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Abstract

Background: Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact
on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial
endosymbionts for essential amino acids present at low abundances in their phloem-based diet. This obligate
dependency has been proposed to explain why multiple amino acid transporter genes are maintained in the
genomes of the insect hosts. We implemented phylogenetic comparative methods to test whether amino acid
transporters have proliferated in sternorrhynchan genomes at rates grater than expected by chance.

Results: By applying a series of methods to reconcile gene and species trees, inferring the size of gene families
in ancestral lineages, and simulating the null process of birth and death in multi-gene families, we uncovered a 10-fold
increase in duplication rate in the AAAP family of amino acid transporters within Sternorrhyncha. This gene family
expansion was unmatched in other closely related clades lacking endosymbionts that provide essential amino acids.

Conclusions: Our findings support the influence of obligate endosymbioses on host genome evolution by both
inferring significant expansions of gene families involved in symbiotic interactions, and discovering increases in the rate
of duplication associated with multiple emergences of obligate symbiosis in Sternorrhyncha.
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Background

Nutritional mutualistic endosymbioses are characteristic
of sap-feeding insections of the sub-order Sternorrhyncha
(Hemiptera), including aphids, scales, whiteflies and
psyllids [1], and the closely related Auchenorrhyncha
that includes cicadas [2]. The obligate primary endo-
symbionts of sap-feeding insects provide their hosts
with essential amino acids [3,4]. Nutritional symbioses
are also found in blood-feeding insects such as the kissing
bug, Rhodnius prolixus, and the human body louse,
Pediculus humanus. These blood-feeders obtain vitamins
from their bacterial symbionts [5-7]. Genomic evolu-
tion of symbionts toward reduced gene content, AT
bias, and predictable gene sets based on the nutritional
roles of symbionts has been repeatedly confirmed. In
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contrast, genomic signatures of symbiosis are only now
being revealed in host genomes [8-11].

Transport of essential amino acids between symbionts
and sternorrhynchan hosts at the symbiotic interface is
mediated by amino acid transporters from two gene
families: the amino acid polyamine organocation trans-
porters (APC; Transporter Classification #2.A.3); and the
amino acid/auxin permease transporters (AAAP; TC #2.
A.18) [8,10]. Multiple genes identified in these families
have been duplicated, and some paralogs are known to
be expressed at the symbiotic interface in two sternor-
rhynchans: the pea aphid Acyrthosiphon pisum, and the
citrus mealybug Planococcus citri [8,10]. The expression
of duplicated amino acid transporters in the bacterio-
cytes (insect cells that house symbionts) of A. pisum and
P. citri suggests duplication provided new genes, and
thereby facilitated recruitment of amino acid transporters
to operate in the novel context of the host/symbiont inter-
face. If gene duplication in amino acid transporters is im-
portant for interactions between sternorrhynchan insects
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and their symbionts, then selection should favor the reten-
tion and subsequent recruitment of new paralogs for
amino acid exchange at the symbiotic interface. In con-
trast, related blood-feeding species would not be expected
to expand amino acid transporter families, as their nutri-
tional constraints involve vitamins; and auchenorrhynch-
ans may or may not expand their transporters, depending
on the constraints they experienced in their independently
evolved nutritional symbioses.

Duncan et al. [10] observed that amino acid trans-
porter families appear to have undergone clade-specific
expansions in Sternorrhyncha. They hypothesized these
expansions resulted from selection for the maintenance
of paralogs to mediate amino acid exchange at the host/
symbiont interface. Their hypothesis was not formally
tested [10], and comparative, quantitative analyses are
necessary for accurate investigation of the evolution of
host/symbiont coevolution in this sub-order. While the
hypothesized clade-specific expansions in Sternor-
rhyncha could be attributed to the most recent common
ancestor of extant stenorrhynchan insects, multiple lines
of evidence support independent coevolution of host/
symbiont genomes in the four main sternorrhynchan
families [8-14]. Additionally, phylogenetic analyses
strongly suggest that sap-feeding nutritional symbioses
have evolved multiple times in Hemiptera, including
independent origins in Sternorrhyncha (phloem sap-
feeders) and Auchenorrhyncha (xylem or phloem sap-
feeders) [2]. Therefore analyses of gene family evolution in
this system are best interpreted as the result of multiple
instances of selection in several independent lineages, as
opposed to a small number of events traceable to a
common ancestor. Here, we provide statistical tests of
the hypothesis that expansions of amino acid trans-
porter genes in sap-feeding sternorrhynchan resulted
from selection for an increased number of paralogs in
lineages that evolved nutritional endosymbiosis. To this
end, we use comparative methods and introduce a new
pipeline for applying a wide range of analyses of gene
family evolution.

Inference of the evolution of amino acid transporters
in sternorrhynchan insects requires a representative
taxonomic sample. A complete, resolved insect phyl-
ogeny was absent from Duncan et al. [10], and is neces-
sary to infer the evolutionary history of relevant gene
families in insects with a variety of diets and lifestyles. A
recent phylogenomic analysis has resolved the general
topology and timing of insect evolution, including the
Hemiptera [15]. That study, however, did not include all
the sternorrhynchan taxa needed to test for amino acid
transporter expansions. Here, as the basis for comparative
analyses of the evolution of amino acid transporters in
Sternorrhyncha, we infer a phylogeny of insects encom-
passing Paraneoptera and Holometabola. We include
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representatives from the four major sternorrhynchan fam-
ilies, as well as an auchenorrhynchan xylem sap-feeder, a
heteropteran blood-feeder, and additional taxa to improve
the statistical power of comparative methods.

Phylogenetic methods provide an array of powerful
techniques to infer the evolutionary history of gene family
evolution (for a detailed review of these methods, see
[16]). Methods for reconciling gene trees to species
phylogenies using parsimony to infer the history of
gene duplications and losses are well-established
[17-19]. Such methods, however, may be biased if the
gene tree is not well resolved or supported [20]. Alter-
natively, non-reconciliation techniques infer the history
of gene families from the number of genes found in extant
species. Parsimony, maximum likelihood and Bayesian
algorithms have been implemented to test for deviation
from a null birth-death model of gene family evolution
[21-25]. Here, we use both reconciliation and non-
reconciliation techniques coupled with simulations of
birth-death models of gene evolution [26,27] to analyze
the history of two amino acid transporter gene families in
phloem-feeding sternorrhynchans.

Results

Phylogenetic inference

Both the maximum likelihood (ML) and Bayesian spe-
cies phylogenies with 10 partitions recovered Sternor-
rhyncha as a monophyletic clade within Hemiptera
(Table 1, Figure 1, Additional file 1: Figure S1, bootstrap
support [bs] =100, posterior probability [pp] =0.9995).
Auchenorrhyncha (represented by Diceroprocta semi-
cincta) and Heteroptera (represented by Rhodnius pro-
lixus) formed a clade sister to Sternorrhyncha (Figure 1,
bs =100, pp = 0.9955). Psocodea (represented by Pedicu-
lus humanus) was sister to Hemiptera in the Bayesian
phylogeny, making Paraneoptera monophyletic, although
with low support (pp =0.47, Figure 1). This result was
obtained despite the starting ML phylogeny including a
paraphyletic Paraneoptera as in [15] (Additional file 1:
Figure S2).

Evolution of amino acid transporter gene families

Relative to other insects, sternorrhynchans had more
amino acid transporter paralogs (Figure 2, Table 2). Both
the type of analysis and optimization influenced esti-
mates of the history of amino acid transporter gene fam-
ilies. Notung (reconciliation and parsimony) and
DupliPhy-ML (gene copy number and ML) inferred
large family expansions or contractions toward the tips
of the species phylogeny, as well as a large expansion of
the AAAP family at the most recent common ancestor
(MRCA) of Sternorrhyncha (Figure 2). In contrast,
CAFE (gene copy number and ML) favored a model in-
ferring many smaller-scale expansions throughout the
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Table 1 Genes used in the phylogenetic reconstruction,
with accession numbers from the OrthoDB database and
inferred substitution matrices

Partition OrthoDB Gene/protein Substitution
accession Matrix
1 EOG7WACH6  Transcription factor 25 Le-Gascuel
EOG7JQQ2Q Uncharacterized protein (L6) B4
EOG72SODN  GRIM-19
2 EOG7B94KB  Mago-Nashi Jones-Taylor-
EOG7POFOG  Translation Initiation Factor TJhomton
A ot [55]
3 EOG771DPV  Ribosomal Protein L30 LG
EOG73C6VD  60S Ribosomal Protein L31
EOG74FSG2  Ubiquitin-conjugating
enzyme
EOG73JZB1  Ribosomal Protein S16
4 EOG7W1HKQ Ribosomal Protein S26 Mdller-Vingron
(VT) [56]
5 EOG7VTRRV  tRNA Synthetase LG
EOG7ND679  Exonuclease, RNAse T/DNA
Polymerase Il
6 EOG74RCV4  Cleft lip and palate LG
Transmembrane |
EOG7748KP  Succinyl-CoA: 3-Ketoacid-
coenzyme A transferase
EOG7Z9HRH  Uncharacterized protein
7 EOG73zDz5  Gtr1/Rag AG protein JIT
EOG7SFW14  Uncharacterized protein
8 EOG7455DF  Chloride Channel LG
9 EOG7P38WC  Tetratricopeptide repeat VT
10 EOG799DV6  Pyridoxal-phosphate- LG

dependent Transferase

Alignment and phylogenetic data are available on TreeBase.

clade (Figure 2). Despite analytical differences, all ap-
proaches inferred expansions (a net increase in the size
of the gene family, obtained by subtracting the number
of losses from the number of duplications in the clade,
noted k subsequently) of both amino acid transporter
gene families in Sternorrhyncha beyond what is expected
from the null birth-death model (Figure 3, APC [net ex-
pansion inferred in all branches of the clade] k=6, p =
0.002; AAAP k=8, p<10™). Subsequent simulations
showed these expansions were the result of more dupli-
cations —as opposed to fewer losses— relative to the ex-
pectations of a simulated birth-death model (Figure 3).
Notung provided the most conservative estimates of the
number of duplications and losses in Sternorrhyncha,
and we used its results to compare against the simulated
distributions (Figure 2).

The model-fitting approach implemented in CAFE
allowed us to compare models with a single birth-death
parameter A throughout the phylogeny against models
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with the A rate shifting in certain clades using likelihood-
ratio tests. A model in which X\ was allowed to shift in
Sternorrhyncha was favored over the null model with a
single A for the AAAP family (Likelihood Ratio [LR] =
6.63, p = 0.008), but not in the APC family (LR = 1.56, p =
0.204; Table 3). Under the better-fit model, the duplication
rate in Sternorrhyncha increased ~11X above the back-
ground rate of the phylogeny for the AAAP family
(Table 3). A structured model allowing for different rates
in Sternorrhyncha and differentiating between the rate of
duplication X and the rate of gene death p was the best fit
for the AAAP family (LR =846, p = 0.002, Table 4). This
more complex model inferred an increase in A over 8 or-
ders of magnitude for AAAP in Sternorrhyncha, while the
rate of gene death p decreased to 0.003 of the background
rate (Table 4). In APC, a model differentiating between a
global A and a global p across the phylogeny did not ex-
plain the data significantly better than the simpler null
model (LR=0.06, p=0.843; Table 4). The results of
models using an alternate tree topology with P. humanus
more closely related to Holometabola, as inferred in
[15,28], were highly comparable, resulting in the same
models being selected in all cases (see Additional file 1:
Table S1 and S2).

Discussion

We implemented phylogenetic comparative methods to
infer the evolutionary history of amino acid transporter
gene families, and test their association with the evolu-
tion of nutritional symbioses in Sternorrhyncha. Using a
range of approaches, we found Sternorrhyncha-specific
expansions of both the APC and AAAP amino acid
transporter families. Notably, within the AAAP family
the Sternorrhyncha-specific expansions were associated
with a steep increase in the duplication rate and de-
crease in the rate of gene loss. These results provide
strong support for our hypothesis that expansions of
amino acid transporters were favored in sap-feeding
sternorrhynchan lineages relying on endosymbiosis for
essential amino acid provisioning. Crucially, the results
are robust to both genome annotation and phylogenetic
uncertainty, as summarized below.

Genome annotation and phylogenetic uncertainty

Our analyses are robust despite the potential for uneven
sampling of amino acid transporters across lineages. The
method used by Duncan et al. [10] to identify trans-
porters was highly conservative, and we are confident
that closely related genes represent true paralogs, and
not allele or splice variants. For example, all transcripts
from the citrus mealybug P. citri were mapped to its
draft genome, and any transcripts sharing at least one
exon were collapsed into a single representative locus.
For the remaining hemipterans in which duplications



Dahan et al. BMC Evolutionary Biology (2015) 15:52

Page 4 of 11

Pediculus humanus

1.0

0.47

Acyrthosiphon pisum

Planococcus citri

RYOUAYLIOUIIS

Bemisia tabaci

e1o)doauereg

e1diuuoy

Bactericera cockerelli

1.0

1.0

Rhodnius prolixus

Diceroprocta semicincta

Tribolium castaneum

0.99

Bombyx mori

Anopheles gambiae

€[0qEIoWO[OH

Drosophila melanogaster

Nasonia vitripennis

Jurassic

200.0

Triassic

250.0

Devonian Carboniferous Permian

350.0 300.0

for the Geological Map of the World (CGMW), Paris, France.

150.0
Time before present (Ma)

Figure 1 Bayesian phylogeny inferred using 20 genes of 13 species. The median posterior likelihood was-160204. Node bars represent the
95% confidence interval for the age of the nodes. The corresponding geological eras are given for reference, and colored according to the Commission

Apis mellifera

I I L |
100.0 50.0 Present

were inferred (B. cockerelli, Be. tabaci), Duncan et al.
[10] used the Goldman and Yang method [29] to calcu-
late the pairwise rate of synonymous substitutions (dS)
between closely related genes within a species and col-
lapsed transcript sets with pairwise dS of 0.25 or less.
This cutoff value is equivalent to the pairwise dS of
orthologs between two aphids, A. pisum and Myzus per-
sicae, and represents a divergence of 32 to 53 million
years [30,31]. The dS < 0.25 cutoff provides a highly con-
servative estimate for the number of amino acid

transporter loci. For example, three recently duplicated
true paralogs in the APC family of amino acid transporters
collapsed into one representative locus in A. pisum [10].
Sampled hemipterans could have more true amino acid
transporter paralogs than estimated, but not fewer. This
underestimation of the number of amino acid transporter
paralogs will reduce the signals of expansion in analyses,
highlighting the robustness of our results. Finally, our
findings are robust despite uncertainties pertaining to the
general topology of the taxonomic groups used here, in
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Bactericera cockerelli

particular the placement of Psocodea relative to Paraneop-
tera and Holometabola [15,28,32].

Amino acid transporter expansions

We detected a significant expansion of the APC family
of amino acid transporters in Sternorrhyncha, inconsist-
ent with a neutral birth-death model of gene family evo-
lution. Simulations-based tests revealed that there were
more gene duplication events in the clade than expected,

but no more or fewer gene losses. However, the best-fit
model of evolution inferred by CAFE was a null model
in which a single rate of gene duplication/death gov-
erned the APC family across the phylogeny. This appar-
ent discrepancy in the results may be explained in one
of several ways: (1): Since the changes are happening in
a relatively small clade in the phylogeny the inference
method implemented in CAFE may not be powerful
enough to detect a finer-scale change that may be
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Table 2 Taxa set for phylogenetic analyses and number

of gene copies for both APC and AAAP transporter
superfamilies for each species
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occurring; or (2): Gene family evolution through dupli-
cation and loss is an inherently stochastic process, and
the simulations may have detected random variation in

Species Common name  APCloci  AAAPloci  the APC family size as a result of the low variance in
Acyrthosiphon pisum pea aphid 18 22 non-stenorrhynchan taxa in the phylogeny. In general,
Planococcus citri citrus mealybug 10 58 phylogenetic model comparisons based on simulations
Bemisia tabaci whitefly 1 2 (e.g., [33]) tend to be more senS}tlve than comparisons
) , ) based on model fit (e.g., [34]). If this were the case, a larger
Bactericera cockerelli potato psyllid 13 25 . N . . .

_ B _ sample of insect species is needed to directly estimate dif-
Diceroprocta semicincta  Cicada sp. 10 16 ferential rates of birth and death along branches in the
Rhodnius prolixus kissing bug 7 13 phylogeny using CAFE.

Pediculus humanus human body louse 8 16 In contrast, in the AAAP family, rates inferred using
Tribolium castaneum red flour beetle 10 16 CAFE and the results of simulations were consistent. We
Nasonia vitripennis jewel wasp 10 12 detected a neF 51gn1ﬁcar‘1t expansion —more duplications
ois melli o 5 » ” than losses— in the family in Sternorrhyncha compared to

is mellifera oneybee . , .

P . ' / expected values (Figure 3). CAFE’s best-fit model for
Bombyx mori silk moth 12 16 AAAP was one in which the rate of gene duplication
Anopheles gambiae mosquito 9 15 vastly exceeded the rate of gene death, with both rates
Drosophila melanogaster ~ fruit fly 10 17 shifting in Sternorrhyncha (Table 4). These results are in-
(Data from Price et al. (2011) [8] and Duncan et al. (2014) [10]). consistent with neutral gene family evolution.
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Figure 3 Simulations of gene family evolution in Hemiptera. Null distributions of net expansion or contraction, duplications, and losses of

two amino acid transporter gene families within Sternorrhyncha from 1000 simulations of a birth-death model of evolution using GenPhyloData

[27]. Expansion or contraction was obtained by subtracting the number of losses from the number of duplications detected in Sternorrhyncha in

a single replicate. A. Expansion or contraction in APC and D: AAAP in; B. duplications in APC and E: in AAAP; C. losses in APC and F: in AAAP. The

thick black lines represent the values inferred using Notung.
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Table 3 Results of likelihood-ratio tests comparing null models to those allowing a rate shift in the branches in

Sternorrhyncha
Model ABackground X 10® Asternorrhyncha X 10° Fold increase -ML # Parameters Likelihood ratio p-value

APC Single A 12177 - 3431 1 1.562 0204
Multiple A 0.7307 2.5049 343 33.52 2

AAAP Single A 13119 - - 3833 1 6.633 0.008
Multiple A 03286 3.6802 11.20 3501 2

\ represents the probability of gene duplication and loss per gene per million years.

Under a neutral or nearly neutral process, paralogs aris-
ing from gene duplications are expected to experience re-
laxed selection, eventually leading to subfunctionalization
and pseudogenization or (rarely) neofunctionalization.
This is the stochastic birth-death model of gene family
evolution [26,35]. Rejecting a stochastic birth-death model
implies that a non-neutral process governs the evolution-
ary fate of duplicate genes on a given branch of a phyl-
ogeny. Our results for the AAAP family of amino acid
transporters support the hypothesis that duplicate genes
provide a selective advantage to sternorrhynchan lineages,
but not to other insects. Despite differences in the mode
of evolution inferred, this result was consistent using three
different methods to infer the history of amino acid
transporter gene families in our phylogeny thus, revealing
a strong underlying signal. Therefore, Sternorrhynchan
insects appear to have been strongly selected for an in-
creased number of AAAP family amino acid trans-
porters. The simulations support a similar explanation
for the persistence of APC paralogs in sternorrhynch-
ans, although the mode of evolution of the APC family
remains unknown.

Recent evidence suggests that amino acid transporter
family expansions would benefit sternorrhynchans by
mediating the transport of amino acids between hosts
and symbionts [8,10,36]. Since sternorrhynchan endo-
symbiotic bacteria have few, if any, amino acid trans-
porters in their genomes [37,38], transport at the
symbiotic interface must operate via host genome
encoded amino acid transporters. Transcriptomic ana-
lyses show that sternorrhynchans with amino acid-
provisioning symbionts have amino acid transporter

paralogs expressed at their symbiotic interface, support-
ing a role for host paralogs in nutritional symbiosis [10].
These observations, combined with formal statistical
tests for deviation from a neutral birth-death model,
support the hypothesis that selection maintains amino
acid transporter paralogs in sternorrhynchan insections
By demonstrating that amino acid transporter gene fam-
ilies underwent expansions in this sub-order, our results
provide further evidence for the selective maintenance
of amino acid transporter paralogs of the AAAP, and
perhaps APC, gene families in sternorrhynchan insec-
tions We propose that selection arises from evolutionary
constraints for novel transporters with specialized roles
in mediating symbiotic amino acid exchange.

Evolution of endosymbiosis

A range of genomic, transcriptomic, and comparative
data suggest that amino acid transporters have been
retained because species have evolved endosymbiotic
mutualisms and experienced concomitant expansions in
amino acid transporter gene families, and not because
the MRCA of Sternorrhyncha evolved an endosymbiotic,
sap-feeding lifestyle. The monophyly of Sternorrhyncha
is strongly supported, both in our phylogenetic inference
and in the literature [15,39,40]. Based on shared charac-
teristics of sternorrhynchans, previous studies of amino
acid transporters have sometimes assumed that extant
Sternorrhyncha shared a symbiotic, phloem-feeding an-
cestor [8,10], but this interpretation is inconsistent with
current data. For example, psyllids and mealybugs have
experienced independent horizontal gene transfers of
bacterial genes involved in essential amino acid synthesis

Table 4 Results of the Likelihood-ratio test comparing models differentiating A and p to models with equal birth-death

parameters
Model ABackground X 103 AsternorrhynchaX 10% MBackgroundX 103 Msternorrhyncha X 10> -ML # Parameters Likelihood p-value
ratio
APC  Single A 1.2177 - - - 3431 1 0.06 0.843
Single A+ 1.2533 - 1.0615 - 3428 2
AAAP  Multiple A 03631 6.849 - 3501 2 1251 0.002
Multiple A+ 2.88 x 107 1.110 0.6341 603 x10° 2876 4

For APC, the estimated parameters are global across the phylogeny. For AAAP, the parameters were rates were allowed to shift in sternorrhynchan species. Data
generated with CAFE. A represents the probability of gene duplication/loss (Single/Multiple N), or gene duplication only (Single/Multiple A + p) per gene per million

years. [ represents the probability of gene loss per gene per million years.
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[9,11]. Additionally, variations in host/symbiont meta-
bolic complementarity in different sternorrhynchan line-
ages support the hypothesis of multiple origins for
nutritional symbiosis. For example, aphid and mealybug
bacterial symbionts are both missing the ilvE gene, re-
sponsible for the terminal step in the biosynthesis of
branch-chain amino acids. The final step in the biosyn-
thesis is carried out by the host-encoded branch-chain
amino acid transaminase in aphids [14], and the ortho-
log of this transaminase is enriched in the bacteriocytes
of mealybugs, suggesting the same complementarity in
both lineages [9,38]. In contrast, ilvE is present in the
psyllid symbiont Carsonella and expression of the psyllid
branch-chain amino acid transaminase is not enriched
in psyllid bacteriocytes [11]. Finally, amino acid trans-
porters expressed at the symbiotic interface in sampled
sternorrhynchan species are not orthologous [10], implying
that the expansions inferred are the result of independent,
parallel evolution. Given the parallel evolution of similar
symbiosis-related genomic and metabolic patterns in
different sternorrhynchan superfamilies, coevolution
between these insects and their symbionts appears to
be dynamic and independent.

The distribution of multigene family expansions on
the phylogeny depends strongly on the method used to
infer evolution, and has the potential to complement
gene expression analyses that suggest parallel evolution
of amino acid transporter recruitment to the symbiotic
interface. The mode of amino acid transporter family
expansions inferred using CAFE, in which expansions
accumulate throughout all branches of the clade, is
consistent with the paralogy of the amino acid trans-
porters recruited at the insect/symbiont interface in
Sternorrhyncha. In contrast, reconciliation methods,
and in particular those based on parsimony, tend to
minimize the number of gene gains and losses. In unre-
solved trees, such as the ones analyzed here, this may
infer more duplications towards the root, and therefore
more losses towards the tips [20]. Because of this
known bias, non-reconciliation methods may be better
guides to the history of amino acid transporters in light
of the independent evolution of symbiosis in different
lineages. Following the model of evolution inferred
using CAFE, expansions in the AAAP family correspond to
the branches on the phylogeny in which each family
evolved endosymbiosis, in line with the multiple-origins hy-
pothesis. Additional expansions of amino acid transporters
detected in A. pisum and P. citri that are independent of
the expansion inferred in the MRCA of Sternorrhyncha are
also consistent with the parallel evolution of host/symbiont
metabolic integration across the clade.

Expanded sampling of amino acid transporters to include
species with varying interdependence on symbionts will
help uncover the mechanisms of amino acid transporter
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expansions in Sternorrhyncha —particularly for the APC
gene family—, and improve our understanding of the mode
of evolution of endosymbiosis. If, as we hypothesize, amino
acid transporter expansions happen in tandem with the
evolution of a primary nutritional endosymbiosis, then sig-
nificant increases in paralogs will only be found in lineages
that display such symbioses. Conversely, if expansions of
amino acid transporters are still inferred at the Sternor-
rhynchan MRCA and are present in species that lack
bacteriocyte-associated symbionts such as the grape
phylloxera Daktulosphaira vitifoliae (Fitch), selection
for the maintenance of amino acid transporter paralogs
would be independent of endosymbiosis in Sternorrhycha.
In the latter case, duplicate amino acid transporters would
be retained in sternorrhynchans because of an unidentified
requirement common to all sternorrhynchans and inde-
pendent of the symbiotic lifestyle of the insect species.

Conclusions

Detailed comparative analyses support the hypothesis
that the expansion of amino acid transporters in Ster-
norrhyncha has been beneficial in the context of obligate
mutualistic endosymbiosis. This highlights the inter-
dependency and complementarity of genomes associated
through obligate symbiosis. As bacterial symbionts tend
toward reduced genomes, host genomes may change
drastically in structure and composition to complement
the elements lost in the symbiont and to support a
novel, beneficial symbiotic relationship.

The combination of statistical approaches we used, in-
cluding model fitting and a novel pipeline involving simula-
tions under a stochastic birth-death process, can be readily
deployed in future analyses of gene family evolution to test
for non-neutrality. With more extensive taxon sampling,
these methods can further elucidate the patterns of amino
acid transporter evolution in symbiotic insects. Finally, our
analyses can be applied to investigate genomic evolution in
other symbiotic clades, such as Auchenorrhyncha and vari-
ous blood-feeding insects.

Methods

Taxonomic sampling

To model the evolution of amino acid transporters, we
estimated the phylogeny of 13 species in two super-orders
of the class Insecta (Table 2) [8,10]. Analyses included spe-
cies representative of the four major superfamilies in Ster-
norrhyncha: Acyrthosiphon pisum from the Aphidoidea,
Planococcus citri from the Coccoidea, Bemisia tabaci from
the Aleyrodoidea and Bactericera cockerelli from the Psy-
lloidea. Sternorrhyncha outgroup hemipterans included
the auchenorrhynchan Diceroprocta semicincta and the
blood-feeding heteropteran Rhodnius prolixus. The blood
feeder Pediculus humanus was included as the outgroup to
Hemiptera in the super-order Paraneoptera. Members of
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Holometabola were included as a monophyletic outgroup
that includes Apis mellifera and Nasonia vitripennis, Tribo-
lium castaneum, Bombyx mori, Drosophila melanogaster
and Anopheles gambiae (see Additional file 1: Table S1 for
taxonomic details).

Sequence compilation

Orthologous amino acid sequences for A. pisum, R. pro-
lixus, P. humanus, N. vitripennis, T. castaneum, B. mori,
D. melanogaster and An. gambiae were obtained from
OrthoDB, an online database cataloguing orthologous
genes for many taxa [41]. Ap. mellifera sequences were ex-
tracted from the latest genome assembly (4.5) on BeeBase
[42,43]. Sequences from the other species were obtained
by applying tBLASTn to the transcriptome of each
remaining species [10,44,45], using previously identified
orthologs as queries (BLAST databases size ranged from
39,280 sequences to 182,687 sequences, cut-off e-value
was 10 [46]. Groups were discarded if they failed to
produce hits below the cut-off e-value, or if they returned
more than one sequence below the cut-off e-value. This
produced a pool of 48 putatively orthologous genes, from
which 20 were randomly selected for subsequent phylo-
genetic inference to reduce computational time (Table 1).

Alignment and phylogenetic inference

Amino acid sequences in each group were aligned using
MAFFT 7.045b under default settings [47]. Each align-
ment was visually inspected, and one alignment with a
pairwise identity below 40% was discarded. Another group
was then drawn randomly from the pool to replace the
rejected gene. The alignments were concatenated and
analyzed using PartitionFinderProtein to estimate the
best-fit partition scheme and substitution models for
the amino acid supermatrix [48]. A Maximum Likelihood
(ML) phylogeny was inferred using RAXML (Randomized
Axelerated ML) v. 7.2.6 with 200 bootstrap pseudorepli-
cates and using the best fit models of protein evolution
and partitions (Table 1) [49].

The resulting ML tree was dated using chronopl in the
R package ‘ape’ v. 3.0-11 [50], with calibration nodes
shown in Additional file 1: Figure S2. The Yule pure-
birth model of speciation was used as prior on the
branching patterns and a lognormal uncorrelated relaxed
clock model as prior on branch lengths in a Bayesian
phylogenetic analysis using BEAST v. 1.7.5 [51], in the
Cipres science gateway [52]. The dated phylogeny was
used as the starting point in this inference (Additional
file 1: Figure S1). Bayesian phylogenetic analyses ran
Markov-Chain Monte-Carlo (MCMC) searches over one
billion generations sampling every 1000 generations.
Results shown are from 5 independent 20-million-
generations runs with a burn-in of 2,000,000 (2000
trees) each.
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Inferring amino acid transporter duplications

The numbers of amino acid transporter paralogs in each
sampled species were obtained from [8,10]. Three differ-
ent approaches were used to infer the history of amino
acid transporters in our phylogeny: (1) Notung v. 2.6
[18,19] was used to reconcile the gene trees of APC and
AAAP families (obtained from Duncan et al. [10]) with
the species phylogeny, assigning default values for costs
of duplications (1.5) and losses (1.0); (2) DupliPhy-ML
[22] was run online with default parameters, and the
best models were selected using the Akaike Information
Criterion (AIC, Additional file 1: Table S3); and (3)
CAFE v. 3.1 [24,25] was used to infer the evolutionary
histories of both gene families and estimate the values of
corresponding A birth-death and p parameters.

A null model of duplication was implemented using
GenPhyloData, a tool that simulates random “guest”
trees along a known host phylogeny [27]. The estimates
from the single-\ CAFE models were assigned to the
birth and death parameters in simulations. This process
was automated over 1000 replicates. The resulting null
distributions of duplications, losses and net expansions/
contractions of amino acid transporter families at each
node were compared to the values inferred by Notung,
as it yielded the most conservative estimates of expan-
sions/contractions, duplications and losses in Sternor-
rhyncha. A significance level of a=0.05 was applied.
Simulations were implemented in UNIX using GenPhy-
loData, and data analyses were performed in R v. 3.1.0,
using the package ‘ape’ [50,53] (scripts available in the
Additional files 2 and 3). This new pipeline provides a
powerful basis for investigating gene families that are ex-
pected to evolve under a non-neutral process.

Duplication rates for amino acid transporters in
Sternorrhyncha

CAFE allows a structured inference of the A birth-death
parameter in the host phylogeny, so that it is possible to
compare a single-parameter model against more complex
models with clades having different rates of birth and
deaths. We inferred the APC and AAAP gene family evo-
lution using CAFE by fitting null models with a single par-
ameter throughout the host phylogeny, and comparing
those to models in which N\ was allowed to differ in
branches past the Sternorrhyncha MRCA (Table 3). The
models were then compared using likelihood-ratio tests by
generating simulated null likelihood ratio distributions
within CAFE. For the APC family, we compared the ‘glo-
bal’ model to a model in which X and the rate of gene
death p were allowed to differ from one another (as
opposed to the simpler model where X =), globally. For
AAAP, we compared the best-fit multiple-A model to one
in which X\ and p were allowed to differ from one another,
and where the rates were allowed to shift within
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Sternorrhyncha, using a likelihood-ratio test, and approxi-
mating the likelihood ratio distribution to a y* distribution
with 2 degrees of freedom. These tests were repeated using
an alternate topology of the underlying species phylogeny
reflected in the calibrated ML phylogeny (Additional file 1:
Figure S1).

Availability of supporting data

The data supporting this article is available in the Tree-
BASE repository, accession number S17122 http://purl.
org/phylo/treebase/phylows/study/TB2:517122
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