions, considering the parameter m (rate multiplier).

Comparative analysis
Evolution of ovipositor length
The ovipositor of Hymenoptera is a complex organ that
exhibits great interspecific variation (see for instance
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[23]). In species of Eupelmus, part of the ovipositor is
easily visible at the extremity of the abdomen (the ovi-
positor sheaths), while the rest is concealed in the abdo-
men. The use of this visible part as a “proxy” of the total
ovipositor length is a priori tempting in order to avoid
damaging of specimens of newly described species
known from very few individuals [32, 33]. In order to
validate the use of this proxy, a total of 34 individuals of
comparatively common species (e.g. E. azureus, E. confu-
sus, E. gemellus, E. kiefferi, E. pistaciae, and E. urozonus)
were dissected and, for each individual, we measured the
length of the ovipositor stylet, the visible part of the ovi-
positor sheath and the metatibia (see dataset on Dryad:
doi:10.5061/dryad.115m1). Measurements of the length of
the ovipositor sheaths and hind tibia followed Al khatib et
al. [32] (Additional file 2: Figure S18 A and C). The length
of the ovipositor stylet (first and second valvulae) was
measured from the articulation of the second valvula with
the articulating bulb to the apex of the second valvula
(Additional file 2: Figure S18 B). Using this dataset, we
found evidence of linear relationships between the ovi-
positor sheath (response variable) and either the oviposi-
tor stylet or the metatibia as predictors (data not shown).
Moreover, no interaction was found between these two
predictors and the host species (respectively F5df,20df = 1.23
with p = 0.34 and F5df,22df = 1.20 with p = 0.34). This sug-
gests that the visible part of the ovipositor sheath can in-
deed be used as a reliable proxy of the entire ovipositor.
As a consequence, a first analysis was performed on

the 19 species of the “E. urozonus species group” for
which information about the ovipositor sheaths and the
metatibia were available. This analysis includes a total of
121 individuals, with at least 2 individuals/species except
for E. priotoni and E. simizonus (only one individual in
each case). In most of the cases, we tried to select indi-
viduals from at least two geographical locations and/or,
for generalist species, two host species (see dataset on
Dryad: doi:10.5061/dryad.115m1). Both the absolute
length of the ovipositor sheath (“AOS”) and the ratio
(“ROS”) between the ovipositor sheaths and the metatibia
were taken into account, the second one being poten-
tially less sensitive to environmental-induced pheno-
typic plasticity (host and/or abiotic conditions). AOS/
ROS medians were then calculated for each Eupelmus
species and these medians were used for the subse-
quent analysis (see below).
Two tests were then performed: (i) a Mantel test of

the correlation between pairwise genetic distances
(“phylogenetic matrix”) and pairwise differences in
AOS/ROS (“morphological matrix”). (Dis) similarities
were estimated as |di-dj|/[(di + dj)/2] (di and dj being
the AOS/ROS medians obtained for species i and j re-
spectively); (ii) the detection of a phylogenetic signal
based on categories of AOS/ROS. For this purpose,

“long ovipositors” (AOS/ROS exceeding the third quar-
tile) were distinguished from “short ovipositors” (AOS/
ROS below this threshold). Briefly, the sum of state
changes was calculated, leading to a D statistic that could
be tested against two theoretical distributions: a phylogen-
etic randomness and a Brownian distribution, this latter
being underlain by a continuous trait evolving along the
phylogeny at a constant rate [70].

Influence of phylogeny and ovipositor length on host range
A second analysis was restricted to a subset of 13 species
for which host range was also available. Most of the in-
formation about host range was obtained from Al khatib
et al. [32] and from Gibson and Fusu (in prep). Jean
Lecomte (comm. pers.) communicated the rearing of E.
confusus from curculionid larvae. Taken as a whole, our
host survey is probably not exhaustive but nevertheless
encompassed a total of several thousands of individuals
of the “E. urozonus species group” and, with regard to
the host’s diversity, 95 insect species representing 22
families and 6 orders (see dataset on Dryad: doi:10.5061/
dryad.115m1). Taken as a whole, these host insects were
distributed on 18 plant families. Dissimilarities in host
range were calculated—at three taxonomic levels (spe-
cies, family and order) for the host insect and at one
level (family) for the host plant—using the Bray-Curtis
distance, each host taxon being treated qualitatively (at
least one record versus none). This information was
summarized and presented as “ecological matrices”. Cor-
relations between “phylogenetic”, “morphological” and
“ecological” matrices were tested using simple (2 matri-
ces) or partial (3 matrices) Mantel tests, the relevance of
these last tests having been repeatedly discussed (see for
instance [71] and [72]).
Moreover, three kinds of traits were investigated using

D-statistics (see previous paragraph):

(a)Host specificity (“specialists” which were reared from
a single host species versus “generalists” that were
reared from more than one host species). This
specificity was evaluated at the order-family taxonomic
level and at the species level. Because one may argue
that our sampling underestimates specialists, we also
performed this analysis under the assumption that all
the rare species (E. janstai, E. longicalvus, E. minozonus,
E. priotoni, E. purpuricollis, E. vindex) could be
specialists.

(b)Ability (“Yes” or “No”) to successfully parasitize some
well-represented insect taxa at the ordinal level
(Coleoptera, Diptera, Hymenoptera and Lepidoptera)
or at the family level (Cynipidae within Hymenoptera
and Cecidomyiidae within Diptera).

(c)The ability (“Yes” or “No”) to exploit some main host
plants (whatever the host insect), host plant being
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treated at the family level (Asteraceae, Fagaceae,
Rosaceae, Salicaceae, etc.).

Software and packages
Manipulations of files and statistical tests were conducted
using the software R (http://www.R-project.org - version
3.0.3 – 2014-03-06) with the following packages “ade4”
(Euclidian transformation of matrices) [73], “ape” (phyl-
ogeny) [74], “caper” (comparative analysis), “ecodist”
(Mantel tests) [75] and “vegan” (similarities between host
ranges) [76].

Results
Alignments and single-marker analyses
Successful amplification and sequencing was completed
for all gene regions used in this study. However, sequen-
cing failures occurred for some markers for a few indi-
viduals. Genbank accessions of the sequences obtained
for all analysed genes are given in Additional file 1: Table
S2. The final matrix contained 91 specimens. No stop
codons, frame shifts, insertions or deletions were ob-
served in coding gene regions.
The numbers of aligned base pairs, variable sites and

parsimony-informative sites for each gene are summarized
in Table 2. As expected, mitochondrial genes showed
more parsimony-informative sites compared to nuclear
markers (472 out of 1085 bp). Among the nuclear
markers, EF-1α exhibited the lowest number of variable
and parsimony-informative sites (respectively 116 and
106 out of 517 bp). For RpL27a, removing the highly
divergent alignment blocks significantly reduced the
number of variable and parsimony-informative sites
(from 54 to 38 % for variable sites and from 34 to 30 %
for parsimony-informative sites). This loss conse-
quently affected the resolution of the corresponding
inferred topology (Additional file 2: Figure S16 and
Figure S17). In contrast, the Gblocks procedure did
not affect the number of variable and parsimony-
informative sites for Bub3 and RpS4 and the resolution
of the corresponding topologies (Additional file 2: Figures
S12 – S15).

Evolution models and partitions in the concatenated
dataset
Alignment lengths of the concatenated datasets with or
without the exclusion of highly divergent blocks were

3197 bp and 5000 bp respectively. For all partitions, the
best-fitting substitution model was the general time re-
versible model (GTR) with among-sites rate variation
(ASRV) modelled by a discrete gamma distribution (Γ)
[77] for which we used four categories. For all Bayesian
analyses, after discarding 25 % of the samples as burn-in,
the ESS value of each parameter largely exceeded 200,
which indicated that convergence of runs was reached.
Sixteen combined trees were obtained (Additional file 2:
Figures S1 – S8). For all combined datasets, Bayes fac-
tors showed that the most complex partitioning scenario
(9 partitions) was preferred over the three less complex
ones (Table 3).

Evolutionary properties of the markers
Model parameter estimates for each partition of the
Bayesian analysis of the “9 partitions without Gblocks
cleaning dataset” are depicted in Table 4.
As expected, the mitochondrial partitions showed high

base compositional bias (71.4 and 89.8 % of A/T for the
first two positions and the third codon position respect-
ively). Among the nuclear gene partitions, RpL27a, Bub3
and RpS4 were A/T-biased (77.9, 70 and 68.8 %) while

(See figure on previous page.)
Fig. 1 Phylogram of relationships among species of the “Eupelmus urozonus species group” obtained from the concatenated dataset alignment
(5000 bp and 9 partitions) without the Gblocks cleaning of divergent blocks. Uppercase letters refer to clades discussed in the text. Nodes with
likelihood bootstrap (BP) values <65 have been collapsed. BP (≥65) and Bayesian posterior probabilities (≥0.90) are indicated at nodes. Each line
represents a sequenced individual with information in the following order: molecular code, species and country

Table 2 Numbers and percentage of aligned base pairs,
variable sites and parsimony-informative sites for the genes
used in this study

Gene region Total
sites

Variable
sites

Parsimony-
informative sites

mtDNA 1085 530 (48.8 %) 472 (43.5 %)

Wg 433 157 (36.2 %) 147 (33.9 %)

EF-1α 517 116 (22.4 %) 106 (20.5 %)

Bub3 alignment without
Gblocks

481 161 (33.4 %) 140 (29.1 %)

Bub3 alignment with Gblocks
default

391 132 (33.7 %) 116 (29.7 %)

RpS4 alignment without
Gblocks

1259 451 (35.8 %) 323 (25.6 %)

RpS4 alignment with Gblocks
default

525 189 (36.0 %) 148 (28.1 %)

RpL27a alignment without
Gblocks

1225 661 (53.9 %) 417 (34.0 %)

RpL27a alignment with
Gblocks default

246 93 (37.8 %) 74 (30.0 %)
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the A/T percentage in the 3rd codon positions in Wg
and EF-1α was only 32 and 45 % respectively.
With the exception of EF-1α 1st and 2nd codon posi-

tions (18.9 %), there was an overall higher rate of A-G
and C-T transitions (from 60.8 % for RpL27a up to

91.6 % for mtDNA 3rd codon positions). More precisely,
mtDNA (all codon positions), Bub3 and Wg 1st & 2nd
codon positions were in excess of C-T transitions.
For protein-coding genes (mtDNA, EF-1α and Wg),

the rate multiplier parameter (m) was higher for the 3rd

Table 3 Partitioning strategy selecting using Bayes factors (Harmonic-Mean) in Bayesian analyses

Dataset partitioning models Harmonic-mean (LnL) Bayes factor

Alignments without Gblocks

M1: mtDNA, nucDNA (2 partitions, 19 free parameters) −38664.20 M2, M1 = 907.0

M2: mtDNA, Wg, EF-1α, Bub3, RpS4, RpL27a (6 partitions, 59 parameters) −38118.57 M3, M1 = 1909.5

M3: mtDNA 1&2, mtDNA 3, Wg, EF-1α, Bub3, RpS4, RpL27a (7 partitions,
69 parameters)

−37594.33 M3, M2 = 1002.4

M4: mtDNA 1&2, mtDNA 3, Wg 1&2, Wg 3, EF-1α 1&2, EF-1α 3, Bub3, RpS4,
RpL27a (9 partitions, 89 parameters)

−37261.28 M4, M1 = 2483.5

M4, M2 = 1576.43

M4, M3 = 574

Alignments with Gblocks default Harmonic Mean (LnL) Bayes factor

M1: mtDNA, nucDNA (2 partitions, 19 free parameters) −27676.75 M2, M1 = 150.1

M2: mtDNA, Wg, EF-1α, Bub3, RpS4, RpL27a (6 partitions, 59 parameters) −27509.59 M3, M1 = 1210.5

M3: mtDNA 1&2, mtDNA 3, Wg, EF-1α, Bub3, RpS4, RpL27a (7 partitions, 69 parameters) −26956.35 M3, M2 = 1060.4

M4: mtDNA 1&2, mtDNA 3, Wg 1&2, Wg 3, EF-1α 1&2, EF-1α 3, Bub3, RpS4, RpL27a
(9 partitions, 89 parameters)

−26691.65 M4, M1 = 1647.8

M4, M2 = 1497.73

M4, M3 = 437.3

Table 4 Evolutionary properties of the partitions used in the study

Partitions r (A↔C) r (A↔G) r (A↔T) r (C↔G) r (C↔T) r (G↔T)

mtDNA 1&2 0.036 (0.015–0.059) 0.186 (0.134–0.241) 0.115 (0.089–0.141) 0.065 (0.034–0.099) 0.574 (0.503–0.642) 0.021 (0.010–0.034)

mtDNA 3 0.018 (0.006–0.029) 0.378 (0.310–0.445) 0.011 (0.00–0.014) 0.020 (0.00–0.048) 0.537 (0.464–0.608) 0.032 (0.021–0.046)

Wg 1&2 0.083 (0.021–0.149) 0.142 (0.057–0.240) 0.031 (0.000–0.079) 0.026 (0.000–0.064) 0.698 (0.565–0.827) 0.018 (0.000–0.056)

Wg 3 0.070 (0.042–0.100) 0.364 (0.274–0.459) 0.119 (0.072–0.171) 0.041 (0.024–0.058) 0.392 (0.300–0.484) 0.012 (0.000–0.029)

EF-1α 1&2 0.075 (0.–0.177) 0.070 (0.000–0.167) 0.040 (0–0.118) 0.182 (0.037–0.351) 0.197 (0.041–0.374) 0.432 (0.216–0.646)

EF-1α 3 0.052 (0.025–0.082) 0.481 (0.373–0.588) 0.072 (0.031–0.120) 0.018 (0.004–0.035) 0.342 (0.243–0.438) 0.031 (0.008–0.059)

Bub 0.084 (0.051–0.121) 0.289 (0.220–0.363) 0.069 (0.048–0.091) 0.036 (0.004–0.072) 0.456 (0.377–0.538) 0.062 (0.036–0.090)

RpS4 0.068 (0.047–0.090) 0.341 (0.296–0.388) 0.104 (0.085–0.123) 0.070 (0.042–0.099) 0.332 (0.288–0.378) 0.082 (0.062–0.104)

RpL27a 0.094 (0.070–0.119) 0.302 (0.257–0.348) 0.085 (0.070–0.101) 0.094 (0.054–0.138) 0.307 (0.260–0.353) 0.115 (0.089–0.141)

Partitions pi A pi C pi G pi T α (Shape parameter) m (Rtae multiplier)

mtDNA 1&2 0.271 (0.242–0.299) 0.137 (0.120–0.155) 0.147 (0.124–0.171) 0.443 (0.414–0.472) 0.133 (0.118–0.148) 0.580 (0.483–0.681)

mtDNA 3 0.418 (0.392–0.444) 0.049 (0.044–0.055) 0.051 (0.045–0.057) 0.480 (0.453–0.506) 0.635 (0.549–0.729) 8.929 (8.34–9.524)

Wg 1&2 0.284 (0.234–0.333) 0.215 (0.171–0.260) 0.288 (0.237–0.339) 0.211 (0.169–0.258) 0.076 (0–0.181) 0.034 (0.021–0.048)

Wg 3 0.151 (0.119–0.182) 0.402 (0.349–0.452) 0.278 (0.231–0.327) 0.168 (0.137–0.201) 1.086 (0.776–1.415) 1.254 (0.984–1.535)

EF-1α 1&2 0.307 (0.260–0.354) 0.212 (0.170–0.254) 0.258 (0.213–0.305) 0.222 (0.180–0.264) 0.093 (0–0.258) 0.029 (0.004–0.014)

EF-1α 3 0.178 (0.135–0.223) 0.373 (0.315–0.427) 0.176 (0.132–0.222) 0.270 (0.223–0.320) 0.769 (0.508–1.038) 0.336 (0.257–0.415)

Bub 0.351 (0.314–0.387) 0.129 (0.105–0.153) 0.169 (0.141–0.197) 0.349 (0.313–0.385) 0.222 (0.166–0.279) 0.190 (0.152–0.229)

RpS4 0.332 (0.308–0.354) 0.162 (0.146–0.180) 0.147 (0.131–0.163) 0.357 (0.334–0.380) 0.427 (0.364–0.496) 0.262 (0.224–0.303)

RpL27a 0.390 (0.367–0.412) 0.109 (0.096–0.123) 0.111 (0.097–0.124) 0.389 (0.366–0.410) 0.820 (0.693–0.946) 0.536 (0.455–0.619)

Mean and 95 % credibility intervals of the model parameters for each partition included in the Bayesian analyses of concatenated datasets without Gblocks
cleaning (9 partitions) are reported
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codon positions. Thus, mtDNA 3rd codon positions
evolved more than sixteen times faster than the fastest
nuclear gene (RpL27a).
The shape parameter of the gamma distribution (α)

was also higher for the 3rd codon position of the protein
coding genes, indicating that these positions show lower
rate heterogeneity among sites. Additionally, α was lower
for Bub3 than for RpS4 and RpL27a, indicating that
Bub3 had a greater rate of heterogeneity among sites.

Phylogenetic trees inferred from concatenated datasets
Impacts of alignment strategy and reconstruction methods
ML and Bayesian topologies obtained from the
concatenated alignments without Gblocks cleaning were
more resolved than those obtained with removal of poorly
aligned blocks. Whatever the partitioning scheme and re-
gardless of whether or not divergent blocks were included
in the analyses, most internal nodes were nevertheless
statistically supported (BP value ≥ 65, PP value ≥ 90).
Moreover, the 18 species recently defined by Al khatib
et al. [32] and E. vindex were recovered as a monophy-
letic group.
Overall, topologies showed three major clades (A, B,

C) that emerge on highly supported basal nodes (Figs. 1
and 2 and Additional file 2: Figures S1–S8). Three topo-
logical conflicts were observed depending on whether or
not the Gblocks cleaning step was performed: (i) Clade
A was not supported in topologies inferred from the
datasets cleaned using Gblocks (Fig. 2 and Additional
file 2: Figures S5–S8); (ii) E. vindex was sister to the rest
of clade C in the topologies inferred from data sets
cleaned using Gblocks (Fig. 2 and Additional file 2:
Figures S5–S8), while it was sister to E. confusus and E. pis-
taciae (clade B) without Gblocks cleaning (Fig. 1 and
Additional file 2: Figures S1–S4); (iii) the relationships of E.
matranus and E. pini were resolved when Gblocks was
used (PP = 1 and 0.98 respectively) (Fig. 2 and Additional
file 2: Figures S5–S8), but not resolved without Gblocks
cleaning of data sets (Fig. 1 and Additional file 2: Figures
S1–S4). Taken as a whole, we decided to favour the
alignment without the Gblocks procedure for the com-
parative analysis in order to favour the resolution for
the terminal nodes.

Molecular relationships within the “Eupelmus urozonus
species group”
ML and Bayesian analyses performed on the most complex
partitioning scheme without Gblocks cleaning produced

similar topologies with only a few differences for poorly
supported nodes (Additional file 2: Figure S1). We there-
fore mapped all node support values (BP & PP) on the ML
topology (Fig. 1).
In all analyses, the “E. urozonus species group” was re-

covered as monophyletic (Fig. 1) with a strong support.
The group was subdivided into three clades, “clades” be-
ing defined here as a statistically-supported basal diver-
gence including several species:

– Clade A included E. acinellus, E. annulatus, E. azureus,
E. cerris, E. gemellus, E. longicalvus and E. simizonus,
whose relative positions were not resolved to the
exception of the sister species relationship between
E. acinellus and E. gemellus (BP = 100, PP = 1).

– Clade B included three species with E. vindex being
sister to E. confusus plus E. pistaciae with strong
support (BP = 92, PP = 1).

– Clade C included the remaining species and namely
E. fulvipes, E. janstai, E. kiefferi, E. minozonus, E.
opacus, E. priotoni, E. purpuricollis, E. tibicinis and
E. urozonus. Within clade C, two well-supported (in
each case, BP = 100, PP = 1) subclades—“sub-clade”
being defined as a more terminal divergence including
at least 2 species—can be distinguished (i) E.
opacus, E. priotoni, E. purpuricollis and E. janstai;
(ii) E. minozonus and E. urozonus. These two subclades
together with E. tibicinis, whose exact phylogenetic
position remains unclear, form a well-supported
monophyletic group (BP = 98, PP = 1).

Comparative analysis and host uses
There were significant interspecific differences for
both the absolute (AOS—Kruskal-Wallis test: χ216df = 93.7;
p < 10−3; E. priotoni and E. simizonus discarded because of
lack of replicates) and relative (ROS—Kruskal-Wallis test:
χ216df = 109.2; p < 10−3; E. priotoni and E. simizonus also
discarded) ovipositor lengths (Fig. 3a). AOS ranged from
398 μm in E. minozonus to a maximum of 1179 μm in E.
cerris while ROS ranged from a minimum of 0.58 in E. ful-
vipes to a maximum of 1.16 in E. janstai. Even if AOS and
ROS medians were significantly correlated one with an-
other (Kendall’s rank correlation: z = 2.73; p = 0.006), some
discrepancies were observed as for E cerris which exhibits
the highest AOS but an intermediate ROS (Fig. 3a).
Within the “Eupelmus urozonus species group”, there

was no significant correlation between similarity in ovi-
positor length and phylogenetic distance (Mantel test for

(See figure on previous page.)
Fig. 2 Phylogram of relationships among species of the “Eupelmus urozonus species group” obtained from the concatenated dataset alignment
(3197 bp and 9 partitions) with Gblocks-default parameters. Uppercase letters refer to clades discussed in the text. Nodes with likelihood
bootstrap (BP) values <65 have been collapsed. BP (≥65) and Bayesian posterior probabilities (≥0.90) are indicated at nodes. Each line represents
a sequenced individual with information in the following order: molecular code, species, and country
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AOS: r = 0.09, p = 0.39 – Mantel test for ROS: r = 0.08,
p = 0.44). When ovipositor length was treated as a binary
variable with “long” ovipositors being those above the
third quartile (4 or 5 cases among the 19 species), the ob-
served D-statistics for AOS (0.13) and ROS (1.33) never
departed from a random distribution (respectively p =0.13
and p =0.61) or a Brownian one (respectively p =0.48 and
p =0.14). Consequently, it seems that no strong clustering
existed on the length of the ovipositor sheaths. Remark-
able differences in the length of the ovipositor sheaths
were even observed between some sister species: E.
acinellus—E. gemellus in clade A and E. janstai—E.
purpuricollis in clade B (Fig. 3a).
Taken as a whole, our results indicated that both

Cynipidae and Cecidomyiidae constitute the main host
species for West Palearctic "E. urozonus species group"
(Fig. 3b). Yet, contrasted feeding regimes (specialists
versus generalists) were observed (Fig. 3b). Only three
(E. acinellus, E. pistaciae and E. tibicinis) of the 13 species
are strict specialists, with a distribution (D = 2.38) not sig-
nificantly departing from both a random (p = 0.79) or a
Brownian distribution (p =0.11). At the family and order
level (same distributions), three other species were special-
ists of Cynipidae—E. azureus (reported on 21 host spe-
cies), E. cerris (2 hosts) and E. fulvipes (4 hosts)—and one
(E. opacus) on Cecidomyiidae. At these levels, the relative
distribution of specialists and generalists (D = 1.65) does
not differs from a random (p =0.72) or Brownian distribu-
tion (p =0.10) and, as shown in Fig. 33b, about 50–60 % of
the described species in each of the three clades were spe-
cialists. The absence of a phylogenetic signal still holds
under the assumption that all rare species (E. janstai,
E. longicalvus, E. minozonus, E. priotoni, E. purpuricollis,
E. vindex) are specialists. Departures from a random dis-
tribution is never significant (host species’ level: D =1.04
with p =0.51 – host order’s level: D =1.52 with p =0.76)
while a significant departure is observed from a Brownian
distribution at the host order’s level (host species’ level:
p =0.12 – host order’s level: p =0.031). Interestingly, con-
trasted host ranges were observed between sister species:
E. gemellus (six host species distributed in 3 orders)—E.
acinellus (one host species) within clade A and E. confusus
(thirteen species distributed in four orders)—E. pistaciae
(one host species) within clade B (Fig. 3b).
We investigated the ability of the “E. urozonus species

group” to parasitize host species belonging to Coleoptera,

Diptera, Hymenoptera and Lepidoptera (ordinal level) or
Cecidomyiidae within Diptera and Cynipidae within
Hymenoptera (familial level) (see Fig. 3b). However, in all
these cases, we were not able to observe significant
departures from a random or a Brownian distribution
(See Additional file 3: Table S4).
Correlations between phylogenetic, morphometric (ab-

solute or relative lengths of the ovipositor sheaths, AOS
and ROS) and ecological (host ranges) matrices were
also tested using simple or partial Mantel tests, at each
of the three levels (species, family and order). Overall,
the Mantel coefficients ranged between −0.07 and +0.14
and were never significantly different from zero (see
Additional file 4: Table S3). At the host species level,
such a result could be explained by the fact that only
24 % of the hosts (mostly Cynipidae) are shared by at
least two species of the “E. urozonus species group”. As
a consequence, this level of investigation may be too
precise to detect any signal. However, such a limit can-
not be taken into account at the two other taxonomic
levels since about half of the host families and all host
orders except Neuroptera are shared by at least two spe-
cies of Eupelmus. Taken as a whole, these results con-
firm those obtained using D-statistics about the absence
of significant phylogenetic constraints on the host range
evolution. The relative ovipositor length also does not
appear to be a significant driver of the host use.
When host plants rather than host insects are taken

into account, 18 plant families were identified (see
Fig. 3c), eight of which being used by only one Eupelmus
species. However, four main families were used by at
least four Eupelmus species: Asteraceae (4 species),
Fagaceae (9 species), Rosaceae (5 species) and Salicaceae
(4 species). For each of these families, no phylogenetic
signal was detected using the D-statistics (See Additional
file 3: Table S4). Additionally, no correlation was found
between the related ecological matrix and the phyloge-
netic, and/or morphometric (AOS/ROS) matrices (see
Additional file 5: Table S5).

Discussion
Phylogenetic relationships within the “E. urozonus species
group”
Phylogenetic inter-specific relationships within the “E.
urozonus species group” occurring in the Palaearctic re-
gion were recently investigated by Al khatib et al. [32]

(See figure on previous page.)
Fig. 3 Mapping of ovipositor size and host ranges (host insect and related plants) along the multi-locus phylogeny of the “Eupelmus urozonus
species group”. The phylogenetic tree used is derived from the Fig. 1. For convenience, sizes of branches were modified but the topology remains
unchanged. In Fig. 3a, boxplots are shown for the absolute (AOS in μm) and relative (ROS – no unit) lengths of the ovipositor for each Eupelmus
species. In each case, the vertical dotted line separates “short” versus “long” ovipositors. In Fig. 3b, the host specificity is indicated at three levels
(from up to down): order, family, and species. Each rectangle indicates a possible host and the black ones indicate that at least one Eupelmus
specimen was obtained from this host. In Fig. 3c, the plant host is indicated at the family level
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based on morphological characters and two genetic
markers (mitochondrial COI and nuclear Wg). This study
showed an unsuspected diversity but it (i) failed to resolve
phylogenetic relationships at both deep and intermediate
levels, (ii) highlighted some discrepancies among tree
topologies at the shallowest nodes resulting from COI
and Wg sequences, (iii) did not include morphologically
divergent but potentially phylogenetically closely re-
lated species. By considering new species and adding
more informative markers, the present study improved
the knowledge on the evolutionary history of the “E.
urozonus species group”.
Although the phylogenetic resolution was proven to

be sensitive to inclusion or exclusion of divergent blocks
by using Gblocks procedure from the sequence align-
ments, we obtained a reliable phylogeny which strongly
supported the monophyly of our focus group of Eupel-
mus, including the 18 species treated in Al khatib et al.
[32] and E. vindex, which is morphologically distinct
from other members of the group in the shape of the
syntergum and the anterior displacement of the oviposi-
tor sheaths (Gibson & Fusu, in prep). Additionally, the
included species of the “E. urozonus species group” were
distributed in three strongly supported clades, referred
here as A, B and C (Fig. 1).
The molecular monophyly of the Palaearctic “E. urozo-

nus species group” reflected in our concatenated data-
sets can be also supported through morphology. Al
khatib et al. (in prep.) recently compared and combined
the results of phylogenetic inferences using the molecu-
lar data presented here with morphological data. The
main conclusion of this complementary work seems to
be the structuration of Eupelmus as a set of independent
species groups (including our focus group). Their deli-
neation and their morphological supports are therefore
not detailed here.
Despite using several loci from both the nuclear and

mitochondrial genomes, some of the focal taxa remain
poorly resolved. We expect that newer methods that
dramatically increase the number of loci will help to bet-
ter resolve these relationships (see for instance [78]).

Ecological differentiation within the “E. urozonus species
group”
The diversification of parasitic organisms has been
explained by various processes linking ecological
specialization and speciation. For parasitoids, phylo-
genetic information and reliable host ranges are necessary
to describe the patterns (distribution of generalist and spe-
cialist species) and to understand the underlying processes
(e.g. “musical chairs” versus “oscillation”). This motivated
the present work. Although members of the genus Eupel-
mus are usually described as generalist ectoparasitoids
[27, 28], our study nevertheless leads to a more complex

pattern. Our results indeed showed the coexistence of
“strict” specialists restricted to one specific host (i.e. E aci-
nellus, E. pistaciae, E. tibicinis), intermediate specialists
that can parasitize various species of Cynipidae (i.e. E.
azureus, E. cerris and E. fulvipes) and generalists that are
able to successfully develop on different insect orders (i.e.
E. annulatus, E. confusus, E. gemellus and E. kiefferi).
This diversity in host use observed in the “E. urozonus

species group” does not seem to be driven by phyloge-
netic history as generalists and specialists were recovered
in each of the three clades. Moreover, some sister species
exhibited fully contrasted ecologies (generalist species
cited first): E. confusus—E. pistaciae and E. gemellus—E.
acinellus. In this last case, because the facultative hyper-
parasitism lifestyle is recorded for some species of Eupel-
mus, we strongly suspect that E. gemellus develops as a
hyperparasitoid of E. acinellus on Mesophleps oxycedrella
(Lepidoptera). If this is true, it would mean that none of
these generalists (E. confusus and E. gemellus) share any
hosts with its sister species. Even if it is not the case, such
contrasting patterns of host use remain, to our knowledge,
rare in parasitoid species.
Quite similar conclusions arose when host plants

instead hosts insects were taken into account. There was
indeed no correlation between host plant ranges, phylo-
genetic and/or morphometric constraints. Moreover, the
use of the four main plant families (Asteraceae, Fagaceae,
Rosaceae and Salicaceae) did not seem to be constrained
by the phylogenetic history. The underlying rationale of
this complementary analysis was that host plants could at
least partly determine ecological specialization of Eupel-
mus species insofar as the parasitoid species could use,
innately or through learning, plant-linked cues in order to
locate favourable environments, be the cues emitted pas-
sively (olfactory or visual information) or actively (syno-
mones) (see for instance [79–81]). One criticism to this
approach would, of course, be the level (plant family) at
which our analysis was performed since it implies that
only well-conserved cues could be detected.
A final facet of our investigation was the potential role

of the ovipositor sheaths (as a proxy of the ovipositor
length) as a driver of host use. The rationale was that (i)
ovipositor structure could be constrained by the phylo-
genetic history of the species and, (ii) ovipositor length
could determine accessibility to different hosts [82, 83].
None of these hypotheses was however verified, oviposi-
tor length appearing to be a very labile trait within our
focus group.
Another driver of host range evolution could be the

complexity of gall communities exploited by the Eupelmus
species. Indeed, in numerous cases, Eupelmus species are
occurring with numerous parasitoid species belonging to
different chalcid families (e.g. Torymidae, Eurytomidae
or Pteromalidae) which seem to be more functionally
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adapted to their hosts (see for instance [34, 84] and [85]).
Such recurrent interspecific competitions may represent a
potential limit for the abundance of Eupelmus but may
also, ultimately, offer evolutionary opportunities. In par-
ticular, such an ecological intimacy could promote some
switches towards unusual but ecologically related host in-
sects and/or transitions towards other developmental
modes (hyperparasitism or even predation). Such kind of
adaptations may be illustrated by E. tibicinis, a specialist
predator of the eggs of the red cicada, Tibicina haema-
todes (Scopoli, 1763) (Hemiptera: Tibicinidae).

Conclusions
This paper provides comprehensive information about the
ecological differentiation within the Palaearctic species of
the “E. urozonus species group” and contributes to our un-
derstanding of ecological specialization in parasitoids. Al-
though further investigations are required, the intimate
mixing of generalist and specialist species along the phyl-
ogeny leans toward the “oscillation hypothesis” (sensu
Hardy and Otto [21]). It also raises new questions at both
the inter- and intra-specific levels. At the intra-specific
level, more detailed population genetics studies would be
useful to test the existence of “host races” within generalist
species, which could be a way to, (i) explain the capacity
of a single species to develop in different hosts and (ii)
offer opportunities for the recurrent apparition of special-
ized lineages and ultimately species. At the interspecific
level, the partitioning of the available resources within
sympatric Eupelmus species and with other chalcid wasps
remains unclear. This would probably require a better
knowledge of potential and realised host ranges, interspe-
cific interactions (e.g., competition and hyperparasitism)
and investigations on the influence of host plants on the
associated parasitoids (e.g., attraction/repellence; pheno-
logy and structure of galls). Finally, an agronomic output
of such investigations would be a better knowledge of the
actual potential of some Eupelmus species to regulate cer-
tain insect pests such as the olive fruit fly, Bactrocera oleae
(Gmelin, 1790) [86–89] or the chestnut gall wasp Dryocos-
mus kuriphilus Yasumatsu, 1951 [90–92].

Availability of supporting data
The data sets supporting the results are available in
Dryad (doi: 10.5061/dryad.115m1).
All sequences are available in Genbank (http://

www.ncbi.nlm.nih.gov/genbank). Genbank accession
numbers are given in Additional file 2: Table S2.
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