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Abstract

areas in southern Africa.

deepest splits at several hundred thousand years ago.

Background: The current taxonomy of the African giraffe (Giraffa camelopardalis) is primarily based on pelage
pattern and geographic distribution, and nine subspecies are currently recognized. Although genetic studies have
been conducted, their resolution is low, mainly due to limited sampling. Detailed knowledge about the genetic
variation and phylogeography of the South African giraffe (G. c¢. giraffa) and the Angolan giraffe (G. c. angolensis) is
lacking. We investigate genetic variation among giraffe matrilines by increased sampling, with a focus on giraffe key

Results: The 1,562 nucleotides long mitochondrial DNA dataset (cytochrome b and partial control region)
comprises 138 parsimony informative sites among 161 giraffe individuals from eight populations. We additionally
included two okapis as an outgroup. The analyses of the maternally inherited sequences reveal a deep divergence
between northern and southern giraffe populations in Africa, and a general pattern of distinct matrilineal clades
corresponding to their geographic distribution. Divergence time estimates among giraffe populations place the

Conclusions: Our increased sampling in southern Africa suggests that the distribution ranges of the Angolan and
South African giraffe need to be redefined. Knowledge about the phylogeography and genetic variation of these
two maternal lineages is crucial for the development of appropriate management strategies.
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Background

For more than 250 years, giraffe (Giraffa camelopardalis)
taxonomy has attracted interest among scientists [1-3].
The descriptions of the nine giraffe subspecies are primar-
ily based on pelage patterns, characteristics of ossicones
and their geographic distribution across the African con-
tinent [4,5]. However, the inconsistent pelage recognition
has confused taxonomical assignments due to its high vari-
ability [6-8]. Recent efforts using molecular genetic tech-
niques are beginning to clarify giraffe taxonomy [9-11]. In
contrast to studies on elephant [12,13], and other African
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wildlife [14,15], a range-wide genetic analysis of giraffe is
lacking [9-11]. A phylogenetic study using data of six sub-
species (Angolan giraffe (G. c. angolensis), South African
giraffe (G. c. giraffa), West African giraffe (G. c. peralta),
reticulated giraffe (G. c. reticulata), Rothschild’s giraffe
(G. c. rothschildi) and Masai giraffe (G. c. tippelskirchi))
based on nuclear microsatellites and mitochondrial (mt)
DNA sequences suggested that some of the subspecies may
actually represent distinct species [9]. Another study of the
giraffe subspecies historically classified as Thornicroft’s gir-
affe (G. c. thornicrofti), which is restricted to Zambia’s South
Luangwa valley, showed that this population has a distinct
mtDNA haplotype that is nested within the clade of Masai
giraffe [11]. Genetic analysis suggested that the Kordofan
giraffe (G. c. antiquorum) in Central Africa is closely related
to the West African giraffe [10], while the relationship of
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the Nubian giraffe (G. c¢. camelopardalis) is unclear due to a
lack of any genetic analyses.

In southern Africa, two subspecies of giraffe live in close
proximity. South African giraffe have been reported to
occur naturally throughout southern Botswana, southern
Zimbabwe, southwestern Mozambique, northern South
Africa and southeastern Namibia [7]. Giraffe of northwestern
and north-central Namibia have been categorized as
Angolan giraffe [1,16] but the taxonomic classification
of giraffe from northern Botswana and northeastern
Namibia remains uncertain. Angolan giraffe is thought
to occur also in southern Zambia, western Zimbabwe
and central Botswana [16]. Both giraffe populations
have historically been classified as either G. ¢. giraffa or
G. c. angolensis, or most recently as a hybrid of G.
giraffal G. angolensis, depending on the taxonomic ref-
erence [6,8]. The uncertainty of giraffe taxonomy in
southern Africa affects conservation efforts, as individ-
uals are being translocated both within and between
different populations and countries across Africa with-
out knowledge of the taxonomical status. Frequently,
these translocations are driven by economic reasons for
improving regional tourism rather than biodiversity
conservation [17]. Conservation policies depend on reli-
able information about the taxonomic status and about
genetic variability of locally adapted populations. Clarify-
ing the relationship and distribution of the Angolan and
South African giraffe is therefore particularly relevant for
conservation efforts of the newly established Kavango-
Zambezi Transfrontier Conservation Area (KAZA) that
includes northeastern Namibia and northern Botswana.

Although no targeted census of giraffe has been con-
ducted, the size of Botswana’s northern giraffe popula-
tion is estimated to have dropped over the last decade
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from >10,000 to <4,000 individuals [18]. The number of
giraffe in Bwabwata National Park in Namibia was deci-
mated in the 1970s and 1980s due to illegal hunting but
has recovered since then to >150 individuals [19].

We here present a population genetic analysis of mito-
chondrial cytochrome b (cytb) and partial control region
(CR) sequences for eight of the nine currently described
giraffe subspecies. Our sampling focuses on geographic
regions that have not been analyzed before, particularly
in southern Africa: Namibia (Bwabwata National Park —
BNP, Etosha National Park — ENP) and Botswana
(Chobe National Park — CNP, Moremi Game Reserve —
MGR, Nxai Pans — NXP, Vumbura Concession — V, Central
Kalahari Game Reserve — CKGR), but also central Africa’s
Democratic Republic of Congo (Garamba National Park —
GNP) (Table 1, Additional file 1: Table S1). Our dense
sampling includes many key areas of the giraffe distri-
bution range in southern Africa and therefore allows
for a high-resolution analysis of the phylogeography of
South African and Angolan giraffe. Furthermore, it al-
lows assessing the impact of a “cryptic” rift valley,
which runs northeast to southwest across Botswana
from Zambia [20,21], potentially having acted as a bar-
rier to giraffe dispersal.

Results

Mitochondrial DNA sequences from the cytochrome b
(cytb) gene and partial control region (CR) were success-
fully amplified from all samples. The cytb alignment was
1,140 nucleotides (nt) long and showed no gaps or am-
biguous sites. We also sequenced the L-strand of the CR
for a length of 786/787 nt, excluding the highly repeti-
tive poly-cytosine region. In order to match our newly
obtained sequences with published data, the length of

Table 1 Origin, abbreviation, number of individuals (N) and subspecies designation of analyzed giraffe sequences

Geographic origin Abbreviation N

Previous subspecies designation

Subspecies designation (this study)

Vumbura Concession, Botswana \ 11 angolensis giraffa
Chobe National Park, Botswana CNP 11 angolensis giraffa
Bwabwata National Park, Namibia BNP 7 angolensis giraffa
Moremi Game Reserve, Botswana MGR 16 angolensis giraffa

Nxai Pans, Botswana NXP 1 angolensis giraffa
Garamba National Park, DR Congo GNP 3 antiquorum antiquorum
Zakouma National Park, Chad ZNP 1 antiquorum antiquorum
Central Kalahari Game Reserve, Botswana CKGR 7 angolensis angolensis
Etosha National Park, Namibia ENP 17 angolensis angolensis
Khamab Kalahari Reserve, South Africa KKR 6 giraffa giraffa
Niger WA 13 peralta peralta
Murchison Falls National Park, Uganda MF 9 rothschildi rothschildi
Luangwa Valley, Zambia LVNP 5 thornicrofti tippelskirchi
Selous Game Reserve, Tanzania SGR 6 tippelskirchi tippelskirchi
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the CR alignment was limited to 422 nt. The stringent
422 nt CR alignment did not contain gaps. The CR was
relatively conserved outside this 422 nt region and until
the poly-cytosine sequence, yielding only three variable
sites among 20 giraffe individuals that represented all
clades. All sequences conformed to the reading frame,
length, stop codon and other properties of a functional
protein coding gene or the control region that are ob-
served in an established mitochondrial genome [EMBL:
NC012100]. Sequences with the same properties were
also obtained using the alternative primer pair for ampli-
fication and sequencing. Thus, it is reasonable to assume
that no mitochondrial nuclear mitochondrial insertions
(numts) were sequenced. The inclusion of two okapi
(Okapia johnstoni) sequences introduced unambiguously
placed gaps in the CR alignment, which were ignored in
all subsequent analyses. The combined (cytb plus CR)
alignment was 1,562 nt long and contained 138 parsi-
mony informative sites. The alignment included 161 gir-
affe and two okapi individuals, of which 102 giraffe were
newly sampled (Table 1, Additional file 1: Table S1).

The Bayesian analysis of mitochondrial sequence data
recovered the matrilines of all giraffe subspecies to be
monophyletic with respect to each other, although not
all nodes received posterior support values above 0.95
(Figure 1). The most obvious pattern is a well-supported
north-south split, with the southern subspecies Angolan
giraffe, South African giraffe, and Masai/Thornicroft’s
giraffe being separated from the northern subspecies
Kordofan giraffe, reticulated giraffe, Rothschild’s giraffe
and West African giraffe.

Using a molecular clock, BEAST estimates the deepest
divergence time among giraffe matrilines between the
northern and southern clade at ca. 2.0 million years ago
(Ma) (Figure 2). This is followed by the divergence of a
mtDNA clade containing Angolan giraffe, South African
giraffe and Masai/Thornicroft’s giraffe at ca. 1.4 Ma
(Table 2, Figure 2). A northern giraffe clade, which in-
cludes the Kordofan giraffe, reticulated giraffe, Roths-
child’s giraffe, and West African giraffe, diverged at
about 0.8 Ma (Table 2). Divergences within each subspe-
cies are estimated to have occurred between 100 to 400
thousand years (ka) ago. Note that the Bayesian poster-
ior support values for some of the nodes at the subspe-
cies level were below 0.95 (Figure 2).

Giraffe from Luangwa Valley National Park, Zambia,
which are formally classified as Thornicroft’s giraffe, form
a uniform but not a separated matrilineal group within
the variation of Masai giraffe. Note, that the divergence
between the southern and northern clade occurs between
populations south and north of the equator that are in
close geographic proximity to each other (Masai giraffe,
reticulated giraffe, Rothschild’s giraffe). The relative clus-
tering of the northern mtDNA clades (West African
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giraffe, Rothschild’s giraffe, Kordofan giraffe and reticu-
lated giraffe) remains uncertain due to low posterior sup-
port values for some of the nodes (Figure 1, Figure 2).

Nine database individuals that were assigned to a par-
ticular subspecies previously [9] grouped at unexpected
positions in our phylogenetic analysis (numbered indi-
viduals in Figure 1). Two individuals of South African
giraffe (# 1 and 2) are placed within Angolan giraffe but
not with other South African giraffe individuals. Like-
wise, two individuals (# 3 and 4) of Masai giraffe are
placed within South African giraffe, two Rothschild’s gir-
affe individuals (# 5 and 6) grouped with Masai giraffe,
one Masai giraffe (# 7) fell basal to reticulated giraffe,
and two reticulated giraffe (# 8 and 9) grouped with
Rothschild’s giraffe. Additional information of the geo-
graphic origin of each individual sequence is given in
Additional file 1: Table S1.

Currently, there are four giraffe subspecies recognized
south of the equator in Africa: Masai/Thornicroft’s gir-
affe, South African giraffe, and Angolan giraffe, the two
latter occurring in close proximity in Botswana. In our
data, Angolan giraffe individuals from the Central Kalahari
Game Reserve in central Botswana grouped with Angolan
giraffe from the Etosha National Park in Namibia, which
was expected from their geographic origin and previously
assumed classification. One individual from the Etosha
National Park fell into the Central Kalahari Game Reserve
mtDNA clade.

Unexpectedly, 46 individuals sampled as Angolan gir-
affe from Chobe National Park, Nxai Pans, Vumbura
Concession and Moremi Game Reserve in northern
Botswana, and Bwabwata National Park in northeastern
Namibia grouped with South African giraffe from the
Khamab Kalahari Reserve in South Africa. These hith-
erto not sampled regions thus harbor mtDNA lineages
of the South African giraffe subspecies and not of
Angolan giraffe. Populations carrying the mitochondrial
haplotype of South African giraffe thus geographically
enclose the Angolan giraffe of the Central Kalahari
Game Reserve from the north and south (Figure 3).

Individuals from Bwabwata National Park formed a
separate group with its own mtDNA haplotype (Figure 1,
Figure 4).

To assess differentiation between populations, pairwise
Fgr values were calculated (Table 3). The overall popula-
tion differentiation of mtDNA was high, with Fsr values
ranging from 0.672 (Masai giraffe and Thornicroft’s gir-
affe) to 0.998 (Rothschild’s giraffe and Thornicroft’s gir-
affe). The pairwise Fgy value between South African and
Angolan giraffe was 0.929, showing a clear differenti-
ation between those two populations, despite their close
geographic proximity.

A haplotype network analysis supports the strong di-
vergences among most giraffe mtDNA clades (Figure 4),
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Figure 1 Phylogenetic tree based on mitochondrial DNA
encompassing 161 giraffe individuals. The topology corresponds
to a maximum clade credibility tree obtained from BEAST, but branch
lengths were calculated by maximum likelihood in Treefinder. Each dot
represents one individual giraffe, colors are coding for the respective
subspecies/population. “z" denotes captive (zoo) individuals, asterisks at
branches indicate Bayesian posterior support >0.95. Abbreviations for
the samples are explained in the text and in Table 1.

as sub-networks representing the different subspecies
are not connected to each other at the 95% connection
probability limit. Corresponding to our phylogenetic
analysis (Figure 1), Thornicroft’s giraffe are an exception,
as individuals from the Luangwa valley share a distinct
haplotype that falls within the variation of Masai giraffe.
The networks also demonstrate the considerable amount
of variation within most subspecies: Masai/Thornicroft’s
and Angolan giraffe have the highest numbers of haplo-
types (14 and 13, respectively; Table 4). Kordofan and re-
ticulated giraffe show the highest haplotype diversities,
0.964 + 0.077 and 0.972 + 0.064, respectively — almost
every individual has its own mitochondrial haplotype. In
contrast, Thornicroft’s, West African and Rothschild’s
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Figure 2 Maximum clade credibility tree of the major giraffe
populations as reconstructed by Bayesian analysis conducted
in BEAST. Blue bars indicate 95% highest posterior density intervals
for node ages, asterisks denote posterior probability >0.95. Scale on

the bottom represents divergence time (million years ago).
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Table 2 Divergence time estimates (median heights and
95% highest posterior density intervals) obtained from
BEAST based on 1,565 nt mtDNA

Divergence Time estimate
(Ma)
G. c. giraffa plus tippelskirchi plus angolensis vs. 20 (14-28)*
antiquorum plus rothschildi plus peralta plus reticulata
G. c. giraffa plus tippelskirchi vs. angolensis 14 (09 -2.1)*
G. . giraffa vs. tippelskirchi 06 (04 - 09
G. ¢. giraffa 0.1 (0.02-0.2)
G. ¢ tippelskirchi 04 (0.2-07)
G. ¢. angolensis 02 (0.1 - 04)%
G. ¢. antiquorum vs. rothschildi plus peralta plus 08 (0.5- 1.1)*
reticulata
G. ¢. rothschildi plus peralta vs. reticulata 0.7 (04 -10)
G. ¢. rothschildi vs. peralta 05 (03-08)
G. ¢. antiquorum 04 (0.2 - 0.7)*

Asterisks indicate posterior probability >0.95.

giraffe have the lowest number of haplotypes, the lowest
haplotype diversity, and the lowest nucleotide diversity
(Table 4), corresponding to the short branch lengths of
these three mtDNA clades (Figure 1). Although the
overall mitochondrial variation in South African giraffe
was comparable to that of other clades (13 haplotypes,
Hyq =0.769 + 0.050; Table 4), it is noteworthy that one
haplotype was common and shared among individuals
from different reserves or parks (Vumbura Concession,
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Chobe National Park, Moremi Game Reserve, Nxai
Pans, all in Botswana) (Figure 4).

Rothschild’s giraffe, which is currently considered
“endangered” on the IUCN Red List [22], has two haplo-
types among 11 individuals and low nucleotide and
haplotype diversity (0.00012 + 0.00009 and 0.182 + 0.144,
respectively; Table 4).

Discussion

The analyses of 1,562 nt of concatenated mitochondrial
sequence data identified seven well-separated and re-
ciprocally monophyletic giraffe clades. The deepest di-
vergence, as estimated by a Bayesian BEAST analysis,
was found between a northern clade, comprising West
African, Kordofan, reticulated, and Rothschild’s giraffe,
and a southern clade, comprising Angolan, South Afri-
can, and Masai/Thornicroft’s giraffe, despite the close
geographic proximity of populations of both clades in
East Africa. Notably, Masai giraffe are geographically
much closer to northern populations than to the south-
ern African Angolan and South African giraffe. The
matrilineal clades identified are largely congruent to
previously named subspecies and reflect the geographic
structure seen among giraffe.

The Thornicroft’s giraffe has been described to only
occur in the Luangwa Valley National Park. Divergences
between Thornicroft’s and Masai giraffe are shallow,
which is why the former was proposed to be subsumed
into the Masai giraffe’s clade [11]. These lineages are on

Figure 3 Map of sub-Saharan Africa. A: Distribution range of giraffe (yellow patches) and sampling locations (abbreviations are explained in
Table 1). Colors show genetically identified subspecies (coding as in Figure 1). B: Depiction of southern African giraffe populations and location of
geographic boundaries. O-K-Z: Owambo-Kalahari-Zimbabwe epigeiric axis, O-B: Okavango-Bangweulu axis.
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Table 3 Genetic differentiation (pairwise Fs; values) among the eight subspecies as defined by mtDNA clades

angolensis giraffa peralta antiquorum thornicrofti tippelskirchi reticulata
giraffa 0.940
peralta 0935 0978
antiquorum 0.905 0.967 0.859
thornicrofti 0.897 0.935 0.984 0.930
tippelskirchi 0.859 0.838 0916 0.866 0.506
reticulata 0.901 0961 0.839 0.689 0.900 0.856
rothschildi 0.938 0.980 0.959 0.887 0.996 0918 0.842

For assignment to mtDNA clades see Figure 1. All pairwise Fst values were highly significant (p < 0.001) when testing with 1,000 permutations.

discrete evolutionary trajectories, due to their geographic
isolation. The shallow divergence might thus reflect re-
tention of ancestral polymorphisms, rendering mtDNA a
marker with limited diagnostic resolution [23,24]. How-
ever, the giraffe from Luangwa Valley National Park have a
unique mitochondrial haplotype (Figure 4). This should
be taken into account in giraffe conservation and manage-
ment, in particular for ecological, spatial and behavioral
aspects. A previously suggested placing of the South
African giraffe within the variation of the Masai giraffe [9]
could not be confirmed. Our mtDNA tree shows the same
topology as found by Hassanin and colleagues [10].
Assignment of individual giraffe to the wrong subspe-
cies is not unusual and could be explained by natural
migration or human-induced translocation. It is note-
worthy, however, that every single one of the newly sam-
pled 102 individuals was associated with the expected
subspecies. Therefore, our data do not indicate large-
scale migration of females from one subspecies to an-
other or confusion of populations by human-induced
translocation of females. Our new sampling effort of 102
individuals from well-defined areas and populations, and
the data analyses indicate that individuals previously
assigned to a clade different from the individual’s des-
ignation [9] might be a result of mtDNA introgression,

Table 4 Diversity indices per subspecies for the mtDNA

or of inadequate subspecies identification. This high-
lights the importance of accurate sample collection
and identification.

From previous studies [2] and historical assumptions
[6], it was expected that Botswana and Namibia contain
Angolan giraffe, and that the South African giraffe occurs
further south and east in South Africa and Zimbabwe
[2,6,25]. However, our data suggest a narrow zone separat-
ing Central Kalahari Game Reserve in Botswana, which is
inhabited only by Angolan giraffe, from Chobe National
Park, Moremi Game Reserve, Nxai Pans Park, and
Vumbura Concession in northern Botswana, which are
inhabited by South African giraffe. The central and north-
western giraffe populations in Namibia have formerly been
assigned to Angolan giraffe [1,16]. Based on our results,
the Bwabwata National Park population in northeastern
Namibia unambiguously represents South African giraffe.
The Bwabwata National Park population is geographically
close (<100 km) to Chobe National Park and Vumbura
Concession (also inhabited by South African giraffe),
whereas the nearest natural Angolan giraffe population
is >500 km to the west (Etosha National Park) or >350 km
to the south (Central Kalahari Game Reserve).

Pairwise Fgr values of mtDNA sequences are expected
to exceed those from nuclear markers in cases of strong

N Ny Hq sd (Hy) m sd (m)
angolensis 33 (35) 13(13) 0.902 (0.901) 0.028 (0.026) 0.00351 (0.00344) 0.00026 (0.00026)
antiquorum 8 7 0.964 0.077 0.00434 0.00140
giraffa 56 (56) 13(11) 0.769 (0.751) 0.050 (0.052) 0.00326 (0.00103) 0.00147 (0.00017)
reticulata 98 8(7) 0.972 (0.964) 0.064 (0.077) 0.00800 (0.00632) 0.00209 (0.00229)
rothschildi 13 (13) 4(3) 0423 (0.295) 0.164 (0.156) 0.01171 (0.00020) 0.00589 (0.00011)
thornicrofti 5 1 0.000 0.000 0.00000 0.00000
tippelskirchi 21 (20) 15(13) 0.924 (0911) 0.050 (0.054) 0.01030 (0.00555) 0.00319 (0.00119)
peralta 16 4 0.642 0.103 0.00082 0.00022
Total 161 59 0.956 0.008 0.02667 0.00075

N: number of analyzed individuals. Ny: number of haplotypes. Hgq: haplotype diversity. sd: standard deviation. m: uncorrected nucleotide diversity. All indices were
calculated in DnaSP. For previously published sequences, the original subspecies assignments were used. Our own samples are assigned to subspecies according
to their mtDNA clades in Figure 1. Numbers in brackets are the respective indices when the probably misassigned individuals #1 to #9 are put in the mtDNA

clades as presented in Figure 1.
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female philopatry and male-biased gene flow or temporal
nonequilibrium after a (recent) habitat fragmentation. In
that case, mtDNA gene trees would show reciprocal
monophyly and geographic structuring (as seen here),
but nuclear loci would not support this [26].

The oldest fossils show that the giraffe species com-
plex existed already about one Ma [27]. According to
our divergence time estimates (Table 2, Figure 2), giraffe
diverged into distinct populations that are designated as
subspecies during the Pleistocene (2.6 Ma to 12 ka). This
is considerably older than divergence times between
closely related species of Ursus (~600 ka) estimated by
independently inherited nuclear introns [28], of Pan
(~420 ka) using multilocus analysis including mitochon-
drial, nuclear, X- and Y-chromosomal loci [29], or of
Canis (~900 ka) based on mitochondrial genes and nu-
clear loci [30]. Due to the lack of sequence data from
giraffe fossils and closely related and dated outgroup fos-
sils, our calibration points (5 and 9 Ma, respectively)
might lead to an overestimation of divergence times
within giraffe. However, the clear intraspecific structur-
ing into region-specific maternal clades supports an
early divergence within giraffe. However, the mitochon-
drial gene tree might differ from the species tree [31],
and a multilocus approach will be necessary to estimate
divergence times representative of the species as a whole.
Support for the early divergence time estimates comes
from haplotype networks showing that numerous substi-
tutions accumulated between matrilineal clades prevent-
ing connection at the 95% probability limit (Figure 4).
Furthermore, there is considerable variation within most
giraffe subspecies that can only develop during consider-
able time periods. Finally, signs of haplotype sharing be-
tween subspecies are rare (Figure 4), suggesting that
maternal clades have been separated from each other for a
considerable amount of time and that female gene flow
among those clades is limited. However, it is not clear
if the nine deviating individuals are misidentified sam-
ples, or if they result from human translocation or
introgression of mtDNA among different giraffe popu-
lations. From 26 Masai/Thornicroft’s giraffe individuals,
two share mtDNA haplotypes with South African gir-
affe, and one has a unique haplotype similar to reticulated
giraffe (Figure 1, Figure 4). Evidence from autosomal
microsatellites supports the clear structuring into subspe-
cific groups, although limited signs of allele sharing were
found among some populations [9].

Today, the majority of giraffe populations analyzed
are widely separated and geographically isolated. This is
a consequence of increasing agricultural practices caus-
ing habitat loss and fragmentation, of human population
and settlement growth, and illegal hunting. Historically,
and during the Pleistocene, the distribution ranges may
have been more contiguous. Yet, during the Pleistocene,
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some barriers must have limited female gene flow
among different giraffe populations. The distribution of
many African ungulates is correlated closely with the
distribution of savannah habitat, which in turn is strongly
influenced by climatic conditions. The African climate ex-
perienced wide changes during the Pleistocene, resulting
in recurrent expansions and contractions of savannah
habitat and tropical forest. An increase of tropical forest
across Central Africa during warm and wet periods (plu-
vials) around the equator might explain the north-south
split seen today in giraffe and other ungulates [32,33]. In
the northern parts of the distribution range, the expansion
of the Lake Mega-Chad at about 8,000 to 3,000 years ago
[34], might have affected recent giraffe dispersal [10].

We dated the divergence between the Angolan and
South African giraffe matrilines in Botswana to 1.4 Ma.
This deep, early Pleistocene divergence exists despite
their close geographic proximity: distances up to 300 km
can be travelled by giraffe [35]. Today, no obvious geo-
graphic barrier appears to separate these two subspecies.
Thus, we propose a historical “cryptic” rift valley as ex-
planation for the pattern seen in Botswana, as outlined
below.

A known geographic boundary follows the Okavango
River (Figure 3B) and Gumare Fault in the northwest of
Botswana and extends east to the Thamalakhane Fault
south of the Okavango pans and the Ntwetwe Pan. The
Owambo-Kalahari-Zimbabwe epeirogenic axis (O-K-Z;
Figure 3B) also forms a subtle but yet distinct geo-
graphic boundary [21,20] between Angolan and South
African giraffe populations. Today, this area only holds
seasonal water and thus does not seem as an obvious
barrier to dispersal. However, it could have been a
barrier during the Pleistocene [21,36]. The Okavango-
Bangweulu axis (O-B; Figure 3B) is the southern exten-
sion of the East African Rift System and could have
acted as further geographic separator when mountains
were lowered and drainage systems formed resulting in
the north-east split of giraffe matrilines. The persistence
of these conditions might have been reinforced, if an
early Pleistocene interglacial coincided with a maximum
extent of Palaeo-Lake Makgadikgadi, which ended likely
before the Middle Pleistocene (~970 to 500 ka) [21,36].
It has been suggested that a “cryptic” rift valley runs
northeast to southwest across Botswana from Zambia
with faulting ramifying southwest which is represented
best by the development of the Fish River canyon in
southern Namibia [37]. There were massive lake systems
in northeast Botswana, but these dwindled by 500 to
600 ka (Palaeo-Lake Thamalakhane) [21]. Cotterill [36]
argues that the above described phylogeographic anomaly
is a result of an expansion of moist, evergreen forests in
an interglacial, e. g. during warm and wet conditions. Such
a “cryptic” rift valley can also explain distributions of other
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animals that are similar to the distribution of giraffe
mtDNA haplotypes: African forest elephant (Loxodonta
cyclotis) haplotypes are not within the variation of the
African elephant (L. africana) from central Namibia (and
southeast Botswana), but are confined only to the popula-
tions in northern Botswana and northwestern Zambia
[12]. Phylogeographic divergences between southeast and
northeast representatives of the Damara dikdik (Madoqua
damarensis) and the impala (Aepyceros petersi) [38] ex-
hibit both congruent distributions with Angolan giraffe in
Namibia, as a result of Pleistocene climatic conditions
and/or major changes in the larger rivers on the south-
central African plateau during the Pleistocene [39].
Finally, the estimated population expansion of the
Okavango Red lechwes (Kobus leche), a floodplain
specialist, is explained by expansion of floodplain habi-
tats following contraction of the northeast Botswana
mega-lakes in the Middle Pleistocene [36].

Thus, the persistence of a vast mosaic of aquatic habi-
tats and moist forest occupied the shallow rift valley of
northeast Botswana through much of the Pleistocene
[21]. This scenario poses a conceivable explanation for
the formation of the distribution of Angolan and South
African giraffe maternal lineages as currently seen in
Botswana. Today, no obvious geographic barrier appears
to separate these two subspecies. Ecological or behav-
joral factors, such as a specific mate recognition system
[40], possibly differentiated pelage pattern and female
philopatry may maintain limited genetic admixture.

A major episode of aridity in a Pleistocene glacial
period may explain mtDNA lineage divergence within
Angolan giraffe populations being restricted to Namibia
(including Etosha National Park), and one being located
in central Botswana (Central Kalahari Game Reserve).
Few large mammals show such phylogeographic evidence
of strong influence by geological landforms in the form of
genetic depauperation or change in the extant distribu-
tions across southern Angola, northeastern Botswana and
southwestern Zambia [39].

Mitochondrial DNA is maternally inherited from mother
to offspring. It allows tracing the maternal lineage and re-
flects female movements, or the lack thereof, in a phylo-
geographic context. While we acknowledge the pitfalls of
only investigating a small, uniparentally inherited part of
the genome [26], mtDNA nevertheless enabled us to spe-
cifically analyze the maternal lineages of giraffe subspecies
and also include database sequences of reticulated giraffe,
for which samples are lacking. Reticulated giraffe are inter-
esting due to their high variability and close proximity to
subspecies of the southern clade. Moreover, it has been
shown previously that phylogenetic trees based on mtDNA
and nuclear microsatellites are congruent in giraffe [9],
suggesting that the matrilineal structuring is not differing
considerably from that of the species as a whole. The clear
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structure of the mtDNA clades might thus allow inferring
that giraffe populations (and not only the matrilines) have
been separated from each other for a considerable amount
of time. Alternatively, mtDNA structure might reflect the
nature of females to stay at or return to their place of birth
(philopatry or site fidelity). Although female philopatry and
male-biased dispersal has not been systematically studied
in wild giraffe, it is a general pattern in many mammals
[41]. However, long-term field observations by one of the
authors (JF) support fidelity of both sexes of giraffe to
a particular region, because the populations of desert-
dwelling Angolan giraffe in northwest Namibia remained
without contact and genetic admixture for at least five
years, despite close proximity to other giraffe in Etosha
National Park approximately 150 to 200 km east. The ef-
fects of male-biased gene flow on phylogeographic struc-
turing of a widely distributed species have recently been
demonstrated in bears [42]. To further investigate if giraffe
represent one species with matrilineal structuring or a
multi-species complex, and to analyze the extent of mito-
chondrial and nuclear discordance [43], future research
must incorporate multiple independently inherited auto-
somal loci. The differences in pelage pattern observed
among giraffe from different regions might reflect nuclear
variation, indicative of separation between subspecies also
at biparentally inherited parts of the genome. Moreover,
markers from the paternally inherited Y chromosome
would be beneficial to specifically study male gene flow
to recover a potentially contrasting structuring of the
patriline. If giraffe exhibited male-biased dispersal and
if several species were involved, female-specific mtDNA is
predicted to be a marker with high introgression rates,
showing insufficiently diagnostic resolution on species de-
limitation [23].

Conclusions

Enhanced sampling from key regions of the giraffe distri-
bution range show a clear matrilineal structuring of giraffe
into distinct clades. The genetic analyses support a clear
north-south split, separating two major matrilineal clades
in giraffe (southern and northern clade). We also found a
sharp east-west delineation between Angolan and South
African giraffe, in an area in northern Botswana that has
not been genetically investigated before. Our study shows
for the first time that South African giraffe are distributed
in different parks in Botswana, north of their previously
known distribution range. Biparentally and/or paternally
inherited sequence markers will be the next step to fully
understand the subspecies/species structure in this wide-
spread charismatic African mammal.

Methods
We collected giraffe tissue samples from seven of nine
currently described subspecies (Table 1) (G. c. angolensis,
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G. ¢ giraffa, G. c. tippelskirchi, G. c. antiquorum, G. c.
rothschildi, G. c. peralta, G. c. thornicrofti) and included
published data for G. c. reticulata (Additional file 1: Table
S1) in our analyses. In August 2009, samples for seven
subspecies were collected using remote delivery biopsy
darting from free-ranging giraffe in major giraffe popula-
tions in northern and central Botswana: Moremi Game
Reserve (MGR), Chobe National Park (CNP), Central
Kalahari Game Reserve (CKGR) and Nxai Pans (NXP). In
2013, samples were collected from the Vumbura Conces-
sion (V) and northern Okavango Delta in Botswana, and
from Bwabwata National Park (BNP) in northeastern
Namibia (Figure 3). Additional samples were collected in
collaboration with conservation partners in Chad, Demo-
cratic Republic of Congo, Niger, South Africa, Tanzania
and Uganda (Table 1, Additional file 1: Table S1). Skin
biopsies were stored at room temperature in a tissue
preservative buffer [44] with glutaraldehyde prior to
DNA isolation. Whole genomic DNA was extracted
from tissue and blood using standard phenol/chloro-
form extraction [45].

The complete cytb gene and a partial CR were PCR
amplified and sequenced with newly designed giraffe-
specific PCR primers that were constructed from an
existing mitochondrial genome of the giraffe [EMBL
AP003424]. The 1,140 nt long cytb gene was amplified
with the primer pair 5-TGAAAAACCATCGTTGTC
GT-3’ and 5-GTGGAAGGCGAAGAATCG-3’ and the
control region (422 nt) was amplified with the primer
pair 5-TGAAAAACCATCGTTGTCGT-3 and 5-GTG
GAAGGCGAAGAATCG-3'. In rare cases where amplifi-
cation or sequencing produced unintelligible sequences
or sequences with poor quality, mitochondrial-specific
sequences were obtained with an alternative primer pair
(5-GACCCACCAAAATTTAACACAATC-3 and 5-GT
ATGAAGTCTGTGTTGGTCGTTG-3).

PCR amplification of mtDNA sequences was per-
formed with 10 ng genomic DNA using the VWR Mas-
termix containing Amplicon-Taq (VWR International
GmbH, Darmstadt, Germany) according to the following
protocol: 6 pL 2x mastermix incl. Taq, 0.25 pL 100x bo-
vine serum albumin, 0.4 pL 10 pmol/pL each forward
and reverse primer, 6.45 uL desalted water, DNA. PCR
conditions for were as follows: initiation at 95°C for
5 min, 35 cycles of denaturation (at 95°C for 30 s), an-
nealing (at 50°C for 30 s) and elongation (at 72°C for
1 min), and a final elongation step at 72°C for 5 min.
The PCR products were diluted in water and cycle se-
quencing was done with the BigDye terminator sequen-
cing kit 3.1 (Applied Biosystems, Foster City, California).
Excess dye was removed with the BigDye XTerminator
Purification Kit (Applied Biosystems). Purified products
were analyzed on an Applied Biosystems ABI 3730 DNA
Analyzer [EMBL: HG975087-HG975290].
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Our data set was complemented with published se-
quences from databases (listed in Additional file 1:
Table S1) e.g. from [9,10,46]. Sequences were manually
edited in Geneious version 5.6.4 (Biomatters, Auckland,
New Zealand) and aligned with ClustalX [47]. The cor-
responding sequences from two okapis (Okapia johnstoni)
database samples [EMBL: IN632674, HF571214, HF571175]
were used as outgroup.

TCS 1.21 [48] inferred statistical parsimony haplo-
type networks with the connection probability limit
set to 95%. Columns containing ambiguous sites were
removed from the alignment and gaps were treated as
fifth state. DnaSP 5.10 [49] was used for the calcula-
tion of nucleotide diversity, number of haplotypes and
haplotype diversity and Arlequin ver 3.5 [50] for pair-
wise Fgt values. Inkscape 0.48 was used to improve
trees and networks graphics.

For divergence time estimations, mtDNA sequences
from suitable ruminants (Pudu puda, Rangifer taran-
dus, Muntiacus muntjak and Cervus elaphus) were
obtained from EMBL/GenBank (Additional file 1:
Table S1). The split between Pudu puda and Rangifer
tarandus was set to 5 Ma and between Muntiacus
muntjak and Cervus elaphus to 9 Ma according to
the fossil record [46]. A Bayesian phylogenetic tree
including all 161 giraffe individuals and two okapis
was estimated in BEAST v1.7.5 [51]. The branch
length were calculated on the BEAST tree topology in
TREEFINDER version of March 2008 using a max-
imum likelihood approach [52]. Coalescent based di-
vergence times were estimated in BEAST on a
restricted subset of the giraffe individuals in order to
avoid an imbalance between taxon sampling of giraffe
and outgroups. The subset included one representa-
tive of each subspecies and major population. We
used the HKY + 1+ G substitution model as identified
best fitting by jModelTest [53], a lognormal relaxed
clock with a uniform prior on the substitution rate
and ran the program for 2x10°® generations. Conver-
gence was confirmed in Tracer v1.5.

Availability of supporting data
DNA sequences are deposited at GenBank under the
accession numbers [EMBL: HG975087-HG975290].

Additional file

Additional file 1: Sample information with locations, accession
numbers, and subspecies designation.
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