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The invasive coral Oculina patagonica has not
been recently introduced to the Mediterranean
from the western Atlantic
Karine Posbic Leydet* and Michael E Hellberg
Abstract

Background: Effective policies, management, and scientific research programs depend on the correct identification
of invasive species as being either native or introduced. However, many species continue to be misidentified.
Oculina patagonica, first recorded in the Mediterranean Sea in 1966, is believed to have been introduced in
anthropogenic times and expanding in a west to east direction. However, its present identification and status as
a recently introduced species remain to be explored. In this study, we used multi-locus genetic data to test whether
O. patagonica in the Mediterranean has been recently introduced from the western North Atlantic.

Results: We found no genetic or historical demographic evidence to support a recent introduction of O.
patagonica from the western North Atlantic or an expansion across the Mediterranean. Instead, Mediterranean and
Atlantic populations are genetically distinct and appear to have begun diverging about 5 Mya. We also found
evidence of a fossil record of Oculina spp. existing in the eastern North Atlantic millions of years before the present.

Conclusions: Our results suggest that Mediterranean populations of O. patagonica have long been isolated from
the western Atlantic, either in undetectable numbers or overlooked and undersampled sites and habitats, and
have only recently been expanding to invasive levels as a result of environmental changes. Accurate identification
of species’ invasive statuses will enable more effective research programs aimed at better understanding the
mechanisms promoting the invasive nature of species, which can then lead to the implementation of efficient
management plans.
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Background
The number of introduced and invasive species is rising
[1], rapidly altering ecosystems around the world, often
by out-competing and displacing native species [2,3]. Be-
yond their direct impacts on native species, these invasive
species can indirectly lead to cascading effects within a
community [4], thereby threatening ecosystem functions.
Studies concerning successful introduced and invasive
species are key to exploring the mechanisms by which
these species adapt to and alter their new environment.
However, determining whether a species is native or
introduced is first necessary, and this is not always an
easy task.
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Introduced species can be mislabeled as native due to
taxonomic misidentification [5,6]. Native species can also
be misidentified as introduced. Zenetos et al. [7] reports
that 23% of the 963 reportedly introduced species in the
Mediterranean have been misidentified and therefore mis-
classified. Of the remaining 745 species, 13% remain ques-
tionable due to insufficient information and unresolved
taxonomic status and many others maintain a “crypto-
genic” status, as they cannot be reliably assigned to either
“native” or “introduced” [8]. In other cases, species are
mislabeled as introductions due to a lack of historical re-
cords of an obvious presence [7,9-11]. These misidentifi-
cations can have profound effects on the assessment of
species status [12].
Invasive species are often assumed to have been intro-

duced [9,10], however species can become invasive within
their native range, usually due to human-mediated
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disturbances [13-15]. Effective policies, management,
and scientific research programs depend on the correct
identification of invasive species as being either native
or introduced. Whereas the management of introduced
invasives is more concerned with the introduction sce-
nario and conditions enabling subsequent expansion,
management of native invasives should ideally be more
focused on the changes in environmental conditions
that facilitate their invasive characteristics in their na-
tive habitat [11,16]. Therefore, to implement more ef-
fective research and management programs for invasive
species, an invasive species must first be identified as ei-
ther introduced or native.
An introduced invasive population can be distinguished

from native invasive populations in several ways. An
expanding introduced population is expected to be genetic-
ally similar to an external source population where it origi-
nated [17]. In contrast, a native invasive population will
often be genetically distinct from populations outside its
range [9,18]. Inferring the divergence time between popu-
lations from different ranges can also establish whether or
not an invasive population coincides with a recent intro-
duction (estimated divergence time will overlap with the
present day), or whether it predates anthropological times
(older divergence time) [19-21]. Finally, the presence of a
fossil record for an invasive species or its progenitors can
indicate that the species has a long presence in a particular
region [10,11].
Corals of the genus Oculina were originally described

from the southeastern coast of North America [22]. Al-
though several nominal species exist in this region, Eytan
et al. [23] found no genetic differences among shallow
water populations of four named taxa (O. arbuscula, O.
diffusa, O. varicosa, and, O. robusta), suggesting that these
designations do not represent genetically distinct species.
We will refer to these taxa collectively as “western Atlantic
(WA) Oculina spp”.
An additional extant species, Oculina patagonica, oc-

curs in the waters of the Mediterranean Sea [24,25]. O.
patagonica was originally described from fossils from the
southeastern coast of South America [24] (see Additional
file 1: Figure S1), however reports of live specimens from
South America are lacking and a recent survey of foul-
ing communities in Argentinian ports failed to find any
evidence of this species [26]. O. patagonica has been
thought to have been introduced in anthropogenic
times from the western south Atlantic to the western
Mediterranean via shipping. O. patagonica was first re-
ported from the harbor of Savona (Gulf of Genoa), Italy in
1966 [24] and soon after from the harbor of Alicante, Spain
[27], 1000 km away. From the western Mediterranean,
it is thought to have spread easterly, and while today
reports of this coral in many locations reflect popula-
tions limited in number and range, populations in
Spain, Greece, and Israel are well-established and
expanding [24,25,27-38].
Alternatively to being recently introduced, O. patago-

nica may be a native species that has only recently been
detected due to a recent expansion. The original descrip-
tion and identification of O. patagonica is based on fossil
remains, not living counterparts [24]. This is problem-
atic, as morphology is a poor delineation of coral species
in general [39,40] and Oculina species in particular [23]
(see Additional file 1: Figure S1). Given that no known
populations of O. patagonica presently exist outside the
Mediterranean, populations of WA Oculina spp. are cur-
rently the most likely source for a recent introduction.
Here, we ask whether O. patagonica has been recently

introduced into the Mediterranean from the western
North Atlantic, or whether it is an eastern Atlantic na-
tive only newly become invasive. First, we use multilocus
genetic data to determine whether O. patagonica is genet-
ically similar to or distinct from WA Oculina spp. If O.
patagonica has been recently introduced from the western
North Atlantic, we expect these populations to be genetic-
ally similar. Second, we estimate divergence time between
O. patagonica populations and WA Oculina sp. popula-
tions and evaluate whether the estimate is consistent with
an anthropogenic introduction. We also search museum
collections for evidence of a fossil record of Oculina spp.
in the eastern Atlantic, which would suggest that Oculina
has a long history in this region. Finally, we explore
whether patterns of genetic diversity in O. patagonica are
consistent with a west to east expansion across the
Mediterranean from a single point of introduction.

Results
Genetic diversity and population subdivision
We genotyped 122 samples of Oculina spp. from the
western North Atlantic (n = 56) and Mediterranean
(n = 66) for the mitochondrial COI gene and five nuclear
genes. Western North Atlantic populations included
North Carolina, Daytona Beach, FL, Cape Florida, FL,
Panama City, FL, and Bermuda. Mediterranean popu-
lations of O. patagonica included Spain, Italy, Greece,
Lebanon, and Israel (Figure 1). A total of 17 individ-
uals from Spain, Greece, and Israel were removed
from the dataset because they shared a multilocus geno-
type with another individual in the same population, so
the final nuclear data set contained 105 individuals (see
Additional file 2: Table S1). All O. patagonica samples
shared the same COI haplotype common to 98% of WA
Oculina spp. (see Additional file 3: Figure S2). Because
COI was nearly invariant, as expected due to the con-
servation of anthozoan mitochondrial DNA [41], we
used only the five nuclear genes in all analyses. GARD
did not detect recombination within any of these five
gene regions.



Figure 1 Map of collections sites of Oculina spp. populations used in this study. Populations along the western North Atlantic included North
Carolina, three locations in Florida (Daytona Beach, Cape Florida, and Panama City), and Bermuda. Mediterranean populations included Spain,
Italy, Greece, Lebanon, and Israel. This figure was created using maps freely available for use from ESRI.
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Haplotype networks revealed that, while populations
in the western North Atlantic and the Mediterranean
share many alleles at all five loci, all markers possess sev-
eral private alleles unique to just one region (Figure 2).
Specifically, for three genes (p14, p62, and p302), over half
of the total alleles for each of those genes are unique to
the Atlantic. In contrast, the Mediterranean harbors fewer
private alleles for all genes (Figure 2). T-tests revealed that
allelic richness was greater in the western North Atlantic
than in the Mediterranean (Figure 3a), although this dif-
ference is not large (western North Atlantic mean =
p14

p302

p243

15

Figure 2 Haplotype networks of the five nuclear genes used in this study.
proportion of individuals from the different populations that share that par
populations. Black represents Mediterranean populations of Oculina patago
step separating the alleles, and small black dots represent inferred alleles n
2.38 ± 0.09; Mediterranean mean = 2.14 ± 0.09), and there-
fore likely not biologically significant. Observed heterozy-
gosity did not differ between the western Atlantic and
Mediterranean (Figure 3a), nor did allelic richness or
observed heterozygosity between western Mediterranean
(Spain and Italy) and eastern Mediterranean (Greece,
Lebanon, and Israel) populations (Figure 3b).
AMOVA revealed significant subdivision among all pop-

ulations, as well as between western North Atlantic and
Mediterranean populations (Table 1). However, AMOVA
conducted on Mediterranean populations alone revealed
p62

p255

Each pie graph represents an allele and the shades represent the
ticular allele. White represents western North Atlantic Oculina spp.
nica. Line segments connecting alleles represent a single mutation
ot present in our dataset.
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Figure 3 Comparison of allelic richness and observed heterozygosity. Means of allelic richness and observed heterozygosity compared between
western North Atlantic and Mediterranean populations of Oculina spp. (a), and between western Mediterranean (Spain and Italy) and eastern
Mediterranean (Greece, Lebanon, and Israel) Oculina patagonica populations (b). Bars represent standard deviations. Asterisks represent significant
differences as determined by t-tests.
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no significant subdivision, either among populations or
between the west and east (Table 2). Instead, variation
within populations accounted for 98% of observed vari-
ation. These findings suggest that while the western North
Atlantic populations are genetically distinct from those in
the Mediterranean, populations within the Mediterranean
are genetically similar to each other.
To further test for more subtle genetic differentiation,

we used STRUCTURE 2.3.4 [42] and the Evanno method
[43] implemented in STRUCTURE HARVESTOR [44] to
detect differentiated populations (k). When all populations
were analyzed according to the Evanno method [43], the
most likely k was two. The visual representation of these
Table 1 Analysis of molecular variance performed for all
populations

Source of variation % variation F-value P-value

Within Populations 58.9% 0.411 NA

Among Populations 8.4% 0.125 <<0.01

Among Groups 3.3% 0.328 <<0.01

Groups = western North Atlantic populations and Mediterranean populations.
Significant P-values are in bold.
two genetic clusters (Figure 4a) shows that the western
North Atlantic, including Bermuda, and Mediterranean
form distinct genetic clusters. At k =3, STRUCTURE
recovered the two main genetic clusters previously found
in the western North Atlantic [23] in addition to the
Mediterranean cluster (Figure 4b). When analyzing the
Mediterranean populations alone, the Evanno method
[43] determined that the mostly likely k =4, although
the Δk’s for the range of k tested were very low and
similar, suggesting a lack of biologically meaningful
clusters. Indeed, the visual representation fails to show
any clear individual assignments and geographic associ-
ation of these clusters, consistent with the Mediterranean
Table 2 Analysis of molecular variance performed for
Mediterranean populations only

Source of variation % variation F-value P-value

Within Populations 98.0% 0.02 NA

Among Populations 1.4% 0.014 0.256

Among Groups 0.6% 0.006 0.101

Groups =West (Spain and Italy) and East (Greece, Lebanon, and Israel).
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Figure 4 STRUCTURE bar plots. Each bar represents an individual. Individuals are grouped by populations along the x-axis. Along the y-axis is the
probability of assignment to a particular population represented by different shades. When analyzing all populations, the Evanno method [43]
determined that the mostly likely number of genetic clusters or populations (k) was 2 (a). The visual representation of these two populations
(a) shows that individuals cluster geographically (western North Atlantic versus Mediterranean), and that the Mediterranean populations are
genetically distinct from the western North Atlantic populations. At k =3 (b), the two main genetic clusters previously found in the western
Atlantic [23] were recovered, while maintaining a genetically differentiated Mediterranean cluster. When analyzing the Mediterranean populations
alone (c) there is no clear genetic structure across the Mediterranean, even though the Evanno method [43] determined that the most likely
number of populations (k) was 4.
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populations being genetically similar across the region
(Figure 4c). STRUCTURAMA runs corroborated these
STRUCTURE results.

Divergence time
We estimated the time of divergence between western
North Atlantic and Mediterranean populations using IMa
[45]. We found that the populations diverged 5.4 ± 2.0
million years ago, long before recent times (Figure 5). The
best supported IM model (Table 3) had two parameters
for population size and two for migration, suggesting
that migration has played a role in the history of WA
Oculina spp. populations and O. patagonica in the
Mediterranean. Models of strict isolation were thou-
sands of times less likely than the best model. Migration
from the western North Atlantic to the Mediterranean
was greater (0.00139 [90% highest posterior density
interval =0.0008–0.0024]) than the reverse migration
(0.000042 [0–0.002]) (Figure 6). In fact, the next best model
was one in which migration from the Mediterranean to the
western North Atlantic was equal to 0.

The fossil record
We explored online databases of museum collections for
a fossil record of Oculina spp. in the eastern Atlantic
and/or the Mediterranean. We found 16 fossil specimens
of Oculina spp. in two independent museum collections:
the Smithsonian National Museum of Natural History’s
Department of Invertebrate Zoology (see Additional
file 1: Figure S1), and the Muséum National d’Histoire
Naturelle Paléontologie. All specimens originated from
north-northwestern France. The estimated ages of the
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Figure 5 Posterior probability distribution for divergence times between western North Atlantic and Mediterranean populations of Oculina spp.
Divergence time = 5.4 ± 2.0 million years ago.
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specimens range broadly, with most from the Eocene
(56–34 Ma) to the Miocene (23.03–5.332 Ma) (Table 4).

Population expansion within the Mediterranean
To test for a past population expansion within the
Mediterranean Sea, we used LAMARC 2.0 [46]. The
overall population growth rate across all genes and rep-
licates was −65, indicating that the population has not
been expanding. We treated the Mediterranean as a single
population, since we did not detect significantly differenti-
ated populations within the Mediterranean (Figure 4c).
We also performed analyses on the three Mediterranean
Table 3 Evidence ratios and ranks of all possible isolation wit

Model k log (P) AIC Δi M

ABADE 4 −1.770 11.540 0.000 1

ABC0D 4 −1.953 11.906 0.366 0

FULL 5 −1.446 12.891 1.351 0

ABBDE 4 −2.723 13.446 1.906 0

ABADD 3 −7.920 21.840 10.300 0

ABBDD 3 −8.351 22.702 11.163 0

ABCDD 4 −7.358 22.715 11.175 0

AAADE 3 −8.398 22.795 11.255 0

AACDE 4 −7.866 23.731 12.192 0

AACDD 3 −10.835 27.671 16.131 <

AAADD 2 −12.542 29.084 17.545 <

ABCD0 4 −195.238 398.476 386.936 <

ABC00 3 −228.380 462.760 451.220 <

ABA00 2 −234.240 472.480 460.941 <

ABB00 2 −249.428 502.855 491.315 <

AAC00 2 −263.32 530.648 519.108 <

AAA00 1 −272.668 547.337 535.797 <

Evidence ratios and ranks calculated using model-based selection. For each model,
ancestral θ), and the last two letters represent the two migration parameters (m1 an
by the next best models in descending order.
populations with the largest sampling sizes (Spain, Greece,
and Israel) separately, and found similar results.

Discussion
Oculina patagonica has not been recently introduced into
the Mediterranean
Our data show that Mediterranean populations of O.
patagonica are genetically distinct from WA Oculina
spp. populations (Figure 4a). While Oculina spp. popula-
tions from either side of the Atlantic share many alleles
for all markers, there were notable private alleles for both
regions (Figure 2). Contrary to expectations for a recently
h migration models

odel likelihoods wi Evidence ratio (best model)

.000 0.364

.833 0.303 1.200

.509 0.185 1.965

.386 0.140 2.593

.006 0.002 172.431

.004 0.001 265.416

.004 0.001 267.094

.004 0.001 277.994

.002 <10−3 443.989

10−3 <10−3 3182.429

10−3 <10−3 6452.997

10−50 <10−50 <1050

10−50 <10−50 <1050

10−100 <10−100 <10100

10−100 <10−100 <10100

10−100 <10−100 <10100

10−100 <10−100 <10100

the first three letters represent the three population parameters (θ1, θ2, and
d m2), in that order. The best model is the first model listed (ABADE) followed
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introduced and expanding species, Mediterranean O.
patagonica harbors genetic diversity on par with long-
established WA Oculina spp. populations (Figure 3a). Our
IMa results reveal that O. patagonica and WA Oculina
spp. populations diverged millions of years ago (Figure 5).
Taken together, our results suggest that while O. patago-
nica populations from the Mediterranean are closely re-
lated to WA Oculina spp. populations, they are genetically
differentiated from them and have not been introduced
into the Mediterranean from the western North Atlantic
Table 4 Museum records of fossil specimens of Oculina spp. f

Museum Record number

Smithsonian National Museum of Natural History USNM 64539

USNM I 80806

USNM I 80807

USNM I 80808

USNM I 80809

USNM I 80810

USNM I 80811

USNM I 80812

Muséum National d’Histoire Naturelle MNHN-F-M00169

MNHN-F-M00170

MNHN-F-M00326

MNHN-F-M00598

MNHN-F-M00675

MNHN-F-M00745

MNHN-F-M00749

MNHN-F-M01113
in anthropogenic times. Although we did not include Ocu-
lina spp. samples from the Caribbean, Bermuda likely rep-
resents the Caribbean given that in other broadcast
spawning corals little genetic variation has been found be-
tween the Caribbean and the western Atlantic [47].
While there are many similar examples of misidenti-

fied native species [9,11,19], and see below, contrary to
our findings for O. patagonica, many species have been in-
troduced into the Mediterranean. A well-known example
is the green alga, Caulerpa taxifolia [48]. Using nuclear
sequence data, Jousson et al. [49] determined that this
species was introduced into the Mediterranean from an
aquarium in Monaco, which maintained an algal strain
of unknown geographical origin cultivated in western
European aquaria. Mitochondrial sequence data was used
to determine that a Mediterranean clade of sea squirts,
Clavelina lepadiformis, was recently introduced from east-
ern Atlantic populations [5]. The Mediterranean Sea has
experienced an influx of introduced species in recent de-
cades [50], which has been attributed to increased sea
temperatures, along with coincident range expansions of
introduced species and range shifts of native ones [51].

Where did O. patagonica originate?
The original hypothesis for the origin of Mediterranean
O. patagonica suggested that, based on its identification,
it must have been introduced from South America, where
the only evidence (fossils) of this species existing outside
the Mediterranean resides [24]. However, reports of live
specimens of O. patagonica in South America are lacking,
and a recent survey of fouling communities in Argentinian
ports failed to find any evidence of this species [26]. If
rom the eastern Atlantic

Species Location Epoch or age

Oculina sp. Indre-et-Loire, France Eocene–Serravallian

Oculina crassoramosa France Miocene

Oculina crassoramosa France Miocene

Oculina solanderi Oise, France Lutetian

Oculina raristella France Eocene

Oculina sp. Oise, France Lutetian

Oculina sp. Seine-et-Oise, France Lower Lutetian

Oculina sp. Eure, France Lutetian

Oculina gemmata Calvados, France Bathonian

Oculina neustriaca Calvados, France Bathonian

Oculina crassoramosa Indre-et-Loire, France Langhian

Oculina crassoramosa Indre-et-Loire, France Langhian

Oculina raristella Oise, France Lutetian

Oculina crassoramosa Indre-et-Loire, France Langhian

Oculina crassoramosa Indre-et-Loire, France Langhian

Oculina explanata Sarthe, France Cenomanian
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living O. patagonica are not present in the western South
Atlantic, they could not have been recently introduced
into the Mediterranean from this region. Although it is
possible that O. patagonica still resides in the western
South Atlantic in low undetected numbers or habitats,
there are no grounds to suggest O. patagonica recently
originated from South America until (if ) those specimens
are found.
If O. patagonica has not recently travelled east across

the Atlantic to the Mediterranean, then where did it ori-
ginate? We found records for 16 fossil specimens of
Oculina spp. from France (Table 4). Along with these
multiple records from two museums, Oculina spp. fossils
have also been reported from the Danish Basin during the
Middle Danian (about 64 Mya) [52] and south Aquitaine,
France, during the Late Oligocene (about 25 Mya) [53].
Although all of these fossils originated from outside of the
Mediterranean, they suggest that the genus Oculina has
long been present in the eastern North Atlantic.
A long presence in the eastern Atlantic is consistent with

our genetic data, which suggest that the western North
Atlantic and Mediterranean populations diverged 5.4 ± 2.0
million years ago (Figure 5). This coincides with the Late
Miocene Messinian Salinity Crisis (5.33 Ma), when sea
levels in the Mediterranean basin dropped, separating it
from the Atlantic and killing off many marine species
[54,55]. The asymmetric migration in the history of Ocu-
lina spp. (Figure 6), with a greater inferred migration from
the western North Atlantic to the Mediterranean, may
reflect the repopulation of the Mediterranean with
Atlantic aquatic fauna following the Messinian Salinity
Crisis [54-56]. However, an ancient introduction would
likely leave behind a fossil record, and we found no Ocu-
lina spp. fossils from within the Mediterranean. This
may be due to undiscovered or undocumented fossils,
but could also indicate that O. patagonica was more re-
cently introduced from elsewhere, likely the eastern
North Atlantic [57]. Our finding of no genetic structure
within the Mediterranean also suggests that it may not
have an ancient presence there. Further survey efforts are
needed to determine whether extant Oculina spp. popula-
tions exist in the eastern North Atlantic, and whether they
are the source of O. patagonica.
Another hypothesis for the origin of O. patagonica lies

along the western coast of Africa. Schizoculina africana
has both a fossil and living presence in Cape Verde
[58,59]. Originally known as Oculina africana, this spe-
cies was split to form a new genus (Schizoculina) due
largely to a unique way in which polyps bud [24,60].
However, dual modes of budding have been reported
within a single coral species [61] and may therefore not
be a good diagnostic trait to differentiate species. Future
genetic work is needed to investigate whether Schizoculina
africana and Oculina patagonica are in fact conspecific,
and whether O. patagonica originated from the north-
western coast of Africa.
Oculinidae is a taxonomically confused family [39,62]

in need of a more in depth genetic study to better under-
stand the relationships between and within the genera and
species in this family. As indicated by mitochondrial and
nuclear genes, Oculinidae is paraphyletic, and Oculina is
more closely related to some members of different families
(Faviidae, Caryophylliidae, and Rhizangiidae) than to some
members of its own family. Thus, representatives from
some extra-familial genera with which Oculina has some-
times been allied (Astrangia of the Rhizangiidae, Clado-
cora of the Caryophylliidae) [24] should also be included
in future efforts to trace the origins and taxonomic classi-
fication of Oculina patagonica.

The geographical expansion of O. patagonica in the
Mediterranean
Direct observations testify to O. patagonica’s increase in
abundance at shallow depths at many localities in the
Mediterranean over the past 20 years [32,34]. Along the
Catalan coast, the species spread from just one location
in 1992 to 43 by 2010, a rate of northward expansion of
22 km per year [32]. In 2005, a few colonies of O. patago-
nica were first reported from a single site in the Saronikos
Gulf of the Aegean Sea [29]. By 2009, O. patagonica could
be found in 45 of 54 surveyed sites in this region [34].
Fine et al. [25] proposed that O. patagonica has been

expanding west to east, just as first reports of its presence
have. Our tests, however, did not detect a genetic signal of
expansion across the Mediterranean. While this may re-
sult from low power, the proposed west to east spread is
also opposite to most other range expansions in the
Mediterranean, which have occurred in a north-westward
direction in response to increasing sea temperature [51].
Because in the Mediterranean temperature increases from
east to northwest, and rising temperatures have been pro-
posed to be promoting the range expansion of O. patago-
nica [32], a west to east expansion would be contrary to
expectation, unless it was introduced into the western
Mediterranean Sea, which our tests failed to support. Fur-
thermore, some recent first reports have come from the
western Mediterranean [30], and O. patagonica was first
reported from the Levant prior to Greece [28,29,35]. Fi-
nally, if O. patagonica was first established in the western
Mediterranean and only more recently in the east, then
the western populations would likely harbor more genetic
diversity; however, we found similar levels of genetic diver-
sity across the Mediterranean. Alternatively, O. patagonica
could be moving into the Mediterranean from elsewhere
in the eastern North Atlantic, but in sufficient numbers to
not leave a genetic signature of expansion.
Despite lack of evidence for a demographic expansion

from west to east, it appears that O. patagonica’s invasive
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behavior may have “expanded” west to east. Serrano et al.
[32] report an expansion along the Spanish coast from
1992–2010. Salomidi et al. [34] reported a later spread
along the coast of Greece from 2005–2009. While this
eastward trend may owe to chance, it could also be due to
human-mediated modifications of shallow coastal habitats
occurring earlier in the west, or limiting conditions in the
east [25] that populations have adapted or acclimated to
overtime [63].

O. patagonica is native species recently turned invasive
It seems most likely that O. patagonica has always existed
somewhere in the eastern Atlantic and has recently be-
come invasive in the Mediterranean, expanding in local
regions in response to environmental change [51], likely
mediated by human-modifications of coastal habitats
[32,34]. In a similar way, the snowflake octocoral, identi-
fied in Hawai'i as Carijoa riisei, was believed to have been
recently introduced from its native range in the Caribbean.
However, Concepcion et al. [9] used mitochondrial and
nuclear sequence data to compare the Hawaiian popula-
tions to worldwide populations of Carijoa and found that
the Hawaiian populations were not genetically similar to
the Caribbean and therefore did not originate from there.
The originally misidentified native diatom Didymosphenia
geminata remained undetected in its native range for de-
cades before blooms were documented in the 1990s [64].
Today, this native invasive alga is rapidly expanding lo-
cally in response to environmental changes [11,64]. The
gastropod, Littorina littorea, has long been thought to
have been recently introduced to North American from
Europe. However, both mitochondrial and nuclear se-
quence data indicated that the North American and
European populations diverged thousands of years ago.
This native gastropod is also believed to have begun
expanding along the coast of New England as a result of
environmental changes [19].
Identifying additional mechanisms that facilitate inva-

siveness in O. patagonica will require work aimed at better
identifying and characterizing the source populations and
population dynamics of well documented locally expand-
ing O. patagoncia populations within the Mediterranean,
such as along the coasts of Spain [32] and Greece [34].
The conditions at these invasion localities can then be
compared to conditions where O. patagonica exits but is
not to date invasive to better understand the mechanisms
driving its expansion. Such studies may also aid in asses-
sing the future of the newly discovered coral species,
Oulastrea crispate, in the Mediterranean as it too is ex-
pected to rapidly expand its range [65].
Additional studies are also needed to better under-

stand the ecological consequences of the expansion of
Oculina patagonica. While marine range shifts may
occur at a slower rate than marine introductions, their
potential effects on the community are likely to be just as
significant [66]. O. patagonica has been shown to success-
fully compete with bryozoan Watersipora sp. [67]. Serrano
et al. [68] have reported a shift from macroalgal to O. pata-
gonica dominance in the Mediterranean. Given that macro-
algae are important primary producers, this shift may result
in significant changes in ecosystem functioning.
Corals are currently facing worldwide declines as a re-

sult of stresses, including increasing sea temperatures,
disease, and other anthropogenic disturbances [69-71].
Understanding the factors and characteristics that promote
resilience in O. patagonica in the midst of environmental
change may shed light into assessing and managing the
long-term success of corals that are currently at risk.

Conclusions
Despite years of maintaining that Oculina patagonica is
a recently introduced coral species in the Mediterranean,
we found no genetic or historical demographic evi-
dence to support that claim. Our results suggest that
Mediterranean populations of O. patagonica have long
been isolated from WA Oculina spp., and have only
recently become invasive in the Mediterranean, most
likely due to environmental changes. We advise against
hastily identifying a previously unknown species as being
introduced without detailed genetic analyses and compari-
sons to potential source populations. Accurate identifica-
tion of species’ invasive statuses will enable more effective
research programs aimed at better understanding the
mechanisms promoting the invasive nature of species,
which can then lead to the implementation of efficient
management plans.

Methods
Sampling and genotyping
Mediterranean samples (n = 66) of Oculina patagonica
were collected from Spain, Italy, Greece, Lebanon, and
Israel during the summers of 2011–13 (see Additional
file 2: Table S1; Figure 1). Individual colonies were sam-
pled by chipping off a small piece of skeleton containing
coral tissue and preserving it in 95% ethanol. Samples
were generally 10 m from conspecifics and not physically
connected to them to avoid collecting clonemates.
Western North Atlantic Oculina spp. samples (n = 56)

consisted of a subset of populations along the coast of
the eastern United States from Eytan et al. [23]. The four
populations (North Carolina, Daytona Beach, Cape Florida,
Panama City) were chosen to represent the two geographic
genetic clusters (North Carolina and Daytona Beach =
northern cluster; Cape Florida and Panama City = southern
cluster) and include three nominal species: O. arbuscula,
O. varicosa, and O. diffusa, although Eytan et al. [23] found
no genetic differences among these named taxa. We also
obtained 13 new samples of nominal species O. diffusa and
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O. varicosa from Bermuda. We will refer to these samples
collectively as “Western Atlantic (WA) Oculina spp”. All
sampling was conducted by or with local collaborators in
accordance with local and CITES regulations.
We extracted genomic DNA using QIAGEN DNeasy

Kit following the manufacturer's protocols with the fol-
lowing modifications. We lysed tissues at 56°C overnight.
We added 200 μl elution buffer and incubated at room
temperature for an hour prior to the final centrifuge
step. All individuals were genotyped, either previously or
in this study, for the mitochondrial cytochrome oxidase
I (COI) gene and the coding region of five nuclear genes
(see Additional file 4: Table S2). COI was genotyped using
previously deigned primers [72]. Three of the nuclear
genes (putatively: fatty acid elongase, elongation factor 1α,
and tachylectin-2 motif ) were previously developed to as-
sess subdivision in WA Oculina spp. populations [23], so
only the 13 Bermuda and 66 Mediterranean samples were
genotyped for these markers here. Two new nuclear
markers (putatively: crystalline and S-adenosylmethionine
synthetase) were developed using an expressed sequence
tag (EST) library [23]; all samples were genotyped for
these.
Polymerase chain reaction (PCR) amplifications were

conducted in 25 μl reactions consisting of 2.5 μl of 10x
buffer, 10 μM of dNTPs and each primer, and 0.2 μl of
One TaqTM DNA polymerase (New England Biolabs
Inc.). Amplifications were performed in a Bio-Rad T100
thermocyler under the conditions outlined by Eytan
et al. [23]. Samples were sequenced in both directions
using BigDye v3.1 on an ABI 3130XL at the Louisiana
State University Genomics Facility. Sequences were aligned
and edited using Geneious 4.5.5 [73]. Sequences obtained
from Eytan et al. [23] were trimmed to align to sequences
generated in this study. To resolve alleles in heterozygous
individuals, we employed a Bayesian statistical method im-
plemented in PHASE 2.1 [74-76]. Individuals with alleles
that could not be phased to a probability >90% were cloned
using the Invitrogen TOPO TA kit following the manufac-
ture's protocols. At least eight clones per reaction were
sequenced to identify the two alleles present in a sample.
The phased individuals derived from the cloning reactions
were then added to the ‘known’ PHASE file and the data
sets were re-analyzed. This process was repeated until the
phase of all individual genotypes was recovered with >90%
probability. Individuals heterozygous for an insertion/dele-
tion were resolved using CHAMPURU 1.0 [77]. In the end,
we were able to successfully resolve all 122 individuals’
multilocus genotypes.
To prevent clonal reproduction from skewing subdiv-

ision and genetic diversity measures, we removed indi-
viduals that shared a multilocus genotype with another
individual in the same population. The final nuclear
data set contained 105 individuals (see Additional file 2:
Table S1). Measures of genetic diversity for each nuclear
marker were calculated in DnaSP [78,79] (see Additional
file 4: Table S2). We tested each gene region for intralo-
cus recombination using GARD implemented in Hy-
Phy [80-82].

Genetic diversity and population subdivision
To visualize the relationships among alleles, we con-
structed haplotype networks for each locus using statis-
tical parsimony implemented in TCS 1.21 [83]. These
networks reveal how alleles for a particular gene are
shared among individuals from different populations.
We calculated allelic richness for all populations using
FSTAT 2.9.3.2 [84] and calculated observed heterozygosity
using GENODIVE [85]. To test whether Mediterranean
populations harbor less genetic diversity than western
Atlantic populations, we compared their average allelic
richness and observed heterozygosities using two-sample
one-tailed t-tests in GraphPad Prism 5. We performed
similar comparisons between western Mediterranean (Spain
and Italy) and eastern Mediterranean (Greece, Lebanon,
and Israel) populations using two-sample two-tailed t-tests.
To test for hierarchical genetic subdivision, we performed
Analyses of Molecular Variance (AMOVA) implemented
in GENODIVE [85] for all populations combined, and for
only Mediterranean populations.
The Bayesian clustering analysis implemented in STRUC-

TURE [42] has been used often to infer species introduc-
tions and identify potential source populations [17]. Here,
we used STRUCTURE 2.3.4 [42] to test whether O. pata-
gonica populations in the Mediterranean are genetically
similar to or distinct from WA Oculina spp. populations.
We first analyzed all populations together, and then ana-
lyzed the pool of Mediterranean populations separately.
We ran the program for 1 million MCMC steps and dis-
carded the first 100,000 steps as burn-in. We used the
more conservative admixture model with uncorrelated al-
lele frequencies. We performed 10 iterations for each in-
ferred number of genetic clusters, k. We used the Evanno
method [43] implemented in STRUCTURE HARVESTOR
[44] to determine the most likely number of genetic
clusters, k, in the data. We also used STRUCTRAMA
2.0 [86] to explicitly estimate k without a prior assign-
ment of a range of k, as in STRUCTURE. Each trial was
run for 20 million generations, sampling every 100, dis-
carding the first million as burn-in. We ran four chains
at a temperature of 0.2, and we employed a variety of
model options.

Divergence time
We estimated the time of divergence between the western
North Atlantic and Mediterranean populations using a
coalescent-based method implement in IMa [45]. IMa
uses Markov Chain Monte Carlo (MCMC) simulations of
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gene genealogies to estimate the divergence time (t), gen-
etic diversities (θ1, θ2, and ancestral θ) and migration rates
(m1 and m2) for two populations. To convert divergence
time (t), which is scaled by mutation in IMa, to years,
we used the average nuclear substitution rate for Porites
corals of 0.138% per Ma [87], since a rate for Oculina
corals is unavailable, which was converted to a rate per
locus per year for each marker (see Additional file 4:
Table S2). Given that the sequence alignments showed
sites with more than two variants and/or haplotype net-
works contained multiple reticulations, we used the
finite-sites model for all genes.
We first performed several IMa runs, subsequently

adjusting the upper bounds on the parameter priors, to
determine the most efficient search parameters. We then
ran four runs that differed only in the starting seed for
3,000,000 total steps sampling every 100 steps for a total
of 30,000 saved genealogies following a burn-in of 500,000
steps. The runs yielded similar results. We therefore com-
bined the runs and estimated all parameters and performed
nested model testing on the total saved genealogies in
IMa’s L mode (load trees). IMa analyses were conducted
with high performance computational resources provided
by Louisiana State University [88].
We recorded the maximum-likelihood estimate from

the posterior probability distribution for divergence time,
adjusted with a two year generation time [25] and its cred-
ibility interval based on the shortest parameter interval
containing 90% of the area under the posterior distribution
curve. Because the upper end of the posterior probability
distribution did not drop to zero (Figure 5), we used the
lower bound on the distribution as the parameter value at
which the probability dropped to zero at the upper bound
[89]. To evaluate all possible scenarios of divergence, which
differ in the number of unique divergence parameters and
therefore divergence complexity, we used model-based in-
ference and model-based selection to calculate evidence ra-
tios and rank all possible models [90-92].

Fossil record search
We searched museum collections for evidence of a fossil
record of Oculina spp. in the eastern Atlantic and/or
the Mediterranean. First, we explored the Smithsonian
National Museum of Natural History’s Department of
Invertebrate Zoology records by performing a keyword
search of Oculina on the IZ collections database website
[93]. We also explored the Muséum National d’Histoire
Naturelle Paléontologie collections database by perform-
ing a general search for Oculina on the collections website
[94]. From both lists of matches, we searched for fossil
specimens of Oculina spp. from eastern Atlantic and
Mediterranean countries and recorded the catalog num-
ber, species name, location, and geologic age. Several of
the specimens from the Smithsonian National Museum of
Natural History were observed during a visit to the mu-
seum in January 2013.

Population expansion within the Mediterranean
To test for expansion in the Mediterranean, we used
LAMARC 2.0 [46], which estimates parameters includ-
ing population growth rate using coalescent theory and
Metropolis Monte Carlo sampling technique. Three rep-
licates were each run using a Bayesian search strategy
and a single final chain. Following a burn-in of 500,000,
5 million trees were sampled every 100 step. Three sim-
ultaneous searches were performed at heating tempera-
tures of 1, 1.2, and 1.3, and a swap interval of 10. Trial
runs were first conducted and the output files examined
in the program TRACER 1.5 [95] to adjust the param-
eter bounds and assess the run. A “good run” was one in
which both the effective sample size (ESS) values were
great than 200 and trace plots for each parameter were
stationary. LAMARC calculates the overall growth rate
across all genes and replicates. Positive values of growth
rate indicate that the population has been growing, while
negative values indicate that it has been shrinking.

Availability of supporting data
Haplotypes for COI, p14, p62, and p302 for western
North Atlantic Oculina spp. populations obtained by Eytan
et al. [23] are available on GenBank [FJ966395–FJ966875].
Haplotypes generated here are available on The European
Nucleotide Archive [LN613417–LN614380].

Additional files

Additional file 1: Figure S1. Photographs of Oculina spp. specimens.
A–D are Oculina spp. fossil specimens from the Smithsonian National
Museum of Natural History. A and B are O. patagonica from South
America (USNM 75199 and USNM 75205, respectively). C and D are O.
crassoramosa from France (USNM I 80807). E is a skeletal specimen of
extant O. patagonica from the eastern Mediterranean. F is a skeletal
specimen of extant O. diffusa from Panama City, Florida (USA).

Additional file 2: Table S1. Collection sites of all Oculina spp. samples
used in this study.

Additional file 3: Figure S2. COI Neighbor-Joining Tree. Neighbor-joining
tree constructed using COI haplotypes from western North Atlantic Oculina
spp. populations and O. patagonica populations from the Mediterranean,
with Solenastrea hyades as the outgroup. Numbers represent the number of
individuals from each locality that share that haplotype. The tree shows that
O. patagonica (bolded) shares the same haplotype common to most western
North Atlantic Oculina spp.

Additional file 4: Table S2. Nuclear markers used to genotype all
Oculina spp. samples in this study.
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