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Abstract

Background: The detection and avoidance of “long-branch effects” in phylogenetic inference represents a
longstanding challenge for molecular phylogenetic investigations. A consequence of parallelism and convergence,
long-branch effects arise in phylogenetic inference when there is unequal molecular divergence among lineages, and
they can positively mislead inference based on parsimony especially, but also inference based on maximum likelihood
and Bayesian approaches. Long-branch effects have been exhaustively examined by simulation studies that have
compared the performance of different inference methods in specific model trees and branch length spaces.

Results: In this paper, by generalizing the phylogenetic signal and noise analysis to quartets with uneven subtending
branches, we quantify the utility of molecular characters for resolution of quartet phylogenies via parsimony. Our
quantification incorporates contributions toward the correct tree from either signal or homoplasy (i.e. “the right result
for either the right reason or the wrong reason”). We also characterize a highly conservative lower bound of utility that
incorporates contributions to the correct tree only when they correspond to true, unobscured parsimony-informative
sites (i.e. “the right result for the right reason”). We apply the generalized signal and noise analysis to classic
quartet phylogenies in which long-branch effects can arise due to unequal rates of evolution or an asymmetrical
topology. Application of the analysis leads to identification of branch length conditions in which inference will be
inconsistent and reveals insights regarding how to improve sampling of molecular loci and taxa in order to
correctly resolve phylogenies in which long-branch effects are hypothesized to exist.

Conclusions: The generalized signal and noise analysis provides analytical prediction of utility of characters evolving at
diverse rates of evolution to resolve quartet phylogenies with unequal branch lengths. The analysis can be applied to identifying
characters evolving at appropriate rates to resolve phylogenies in which long-branch effects are hypothesized to occur.
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Background

The detection and avoidance of long-branch effects in
phylogenetic inference has been a longstanding chal-
lenge. Arising when there is unequal divergence
among taxa, long-branch effects are caused by conver-
gent and parallel changes that give rise to a systematic
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bias in the phylogenetic estimation procedure, produ-
cing one or more artefactual phylogenetic groupings of
taxa [1-15]. While early investigations discussed long-
branch effects as a significant problem for inference
with parsimony, it has since been demonstrated that
inference by maximum likelihood (ML) and Bayesian
approaches can also be subject to long-branch effects
[7-9,14-20], even when the correct model is specified
exactly [11,21].

An extensive literature exists composed of simulation
studies that have evaluated the performance of different
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inference methods on model trees, investigating the
branch length conditions wherein long-branch effects
lead to misleading results. For example, in what is classic-
ally termed the Felsenstein zone, two long-branched taxa
are non-sisters in a four-taxon tree. Simulation studies
have demonstrated that parsimony is more likely to group
the long-branched non-sister taxa together (“long-branch
attraction” [22-25]) than likelihood methods. Siddall [26]
referred to the converse zone, where two long-branched
taxa are true sisters in a four-taxon tree, as the “Farris
zone”. Simulations performed by Swofford et al. [27]
demonstrated that along a tree-axis that includes both
the Felsenstein zone and the Farris zone, ML outper-
forms parsimony overall in recovering the correct quar-
tet topology. Many subsequent simulation studies
compared the performance of parsimony and ML in
other model trees (e.g. [5,28-30]). As Bergsten [6]
pointed out, the conclusions of these comparative
simulation studies have been highly dependent on the
specific model tree and branch length conditions sub-
jectively chosen for individual investigations. Analysis
of these comparative simulation studies shows clearly
that parsimony has a strong bias towards grouping
long-branched taxa together, but also that ML and
other probabilistic methods that in principal account
for unequal branch lengths and correct for unobserved
changes [27,28] can minimize but not eliminate the
risks of long-branch effects [6,31].

In contrast to the extensive simulation studies com-
paring the performance of different inference methods,
few analytical frameworks are available to quantify the
phylogenetic utility of molecular loci for resolving spe-
cific phylogenies with unequal branch lengths. Theory
provided by Felsenstein [1], Hendy and Penny [2], and
Kim [3] has revealed general branch length conditions in
which inference becomes inconsistent. But because these
works assume a character with binary states with equal
substitution rates, the inconsistency conditions identified
by assuming such a simplistic model cannot be directly
applied to real-life molecular loci, which typically follow
much more complex molecular evolutionary models and
vary in rates of evolution.

Post-hoc analytical methods have been developed that
detect the presence of long-branch effects in molecular
data. For example, split decomposition [32] with spectral
analysis [33] has been utilized to plot split graphs to show
where conflicting signal exists in a molecular data set
[10,34-38], and Relative Apparent Synapomorphy Analysis
(RASA [39,40]) has been developed to detect problematic
long branches by examining the taxon-variance plot of a
molecular data set [41-49]. The taxon-variance plot has
attracted some zealous criticism in several studies that re-
port false outcomes for identifying problematic long
branches [50-54]. No such method is perfect for all
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examples. Even so, one issue with these post-hoc analytical
methods is that the graphic outputs produced evaluate re-
alized sequence data to convey a qualitative sense rather
than quantification of phylogenetic utility.

Recently, progress has been made towards analytical
prediction of the utility of sequence data for resolving
phylogenies in which long-branch attraction bias may
arise. Extending the work of Fischer and Steel [55],
which evaluated the sequence length needed for accur-
ately resolving a binary four-taxon phylogenetic tree
with four long subtending branches and a short inter-
node, Martyn and Steel [12] investigated the required se-
quence length to resolve a quartet in which just one
subtending branch is long, rather than all four, in the
presence and absence of a molecular clock. However,
they also demonstrated that those results were critically
dependent on the assumption that all sites are evolving
at a single rate. Susko [15] advanced an analytical
method based on Laplace approximations to provide
simple corrections for long-branch attraction biases in
Bayesian-based inference towards particular topologies;
the effectiveness of the corrections was further demon-
strated in simulations of four-taxon and five-taxon trees.

In this paper, we quantify an accurate prediction of
utility of molecular characters for resolving a quartet
phylogeny with uneven subtending branches as assessed
by parsimony, by incorporating contributions toward the
correct tree from any parsimony-informative sites that
are consistent with the actual quartet topology (i.e. sup-
port for the correct quartet topology due to true, unob-
scured signal or homoplasy). We also characterize a
highly conservative lower bound of utility by incorporat-
ing contributions toward the correct tree only from
those true, unobscured parsimony-informative sites (i.e.
support for the correct topology due to true, unobscured
signal only). We build on the signal and noise frame-
work of Townsend et al. [56], which uses the estimated
substitution rates of individual molecular characters to
estimate the power of a set of molecular sequences for
resolving a four-taxon tree with equal subtending branch
lengths. This result, applied to the Poisson model of
molecular evolution, was subsequently generalized by
Su et al. [57] to apply to all standard symmetric molecular
evolutionary models of nucleotide substitution up to and
including the General Time Reversible model (GTR
[58,59]). Herein we further generalize the signal and noise
analysis by relaxing the assumption of equal subtending
branch lengths for the four-taxon tree. Further, we use the
generalized signal and noise analysis to explore how vary-
ing branch length conditions and alternative model as-
sumptions affect the predicted phylogenetic utility. We
apply the generalized signal and noise analysis to four-
taxon trees in which long-branch attraction bias arises
as a consequence of unequal evolution rates or an
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asymmetrical topology. We demonstrate that the general-
ized signal and noise analysis can help identify for these
example phylogenies branch length conditions in which
inference is inconsistent.

Theory

Phylogenetic signal and noise

The Markov chain of a nucleotide character under the
GTR model is commonly mathematically modeled by a
four-by-four substitution rate matrix Q(A), whose elem-
ent g;; gives the instantaneous rate at which the nucleo-
tide character changes from nucleotide i to nucleotide j,
where j2i, and 4, j=T, C, A, or G (¢.f Equation 1 in
[57]). The average substitution rate of the character, 1,
can be calculated as

A= ZZ”Z‘%‘- (1)

i ji

where 7; (i=T, C, A, or G) represents the equilibrium
frequency of each of the four nucleotides. The probabil-
ity of the nucleotide character changing from one nu-
cleotide to another over a finite time period can then be
described by a substitution probability matrix, P(A,£),
whose element p;(A,t) provides the probability that the
character with average substitution rate A will change
from nucleotide i to nucleotide j (j # i) after time ¢. The
substitution probability matrix can be derived from the
substitution rate matrix via the equation

P(1,t) = QW (2)

Equation 2 can be solved via eigendecomposition (c.f.
[57]). Using P(A, £), we track the Markov chain of a nu-
cleotide character in an ultrametric four-taxon tree with
four uneven subtending branches. Let M and N denote
the ancestral states of the nucleotide character at the
two ends of the internode, whose length in time is repre-
sented by £y; let C;, C,, C3, and C, represent the nucleo-
tide character’s states at the terminal tips of the four
subtending branches, whose lengths in time are denoted
as Ty, T,, T3, and T4, respectively (Figure 1). To allow
unequal substitution rates of the character across the
branches, we denote the average substitution rate of the
character in the internode and the four subtending
branches as 1¢, A1, 1, A3, and Ay, respectively (Figure 1).

The four-taxon tree has three possible tip-labeled sub-
trees, which we denote as 73, 7,, and 73, respectively; only
one of the three subtrees (73) matches the actual quartet
topology (c.f Figure 1 in Townsend et al. [56]). Each of
the three subtrees can be supported by an “AABB” pattern
of character states (i.e. 73 by C; =Cy 2 C3=Cy, 1, by C; =
C3#Cy=Cy, and 15 by C; = Cy 2 Cy = C5 in Figure 1). A
character exhibiting an AABB pattern that is consistent
with the actual quartet topology (“synapomorphic
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pattern”, i.e. C; = C, = C3=C, in Figure 1) contributes to
correct resolution of the four-taxon tree, while a character
showing an AABB pattern that is consistent with either of
the two incorrect subtrees (“homoplasious pattern”, ie.
C1=C32Cy=Cy or C;=C42Cy=Cj in Figure 1) con-
tributes to incorrect resolution of the tree. Summing the
probabilities of all possible scenarios of character state
changes across the internode and subtending branches
that result in a desired pattern of character states at the
four terminal tips as in Su et al. [57], the probability of a
nucleotide character showing the synapomorphic pattern
is provided by

Y(Aos Ay A2, A3, 44380, T, T, T, Ta)

=330 D mupan s to)pie, A T1)pae, (ha, Ta)
M N

C1=C)y C4=CaeCy
X Pncs (A3, T3)pnc, (s Ta)-

(3)

Similarly, the probability of a character exhibiting ei-
ther of the homoplasious patterns is provided by

x1(Ao, A1, A2, A3, 445 0, T1, T, T3, Ta)

= Z Z Z Z mapyn (o, t0)Puc, A, T)Puc, Az, T2)

M N C=C3 C=C4zC;
X Pnc, (A3> T3)pNC4 (A‘h T4)7

(4)
and

%2(Ao, A1, A2, A3, Aas o, Tr, Ty T3, Ta)

= Z Z Z Z upan (Ao, £0)Parc, (4, T1)

M N C1=Cy C=C32C,
X Puc, V2, T2)Pyc, (A3, T3)pnc, (Aas Ta)-

(5)

While the homoplasious patterns arise due to homoplasy
(ie. convergent state changes in non-sister subtending
branches), the synapomorphic pattern can result from ei-
ther true synapomorphy, or apparent synapomorphy due to
homoplasy (i.e. parallel state changes in sister subtending
branches [26,27,56]). The probability of true synapomorphy
is characterized as the probability of a signal occurring in
the internode (i.e. an informative difference in ancestral
states at the two ends of the internode; corresponding to
M =N in Figure 1) multiplied by the probability of no
subsequent state change in the four subtending
branches. The probability of a signal occurring in the
internode can be calculated by following a derivation
similar to that presented in Equations 3-5, yielding

Pr{a difference of states at the two ends of the internode}

=3 mupun (o, to)- (6)

M N=M
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Figure 1 An unrooted four-taxon tree in an ultrametric form, with an internode of length (in time) t, and four subtending branches of lengths
(in time) T;, T, T5, and T,. The ancestral states of a molecular character at the two ends of the internode are denoted as M and N. The character
states at the terminal tips of the four subtending branches are denoted as C;, C,, G5, and Cy. The average substitution rate of the character over
the internode and the four subtending branches is denoted as A, Ay, A, A3, and A,. The expected number of character state changes in the
internode and the four subtending branches are thus given by Aoto, A T1, 2T, AsTs, and A4T, respectively.

The probability of the signal remaining unobscured by
subsequent state changes in the subtending branches
can be evaluated by

Pr{zero state changes in the four subtending branches}

— e~ MT1+AaTa+AsTs+AaTs)

(7)

(c.f [27,60]). Thus, the probability of true synapomorphy
is the product of Equations 6 and 7,

H()LO;A'17/127A'3>A'4-; t0> Tla T27 T3a T4)

M NzM
(8)

The probability of apparent synapomorphy is thus pro-
vided by subtracting Equation 8 from Equation 3.

Note although the derivation of Equations 3-8 above
is presented for nucleotide characters, these equations
are also applicable to amino acid characters by substitut-
ing an amino acid substitution rate matrix for the nu-
cleotide substitution rate matrix Q(A) in Equations 1 and
2, and could also be applied to morphological characters
that evolve in accord with the Mk matrix [61,62].

Predicting phylogenetic utility

To simplify notation hereafter, we will suppress the rou-
tine but continuing functional dependencies on A¢y, Ay,
Aa Az, Ay, to, T1, T, T3, and Ty. Because parsimony uses
almost exclusively the AABB patterns to inform quartet
topology reconstruction, evaluating y — Max(x;, x,) for a

molecular character gives an accurate quantitative meas-
ure of the character’s phylogenetic utility for resolving a
quartet phylogeny as assessed by parsimony. For a given
character, if y — Max(x;, x5) >0, the character has more
support for the correct quartet topology than for either of
the incorrect quartet topologies as assessed by parsimony,
and thus by sampling more of such a character, inference
via parsimony will converge to the correct topology. Con-
versely, if y — Max(x;, x,) <0, the character has a stronger
support for an incorrect topology than for the correct top-
ology as assessed by parsimony, and thus by sampling
more of such a character, inference via parsimony will
not converge to the correct topology. Therefore, evaluat-
ing y-Max(x;, x,) yields a quantitative measure of
whether inference will be consistent under parsimony.
However, evaluating y-Max(x;, x,) for predicting
phylogenetic utility and consistency conditions under
probabilistic inference methods such as ML and Bayes-
ian methods faces two opposing biases. First, ML and
Bayesian methods can obtain additional information to
resolve a quartet phylogeny—albeit of markedly lower
impact per character—from some non-AABB patterns.
For example, given a non-AABB pattern observed at a
character that resulted from a signal in the internode
having then been partially masked by noise (i.e. random-
izing state changes in subtending branches), a probabil-
istic inference method will attribute likelihood to the
correct topology from this character if the state changes
that occurred in subtending branches are consistent
enough with the model and occurred slowly enough to
provide useful information. On the other hand, unlike
with parsimony-based inference, not every character
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showing an AABB pattern is interpreted by probabilistic
methods to support a quartet topology. For instance,
given a synapomorphic pattern observed at a character
that actually arose from an absence of state change in
the internode followed by parallel state changes in sister
subtending branches, a probabilistic method that classi-
fies the site as fast-evolving will rightfully obtain little
support for the correct topology from this character.

Addressing the first bias as outlined in the preceding
paragraph is not straightforward within the framework of
signal and noise analysis, because tracking all non-AABB
patterns that can have varying and ambiguous levels of
support for the correct quartet topology as assessed by
probabilistic inference methods is impractical and would
render analysis highly cumbersome. However, the second
bias as explained above can be addressed by evaluating an
alternative measure of predicted utility that excludes sup-
port for the correct quartet topology due to apparent syn-
apomorphy. Such a measure can be obtained by comparing
the probability of true synapomorphy only, 7, to the prob-
ability of observing either homoplasious pattern consistent
with an incorrect quartet topology, Max(x;, x). The
resultant measure, /T - Max(x;, x,), represents a conserva-
tive lower bound of utility, since it does not include support
for the correct quartet topology due to partially masked sig-
nal, which parsimony typically does not recognize but prob-
abilistic inference methods can recognize under ideal
circumstances. Ultimately, because true synapomorphy rep-
resents unmasked, actual phylogenetic signal and provides
unambiguous support for the correct quartet topology re-
gardless of which inference method is concerned, in branch
length conditions where IT - Max(xy, x,) > 0, the strength of
unmasked actual signal is greater than the strength of ho-
moplasy that supports an incorrect topology, and therefore
correct inference can likely be achieved by both parsimony
and probabilistic methods.

Results

Example 1: predicted utility of a character in the
felsenstein and “Farris” zones

In demonstrating long-branch attraction by parsimony
and “long-branch repulsion” by ML, Huelsenbeck and
Hillis [22] and Siddall [26] performed simulations for
two four-taxon model trees with different branch length
conditions that encompass the Felsenstein zone and the
Farris zone, respectively. In this example study, we apply
the signal and noise analysis to these two model trees to
predict the phylogenetic utility of a nucleotide character
in the Felsenstein zone and the Farris zone.

For this analysis, we assume the Jukes-Cantor (JC
[63]) model—the simplest time reversible nucleotide
substitution model—which both Huelsenbeck and Hillis
[22] and Siddall [26] used in their respective simulation
studies. To be consistent with Huelsenbeck and Hillis
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[22] and Siddall [26], we express the length of any tree
branch, represented here as p, in terms of the expected
probability that the nucleotide at one end of the branch
differs from the nucleotide at the other end. Under the
JC model, the p length of a branch can be related to the
branch length in time, ¢, and the substitution rate of the
nucleotide character in the branch, A, via the equation

33

P43

e M, (9)

From Equation 9, the length of a branch can range be-
tween 0 and 0.75 under the JC model.

The four-taxon tree modeled by Huelsenbeck and
Hillis [22] is shown in Figure 2A. The tree’s internode
and two subtending branches on the opposite sides of
the internode are constrained to be equal (“three-branch
length”, ie. Aoto=A1T1=A3T3 in Figure 1), as are the
other two subtending branches (“two-branch length”, i.e.
A>Ty = M4 Ty in Figure 1). Figure 2B shows the alternative
four-taxon tree modeled by Siddall [26]. In this case, the
internode and the two subtending branches on one
side of the internode are constrained to be equal (i.e.
Aoto=A1T1 =M, T, in Figure 1), so are the two subtend-
ing branches on the other side of the internode (i.e.
A3T3=A4T, in Figure 1). Figures 2C and D show the
branch length space of the two model trees, each con-
structed by varying the respective tree’s three-branch
length on the horizontal axis and two-branch length on
the vertical axis. The Felsenstein zone is in the upper-left
portion of the branch length space of the Huelsenbeck
and Hillis [22] model tree, and the Farris zone is in the
upper-left portion of the branch length space of the Sid-
dall [26] model tree.

For the Huelsenbeck and Hillis [22] model tree, the
probability of a nucleotide character showing the syna-
pomorphic pattern is less than that of a homoplasious
pattern (i.e. y/ Max(x1, x,) <1) in an area located in the
upper-left portion of the branch length space, which cor-
responds to the Felsenstein zone (Figure 3A). In contrast,
for the Siddall [26] model tree, y/Max(x1, x5) > 1 is true in
virtually the whole branch length space (Figure 3B). For
both model trees, in the uppermost and rightmost areas
of the branch length space, true synapomorphy accounts
for less than 10% the probability of a character showing
the synapomorphic pattern (i.e. 1T/ y<0.1) (Figures 3C
and D). For the Siddall [26] model tree, IT/y < 0.1 is also
true in an additional area in the upper-left portion of the
branch length space, which falls within the Farris zone
(Figure 3D).

For the Huelsenbeck and Hillis [22] model tree, the
probability of true synapomorphy is greater than the
probability of a character exhibiting either homoplasious
pattern (i.e. [T/ Max(x;, x5) > 1) in an area that borders
on the horizontal axis of the branch length space



Su and Townsend BMC Evolutionary Biology (2015) 15:86 Page 6 of 13

C 075 D o7s

oo g < <

Two-branch length (P,)
Two-branch length (Py")

ST

0 Three-branch length (P,) 0.75 0

>~

Three-branch length (P,") 0.75

Figure 2 Two classic quartet branch length conditions in which long-branch effects can arise. A) Four-taxon tree modeled by Huelsenbeck and
Hillis [22]. The internode and two subtending branches labeled a are constrained to have the same length (i.e. “three-branch length”), so are the
two subtending branches labeled b (i.e. “two-branch length”); p, and p,, represent the three-branch length and two-branch length (evaluated via

Equation 9), respectively. B) Alternative four-taxon tree modeled by Siddall [26]. The internode and two subtending branches labeled a’ are
constrained to be equal in length (ie. “alternative three-branch length”), so are the two subtending branches labeled b’ (i.e. “alternative
two-branch length”), with p,"and p,’ representing the alternative three-branch length and two-branch length, respectively. C) Branch length
space of the model tree investigated by Huelsenbeck and Hillis [22], with the three-branch length p, on the horizontal axis and the two-branch
length p, on the vertical axis. These axes apply to Figures 3A, C, and E. The upper-left portion of this branch length space corresponds to the
Felsenstein zone. D) Branch length space of the alternative model tree investigated by Siddall [26], with the alternative three-branch length p," on
the horizontal axis and the alternative two-branch length p,’ on the vertical axis. These axes correspond to those in Figures 3B, D, and F. The
upper-left portion of this branch length space corresponds to the Farris zone as termed by Siddall [26].

(Figure 3E). For the Siddall [26] model tree, 1T/ Max(x,
x5) > 1 is true in a similar but slightly more extended
area that borders on both the horizontal and vertical
axis of the branch length space (Figure 3F).

Example 2: predicted utility of a character with an
identical rate across lineages for resolving an
asymmetrical quartet tree

In this example, we assess the predicted utility of a nu-
cleotide character for resolving a hypothetical four-taxon
tree with an asymmetrical topology. For this analysis we
consider a nucleotide character which follows the molecu-
lar clock assumption and has an equal substitution rate in
the internode and four subtending branches in the four-
taxon tree of interest (i.e. setting Alg=A;=A,=A3=A4=1
in Figure 1). We assume the JC model for the nucleotide
character. The four-taxon tree in question has an inter-
node with a length in an arbitrary time unit of 7, =0.1;
two non-sister subtending branches have an equal length
of 4ty = 0.4 (i.e. setting 77 = T3 = 0.4 in Figure 1), while the
other two non-sister subtending branches both have a
length of 0.4/ (i.e. T, = Ty = 0.4/ in Figure 1), where / > 1.

The value of IT- Max(x;, x,) increases as a function of A
for each value of /=15, 2, 2.5, and 3 for the four-taxon tree
until reaching a maximum at an optimal substitution rate
(Figure 4). As A increases further, the value of T - Max(xy, x,)
begins to decrease and then drops to zero at a threshold
substitution rate (Figure 4). As A increases beyond that
threshold, the value of 17— Max(x;, x,) becomes negative.
Given each value of /, as A increases from zero, the value
of IT - Max(x;, x,) increases from zero. As the value of [
increases, corresponding to an increasingly asymmetrical
topology, the maximum value of I7T-Max(x;, x,) de-
creases as do the optimal and threshold substitution rates.

Example 3: predicted utility of a character with a variable
rate across lineages for resolving a symmetric quartet
tree

In this example, we evaluate the predicted utility of a
nucleotide character for resolving a hypothetical four-
taxon tree with a symmetric topology. The four-taxon
tree in question has an internode with a length (in time)
of t,=0.1 and four subtending branches with an equal
length of 0.1/, where [>1 (i.e. setting Ty =Ty =T3=T, =
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Figure 3 Contour map of y/Max(x;, x;) for a nucleotide character which assumes the JC model over the branch length space of A) the Huelsenbeck
and Hillis [22] model tree and B) the Siddall [26] model tree, with contour lines of y/Max(x;, x,) = 1/10, 1/6, 1/4, 1/2, 1 (thick dashed), 2, 4, 6, and 10
shown if present within the respective branch length space. Contour map of /1/y for a nucleotide character under the JC model over the branch
length space of C) the Huelsenbeck and Hillis [22] model tree and D) the Siddall [26] model tree, with contour lines of /1/y=0.1, 0.2, 0.3, 04, 0.5, 0.6,
0.7,08, 0.9, and 1.0 (thick dashed) shown if present. Contour map of 17/ Max(x;, x,) for a nucleotide character under the JC model over the branch
length space of E) the Huelsenbeck and Hillis [22] model tree and F) the Siddall [26] model tree, with contour lines of [1/Max(x;, x,) = 1/10, 1/6, 1/4,
1/2, 1 (thick dashed), 2, 4, 6, and 10 shown if present.

0.1/ in Figure 1). For this analysis, we again assume the across the quartet. We assign a fixed substitution rate of
JC model for the nucleotide character; however, the 1 (per unit time) to two non-sister subtending branches
character does not necessarily follow a molecular clock of the four-taxon tree (i.e. A, =14=1 in Figure 1), and a
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Figure 4 The predicted utility /7— Max(x;, x;) versus substitution rate A based on the JC model is plotted for /=15 (solid line), /=2 (dotted line), /=2.5

and T, =T,=04l.

(dashed line), and /= 3 (dot-dashed line), for the four-taxon tree as depicted in Figure 1in which Ag=A;=A =A3=M=A, to=0.1,T, =T3=04,

free substitution rate of A in the internode and the other
two non-sister subtending branches of the tree (i.e. set-
ting 1o =A; =13 =21 in Figure 1).

The value of IT - Max(xy, x,) as a function of 1 starting
from A =0 first increases from a negative value until
reaching a positive maximum at an optimal rate
(Figure 5), across values of m =1.5, 2, 2.5, and 3 for the
four-taxon tree. It then decreases monotonically as A in-
creases beyond the optimal rate. Given each value of m,
the value of IT- Max(x, x,) is positive and close to its
maximum when the substitution rate of the character is
similar in the four subtending branches (i.e. when A is
close to 1). As the value of m increases, corresponding
to an increasingly deep internode, the maximum value

of IT- Max(x;, x,) decreases, and so do the optimal rate
of A and the range of parameter A for which the value of
IT - Max(xy, x») is positive.

Example 4: effects of alternative model assumptions on
predicted utility

Su et al. [57] evaluated the impact of specifying alterna-
tive nucleotide substitution models on the predicted util-
ity of nucleotide characters for resolving a four-taxon
tree with even subtending branches, based on an analysis
of five genes in 29 taxa of the yeast genus Candida and
allied teleomorph genera. Similarly, here we compare
how varying the model specification affects the predicted
utility of a nucleotide character for resolving a four-

-

-0.02} - .,

Predicted Utility (/7-Max(x1,x;))

-0.04

-0.06

and Ag=A=M=A

Substitution Rate (A)

Figure 5 The predicted utility /71— Max(x;, x;) versus substitution rate A based on the JC model is plotted for /=15 (solid line), /=2 (dotted line), /=2.5
(dashed line), and /= 3 (dot-dashed line), for the four-taxon tree as depicted in Figure 1 in which to=0.1, T, =T, =Tz =Ts=lt), Ay =A3 =1,
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taxon tree with uneven subtending branches due to un-
equal substitution rates. We perform this analysis based
on the nucleotide character and the hypothetical four-
taxon tree as used in Example 3 above, with m =2.5 for
the four-taxon tree (i.e. setting A; =A3=1,Ag=A, =1, =1,
tp=0.1, and T} =T, = T3 =T, = 0.25 in Figure 1). We as-
sume four alternative nucleotide substitution models for
the nucleotide character, including—from simple to com-
plex—the JC model, which assumes equal substitution
rates and equal base frequencies at equilibrium, the
Kimura 2-Parameter (K2P a.k.a. K80 [64]) model, which
assumes unequal transition and transversion rates and
equal base frequencies, the Hasegawa-Kishino-Yano (HKY
[65]) model, which assumes unequal transition and trans-
version rates and unequal base frequencies, and the GTR
model, which assumes six unequal substitution rates and
unequal base frequencies (c.f Table 1 in [57]). The param-
eter values for the JC, K2P, HKY, and GTR models used in
this analysis are based on the parameter values of these
models estimated for the actin (ACT1) marker in the ana-
lysis by Su et al [57] of 29 taxa of the yeast genus
Candida and allied teleomorph genera (Table 1).

The value of IT- Max(x;, x,) of the character as a
function of 1 is highest under the JC model (Figure 6).
The range of the parameter A within which 77 - Max(x,
x,) is positive is wider under the JC model than under
the three higher parameterized models; this range differs
little among the K2P, HKY, and GTR models.

Discussion

In this paper, we have relaxed an assumption of phylogen-
etic signal and noise analysis by allowing a four-taxon tree
of unequal subtending branch lengths. Previous ana-
lyses [56,57] assumed a phylogenetic quartet with four
subtending branches of equal lengths. Although any
internode has an inherent quartet structure [66], not
all internodes have subtending branches that have
equal lengths, even without heterochrony. Furthermore,

Table 1 Estimated parameter values for the models for
the actin (ACT1) marker

JC K2P HKY GTR

rTC 1 4493 4.522 9.082
rTA 1 1 1 1.967
TG 1 1 1 1

rCA 1 1 1 1.078
rCG 1 1 1 0.907
rAG 1 4493 4.522 2.902
nT 0.25 0.25 0.336 0.265
nC 0.25 0.25 0.274 0.225
nA 0.25 0.25 0.235 0.286
nG 0.25 0.25 0.155 0.224
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sampling additional taxa can effectively reduce branch
lengths [67-72], rendering appropriate branch lengths to
consider for phylogenetic informativeness shorter than the
extracted quartet. While slight differences in branch
lengths probably do not represent a significant violation of
the theoretical assumption under the previous versions of
signal and noise analysis, for internodes where all of the
subtending branches have markedly different lengths, the
assumption of equal branch lengths is no longer accept-
able. The generality and the accuracy of the signal and
noise analysis can therefore be improved by quantifying
the probability of synapomorphic and homoplasious char-
acter state patterns in four subtending branches of un-
equal lengths. This improvement, if it could seamlessly
incorporate increased taxon sampling in addition, would
facilitate the application of signal and noise analysis freely
and precisely to all describable internodes of phylogenetic
interest.

We have also recast previous analysis so that it can
characterize the probability of a true synapomorphy in a
four-taxon tree, including only true synapomorphy as
support for the correct quartet topology. Previous signal
and noise analyses [56,57] have not distinguished true
synapomorphy vs. apparent synapomorphy and include
both as support for the correct quartet topology. While
parsimony infers support for the correct quartet top-
ology from both true synapomorphy and apparent syn-
apomorphy, probabilistic inference methods can better
discriminate against apparent synapomorphy by ac-
counting for fast rates of evolution and correcting for
unobserved changes [6,27,28,73]. In the meantime, how-
ever, the generalized signal and noise analysis does not
quantify contributions from obscured signal at sites that
are not parsimony-informative, even though probabilistic
inference methods can recognize some support for the
correct topology from these sites. Therefore, including
support for the correct quartet topology only from true,
unobscured parsimony-informative sites yields a conser-
vative lower bound for predicting phylogenetic utility.

In the first example, based on the two model quartet
trees with branch length conditions that correspond to
the Felsenstein and “Farris” zones, our analysis has char-
acterized the probability distributions of true synapo-
morphy, apparent synapomorphy, and homoplasy in
support for an incorrect topology in the those zones.
These analysis results provide analytical predictions of
the contrasting performances of parsimony and ML in
the Felsenstein and Farris zones as shown by simulations
of Huelsenbeck and Hillis [22] and Siddall [26]. In the
Felsenstein zone, parsimony is likely to give incorrect in-
ference of the quartet topology, because support for the
correct quartet topology as assessed by parsimony (i.e.
including both true and apparent synapomorphy) is
less than support for an incorrect topology in the
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Figure 6 The predicted utility /7—Max(x;, xo) versus substitution rate A is plotted based on the JC [63] model (solid line), the K2P (dotted line),
the HKY (dashed line), and the GTR model (dot-dashed line), for the four-taxon tree as depicted in Figure 1 in which tp=0.1, T, =T, =T3=T,=0.25,
A =MA3=1,and Ag=A,=A;=A The model parameter values are presented in Table 1.

corresponding area of the branch length space. This ob-
servation is consistent with the expectation that
parsimony-informative sites that are consistent with an in-
correct quartet topology are more likely to occur and ac-
cumulate if the internode is short (i.e. there is a low
probability of true signal occurring in the internode), the
rate of evolution of the character is fast (i.e. there is a high
probability of noise accumulating in the subtending
branches), or the differences in the rate of evolution be-
tween branches is large (i.e. there is a high probability of
convergent and parallel changes in the two non-sister
branches with faster rates of evolution). In contrast, ML
can perform better than parsimony by gathering add-
itional support for the correct quartet topology from
partially-informative non-AABB patterns, which are not
tracked by our theory. In the Farris zone, parsimony is
likely to yield correct inference of the quartet topology,
since support for the correct quartet topology as assessed
by parsimony is greater than support for either incorrect
topology in the corresponding area of the branch length
space. However, the strong performance of parsimony in
the Farris zone is in fact due to apparent synapomorphy;
in the corresponding area of the branch length space, al-
most all support for the correct quartet topology is con-
tributed to by apparent synapomorphy. Since ML does
not accrue likelihood for the correct quartet topology in
the presence of apparent synapomorphy in the way that
parsimony does, ML is not misled into performing as
well as parsimony in the Farris zone in terms of recov-
ering the correct quartet topology.

This generalized signal and noise analysis can be ap-
plied to diverse scenarios in which unequal branch
lengths can arise and potentially introduce long-branch
effects. Unequal branch lengths can be either caused by

unequal evolution rates across lineages within the study
group (ie. relaxation of the molecular clock assump-
tion), or due to an asymmetrical topology, which can
arise as a result of differential speciation or extinction
rates and/or incomplete taxon sampling [6]. The signal
and noise theory decouples the rate of substitution and
time in characterizing the length of a branch. Thus, the
theory can account for differences in both substitution
rates and evolution times across lineages, and it can be
applied to phylogenies in which unequal branch lengths
occur due to unequal rates of evolution, asymmetrical
topologies, or both.

In the second example, based on a four-taxon tree
with an asymmetrical topology, results of the signal and
noise analysis demonstrated that the chance of correctly
resolving an asymmetrical quartet phylogeny can be in-
creased by sampling slower-evolving molecular loci; the
more asymmetrical the underlying topology is, the
slower-evolving the sampled molecular loci should be.
Rapidly-evolving molecular loci have poor predicted
phylogenetic utility because at these loci, there is a
higher probability of observing noise or homoplasy than
actual signal. For the quartet tree used in this example
study, the signal and noise analysis furthermore quanti-
fied the threshold substitution rate above which a nu-
cleotide character may contribute a negative utility
towards correct resolution of the quartet tree. In mo-
lecular phylogenetic investigations, a common practice
to reduce long-branch effects is to exclude fast-evolving
molecular loci—such as third codon positions—from in-
ference analysis, based on the rationale that these loci
are likely saturated or randomized [19,40,74-80]. On
the other hand, third codon positions can contain a sig-
nificant amount of information of the phylogenetic
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structure [81], and removing an excessive amount of
rapidly-evolving loci can lead to a significant reduction
in resolution [79,80,82]. Therefore, for an actual quartet
phylogeny for which the inferred topology is suspected
to result from long-branch effects, by applying the gen-
eralized signal and noise analysis to an alternative top-
ology that is hypothesized to reflect the actual taxon
relationship, one can estimate a threshold substitution
rate for sampling molecular loci for overcoming the
suspected long-branch effects while in the meantime
minimizing the number of fast-evolving loci that are
unnecessarily excluded from analysis.

In the third example, in which the substitution rate of a
nucleotide character was variable across the four taxa
within the study group, the signal and noise analysis dem-
onstrated that in addition to sampling slower-evolving
molecular loci, sampling loci with less variation in substi-
tution rate across lineages is helpful for avoiding biases to-
wards topologies that group faster-evolving non-sister
branches together. The deeper the internode in question
is, the more likely there is to be significant rate variation,
and yet the deeper the internode is, the less variation in
substitution rate across lineages the sampled molecular
loci should have. At molecular loci with significant rate
variation across lineages, convergent or parallel character
state changes tend to accumulate along the lineages with
faster substitution rates, thereby obscuring actual signal
and reducing the phylogenetic utility of these loci. For the
quartet tree assessed in this example, the signal and noise
analysis has also quantified the range of rate variation
across lineages within which a nucleotide character has a
positive predicted utility towards correct quartet reso-
lution. In phylogenetic studies, another proposed ap-
proach to reducing long-branch effects involves selecting
only representative taxa with the lowest substitution rates
and minimum rate variation across lineages [83-85]. How-
ever, numerous studies have suggested that increased
taxonomic sampling generally leads to improved accuracy
in phylogenetic inference ([67,68,75,86-90]; but see also
[3,91]; as summarized in [6,7]), and excluding a large
number of taxa may thus significantly decrease the accur-
acy of inference outcomes. Therefore, in an investigation
in which the inferred topology is suspected to arise due to
long-branch effects, by applying the generalized signal and
noise analysis to an alternative topology hypothesized to
reflect the actual taxon relationship, one may estimate the
desirable range of rate variation across lineages to inform
taxon sampling while at the same time avoiding removing
an excessive number of taxa from analysis.

Lastly, in the fourth example, which compared utility
prediction for the four-taxon tree in the previous example
based on four alternative nucleotide substitution models
(i.e. the JC, K2P, HKY, and GTR models), analysis results
indicated that predictions of the signal and noise analysis
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are fairly robust to alternative model specifications, con-
sistent with the finding of Su et al. [57] in quartet trees
with even subtending branches. In this example based on
a four-taxon tree with unequal substitution rates across
lineages, the predicted utility is higher under the JC model
than under the other three more complex models; but as
the model parameterization increases from the K2P model
to the GTR model, the predicted utility remains largely
unchanged. As explained by Su et al. [57], in most realistic
molecular data sets, there is always a certain degree of het-
erogeneity in model parameter values when the data are
fitted to an optimal model. As the model grows in com-
plexity, some character states, due to association with
higher model parameter values, will begin to dominate the
evolutionary process and thus effectively reduce the char-
acter state space. Analysis results of Su et al [57] also
demonstrated that the predicted utility of a molecular
character increases as the character state space increases
(cf Figure 6 in [57]). Thus, specifying an overly simple
model can fail to adequately account for heterogeneity in
the evolutionary process and hence cause an increase of
the effective character state space. Consequently, the pre-
dicted utility based on an overly simple model is higher
than actual. But once a model of sufficient complexity is
fitted to the molecular data in question, the effective char-
acter state space is reduced closer to its actual size, and
the predicted utility is more accurate. Therefore, specify-
ing increasingly more complex models will lead to de-
creasingly little impact on predictions of the signal and
noise analysis.

Conclusion

In this paper, we have generalized phylogenetic signal
and noise analysis by allowing a four-taxon tree of un-
equal subtending branch lengths. This generalized signal
and noise analysis provides analytical prediction of utility
of characters evolving at diverse rates of evolution to re-
solve quartet phylogenies in which unequal branch
lengths arise due to unequal rates of evolution, asym-
metrical topologies, or both.

Methods

Results and figures presented in the Result section were
obtained by implementing the analytical calculations as
outlined in the Theory section via Wolfram Mathema-
tica 7 (Wolfram Research, Inc.).
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