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Abstract

Background: Five basic taste modalities, sour, sweet, bitter, salt and umami, can be distinguished by humans and
are fundamental for physical and ecological adaptations in mammals. Molecular genetic studies of the receptor
genes for these tastes have been conducted in terrestrial mammals; however, little is known about the evolution
and adaptation of these genes in marine mammals.

Results: Here, all five basic taste modalities, sour, sweet, bitter, salt and umami, were investigated in cetaceans. The
sequence characteristics and evolutionary analyses of taste receptor genes suggested that nearly all cetaceans may
have lost all taste modalities except for that of salt.

Conclusions: This is the first study to comprehensively examine the five basic taste modalities in cetaceans with
extensive taxa sampling. Our results suggest that cetaceans have lost four of the basic taste modalities including
sour, sweet, umami, and most of the ability to sense bitter tastes. The integrity of the candidate salt taste receptor
genes in all the cetaceans examined may be because of their function in Na+ reabsorption, which is key to
osmoregulation and aquatic adaptation.
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Background
Cetaceans, commonly known as whales, dolphins and
porpoises, have a mysterious history of transition from
land to water. Numerous phylogenetic studies based on
morphological as well as molecular characteristics have
suggested that Cetacea is an independent clade nested
within the mammalian order Artiodactyla (reviewed in
[1]). Molecular studies have dated modern cetaceans (in-
cluding toothed and baleen whales) to have originated
about 34 Mya (Million years ago) [2,3]. Subsequently, ce-
taceans developed a series of adaptations to fully aquatic
environments (e.g., loss of limbs, shortening of the skull,
loss of sebaceous glands, echolocation ability in Odontoceti,
and baleen plate in Mysticeti) [1,4,5]. However, the gen-
etic basis for the origin and adaptation of this group of
species is far from clear. Several studies have shown that
many loci in cetaceans have gone through adaptive evo-
lution, suggesting that some cetacean organs evolved
adaptively while others degenerated. For example, the
membrane motor protein gene prestin, which is associated
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with high-frequency hearing in vertebrates, was shown to
undergo positive selection in echolocating dolphins [6-8],
whereas the number of olfactory receptor family pseudo-
genes is significantly higher in cetaceans than in other
mammals [9-12].
Five basic taste modalities, sour, sweet, bitter, salt, and

umami, can be distinguished by humans and are funda-
mental for physical and ecological adaptations in mam-
mals [13,14]. Among them, umami and sweet tastes are
attractive and beneficial to animals’ ingestion of protein-
rich and nutritious food. Salt at low concentrations is an
attractive taste and is associated with Na+ reabsorption
[15-18]. Bitter tastes can cause taste aversion, thus pro-
tecting mammals from ingesting toxic substances [19,20].
Sour tastes are unpleasant and can prevent the ingestion
of unripe and decayed food resources [21]. The receptor
genes of each taste modality have been identified in mam-
mals. In particular, umami/sweet tastants are perceived by
Tas1rs (taste receptor, type 1 receptors) belonging to the
G-protein coupled receptor C subtype family. Tas1r1 or
Tas1r2 are co-expressed with Tas1r3 to perceive umami or
sweet tastants, respectively [22-27]. Bitter substances are
perceived by Tas2rs (taste receptor, type 2 receptors)
[28-30]. Chandrashekar et al. (2000) [29] demonstrated
that a mouse T2R (mT2R-5) responded to the bitter
. This is an Open Access article distributed under the terms of the Creative
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tastant cycloheximide, and a human receptor hT2R-4 and
a mouse receptor mT2R-8 responded to denatonium and
6-n-propyl-2-thiouracil. Jiang et al. (2012) [31] identified
only 10 Tas2rs genes in dolphin genome and all these
genes were proved to be pseudogenes. Thus, we used
these 10 Tas2rs from cow and dog reference genomes to
search the Yangtze River dolphin (or baiji, Lipotes vexilli-
fer) genome for the raw members of these genes and fur-
ther compared them to dolphin assembly. Eventually, we
identified 8 Tas2rs excluding Tas2r38 and Tas2r62b in
baiji genome, so we used the 10 Tas2rs in Jiang et al. 2012
to conduct our experiment. Sour and salt taste receptors
are ion channels. To date, several candidate sour taste re-
ceptors have been reported, including acid sensing ion
channels (ASICs) [32], hyperpolarization activated cyclic
nucleotide gated potassium channels (HCNs) [33], potas-
sium channels [34], and polycystic kidney disease 1 L3 and
2 L1 heteromers (PKD1L3+ PKD2L1) [35-37]. Here we
chose PKD2L1 to investigate whether cetaceans retained
the sour taste modality, because mice lacking the Pkd2l1
gene have reduced sour taste ability and some people who
are sour-ageusic also showed loss of the Pkd2l1 gene
[38,39]. Opposite taste responses are observed for saline
solutions of different concentrations; low concentrations
are perceived as attractive while concentrated solutions
are aversive. These opposing responses are reported to be
perceived by different receptors and different pathways
[14-16]. The epithelial sodium channel ENaC is involved
in attractive sodium sensing and knockout of ENaCα in
mice resulted in a complete loss of salt attraction and salt
response [40,41].
Promoted by the discovery of taste receptor genes, the

evolutionary history of taste perception under certain
ecological and feeding behaviors has been studied in de-
tail in recent decades. For example, Tas1rs, consisting of
three members, Tas1r1, Tas1r2 and Tas1r3, are relatively
highly conserved in almost all vertebrates [42]. A pseu-
dogenized Tas1r1 has been reported in the giant panda
(Ailuropoda melanoleuca) and was suggested to coincide
with the loss of the umami taste modality [43,44]. The
chicken (Gallus gallus) has lost Tas1r2 and thus may be
insensitive to sweet compounds [42], whereas three
vampire bats, the hairy-legged vampire bat (Diphylla
ecaudata), common vampire bat (Desmodus rotundus),
and white-winged vampire bat (Diaemus youngi), have
lost both umami and sweet taste modalities [45,46]. Jiang
et al. (2012) [31] reported that all three Tas1rs were lost
in sea lion (Zalophus californianus) and the common
bottlenose dolphin (Tursiops truncatus), which is con-
sistent with their unique feeding behavior of swallowing
food whole without chewing. Tas2rs are less conserved
than Tas1rs [42]. The number of Tas2rs ranges from
three in chicken to 69 in the guinea pig (Cavia porcel-
lus), with an average number of ~30 in mammals
[47,48], and the similarity of Tas2rs is approximately
30–70% [28]. By searching the dolphin genome (at
2.59 × coverage), Jiang et al. (2012) [31] demonstrated
that dolphins have lost sweet, umami and bitter taste
perception; however, they did not investigate the other
two taste modalities, sour and salt. Li et al. (2014)
[47] investigated Tas2rs gene repertoires in verte-
brates, and they demonstrated that dietary toxins are
a major selective force shaping the diversity of the Tas2r
repertoire.
To investigate the cetacean taste system and to test

hypotheses proposed in previous studies, we designed
degenerate PCR primers to amplify all three Tas1rs, ten
Tas2rs, Pkd2l1, and three ENaC members (ENaC α, β
and γ) from cetacean genomes. Our results indicate that
almost all cetaceans have lost sour, sweet, umami and
most of the bitter taste modality, while the salt taste may
be the only modality retained in cetaceans.

Results and discussion
Loss of sour, sweet, bitter and umami taste modalities
in cetaceans
We successfully amplified Tas1r1, Tas1r2, Pkd2l1, 10 bit-
ter taste receptor genes (Tas2r1, Tas2r2, Tas2r3, Tas2r5,
Tas2r16, Tas2r38, Tas2r39, Tas2r60, Tas2r62a and
Tas2r62b), and three salt taste receptor genes (scnn1a,
scnn1b and scnn1g) from major lineages of cetaceans (7–11
toothed whales and 1–2 baleen whales) and from Hippo-
potamidae (Hippopotamus amphibious) (Figures 1a, b,
Additional file 1: Table S1 and Additional file 2: Tables S2-
S7). These sequences were deposited in GenBank [GenBank:
KJ524713-KJ524837]. Multiple ORF-disrupting indels and
premature stop codons were identified in sour, sweet, bit-
ter and umami taste receptor genes in all cetaceans.
Tas2r16 was intact in the baleen whale. We mapped these
mutations and premature stop codons onto all the ampli-
fied gene sequences, except for Tas2r62a and Tas2r62b,
because useful reference sequences were not available for
these two genes (Additional file 3: Figures S1-S11). Fur-
thermore, for Hippopotamidae,Tas1r1, Tas1r2, Tas2r2 and
Tas2r3 were found to be intact, but Pkd2l1, Tas2r1 and
Tas2r60 were pseudogenized. Based on the location of the
first premature stop codon in the secondary structure of
each protein, all these inactivation mutations are predicted
to cause protein truncation (Additional file 4: Table S8).
Although we have tried multiple primers to amplify
Tas1r3, we failed to amplify even one exon eventually.
Considering that both Tas1r1 and Tas1r2 had been identi-
fied as pseudogenes, we speculated that the umami and
sweet tastes had been lost in the cetaceans. According to
sequence alignments of the three salt taste receptor
genes, we did not identify any inactivation mutations in
salt taste receptor genes in cetaceans or Hippopotamidae.
For Tas1r1, Tas1r2, Pkd2l1, and 10 Tas2rs genes, we only
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Figure 1 The amplification of taste receptor genes in cetaceans and hippopotamus. a: Degenerate PCR amplification of Tas1r1, Tas1r2,
Pkd2l1, and 10 Tas2rs in cetaceans and hippopotamus. Red circles indicate pseudogenes, blue circles indicate functional genes, yellow boxes
indicate unsuccessful amplification, and NA indicates no amplification was carried out. b: PCR amplification of three candidate salt taste receptor
genes in cetaceans and hippopotamus. Blue circles indicate functional genes, and NA indicates no amplification was carried out.
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chose 7 cetacean species to represent most major cet-
acean lineages. Considering that we have identified some
shared indels and/or premature stop codons in these
genes of some cetacean lineages, it is reasonable to make
a conclusion that these genes might have become pseu-
dogenized in cetaceans. However, it is necessary to pay
more attention to sensory perception of cetaceans in
the future, particularly using high-throughput DNA se-
quencing techniques and sampling more genes in more
species.
Six exons of Tas1r1 and Tas1r2 stretching from nearly

the beginning of the N-terminus to the end of the C-
terminus were amplified in the major cetacean lineages
and Hippopotamidae (Additional file 2: Tables S2-S3).
PKD2L1 is composed of an intracellular N-terminal re-
gion, a six transmembrane domain and an intracellular
C-terminal region [49]. A total of 15 Pkd2l1 exons were
amplified in representative cetacean branches and Hip-
popotamidae (Additional file 2: Table S4). Bitter com-
pounds are perceived by numerous intronless Tas2rs
[28-30]. Jiang et al. (2012) [31] have identified 10 Tas2rs
by searching dolphin’s genome, and showed dolphin
may have lost bitter taste perception owing to pseudo-
genization of these 10 Tas2rs. Here we successfully
amplified these 10 Tas2r genes, ranging from 872 to
1,161 bp and used these to explore the evolution of Tas2rs
in extant cetaceans and Hippopotamidae (Additional
file 1: Table S1).
Based on sequence alignments against cow (Bos taurus)
homologues, we identified multiple ORF-disrupting indels
and premature stop codons in Tas1r1, Tas1r2, Pkd2l1 and
in ten Tas2rs scattered among cetacean branches. We also
found ORF-disrupting mutations in Pkd2l1 and in two
bitter taste receptor genes (Tas2r3 and Tas2r60) in Hippo-
potamidae (Additional file 3: Figures S1-S11). All these in-
activating mutations were mapped onto the species tree
(Additional file 5: Figures S12-S22), and the locations of
the first premature stop codons are listed in Additional
file 4: Table S8. For Tas1r1, we identified a premature
stop codon shared by all cetaceans, a 5 bp deletion shared
by all toothed whales and a 17 bp deletion in two baleen
whales (Additional file 3: Figure S2). For Tas1r2, a 5 bp
deletion was found on the stem Odontoceti (Additional
file 3: Figure S3), suggesting that the pseudogenization
event had happened in the common ancestor of the
Odontoceti. The ability to sense sour-taste substances is
important for protecting mammals from ingesting toxic
food. For PKD2L1, the sole candidate sour taste receptor,
we found two premature stop codons shared by all
toothed whales, excluding the Dwarf sperm whale (Kogia
sima) and a premature TGA stop codon shared by all ce-
taceans except for the baiji (Additional file 3: Figure S1).
Interestingly, the ninth exon of Pkd2l1 was lost in the fin-
less porpoise (Neophocaena phocaenoides) (Additional
file 3: Figure S1), which was confirmed by an additional
eight individuals.
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We amplified 10 Tas2rs, including Tas2r1-3, 5, 16, 38–
39, 60, 62a and Tas2r62b in cetaceans and in five mem-
bers of them in Hippopotamidae members (Additional
file 1: Table S1). Compared with corresponding func-
tional sequences of Tas2r1, we found a 1 bp deletion in
three species of Delphinidae, a premature stop codon
(TGA) in all cetaceans except for the Dwarf sperm
whale, and another premature stop codon (TGA) in four
toothed whales (Additional file 3: Figure S4). In Tas2r2,
Tas2r5 and Tas2r16, we found shared ORF-disrupting
mutations and/or premature stop codons in all toothed
whales, such as a 1 bp or a 2 bp deletion in Tas2r2
(Additional file 3: Figure S5), a shared TGA premature
stop codon in Tas2r5 (Additional file 3: Figure S7), and a
4 bp deletion in Tas2r16 (Additional file 3: Figure S8),
suggesting that the functional loss of these genes hap-
pened in the common ancestor of toothed whales. How-
ever, we could not exclude the possibility that the
pseudogenization event in Tas2r2 might have occurred
in the ancestor of all cetaceans, although we failed to
amplify the whole Tas2r2 sequence in the common
minke whale (Balaenoptera acutorostrata). Most inter-
estingly, the common minke whale still had an intact
Tas2r16, but whether it is still functional requires further
investigation. Shared inactivating mutations in Tas2r3,
Tas2r38, Tas2r39 and Tas2r60 were all successfully
mapped on the stem cetaceans, although Tas2r38 was
successfully amplified in only five species. A 1 bp deletion
in Tas2r3 (Additional file 3: Figure S6), a 2 bp deletion in
Tas2r38 (Additional file 3: Figure S9), a 4 bp insertion in
Tas2r39 (Additional file 3: Figure S10), and a shared TGA
premature stop codon in Tas2r60 (Additional file 3: Figure
S11) were identified, suggesting that the functional loss
happened in the common ancestor of the cetaceans. For
Tas2r62a and Tas2r62b, we could not definitively identify
indels because the homologous gene in cow is a pseudo-
gene and in dog only a portion of the gene has been re-
ported and may, therefore, not be functional. However, we
are confident that both Tas2r62a and Tas2r62b in ceta-
ceans are pseudogenes because correct translation reveals
multiple premature stop codons. For the three pseudogen-
ized Tas2rs of Hippopotamidae, no shared ORF-disrupting
mutation was found between cetaceans and Hippopotami-
dae, suggesting independent pseudogenization events in
cetaceans and Hippopotamidae.

Relaxation of selective pressure on taste genes
To evaluate the selective pressure on these pseudogen-
ized taste receptor genes in cetaceans, the ratios of non-
synonymous to synonymous substitutions (dN/dS) were
calculated (Table 1). For Tas1r1-2 and Pkd2l1, based on
the assumption that all branches had a single ω value,
purifying selection was seen across the tree for the three
genes according to comparison between model A and
model B (ω = 0.2919, p = 0; ω = 0.20585, p = 0; ω = 0.28788,
p = 0; respectively). Further comparison between model A
and model C in which pseudogenized branches had a ω2

while other branches had a ω1 showed that ω in pseudo-
genized branches was significantly higher for umami,
sweet, and sour taste receptor genes (ω1 = 0.25599, ω2 =
0.68390 in model C, p = 2.82E-12 in dataset I; ω1 =
0.17096, ω2 = 0.49085 in model C, p = 7.97E-14 in dataset
II; ω1 = 0.24058, ω2 = 0.55166 in model C, p = 1.35E-07 in
dataset III), indicating that functional constraint was
slightly relaxed in cetaceans for Tas1r1and Tas1r2 and in
cetaceans plus Hippopotamidae for Pkd2l1. To further
evaluate whether selective pressure was completely re-
moved, we performed comparisons between model C and
model D which had a fixed ω2 = 1 in pseudogenized
branches. This analysis showed that functional constraints
on Tas1r1and Tas1r2 were not completely removed in ce-
taceans nor on Pkd2l1 in cetaceans plus Hippopotamidae
(p = 0.01 in model C vs D of dataset I; p = 9.90E-07 in
model C vs D of dataset II; p = 5.45E-05 in model C vs D
of dataset III). Finally, model E, which allowed different
branches their own ω was significantly fixed the data than
model C (p = 2.33E-05 in model C vs E of dataset I;
p = 2.41E-05 in model C vs E of dataset II; p = 6.78E-07
in model C vs E of dataset III), indicative of variable ω
across the tree for the three genes.
We analyzed seven bitter taste receptor genes, exclud-

ing Tas2r38, Tas2r62a and Tas2r62b because the species
from which we successfully amplified Tas2r38 were
scarce, and we only retrieved pseudogenes as query se-
quences for Tas2r62a and Tas2r62b. The analysis process
was similar to that for Tas1r1, Tas1r2 and Pkd2l1, and
found that the functional constraints were almost com-
pletely removed from these seven Tas2rs (Additional file 6:
Tables S9-S15).
The shift of habitat from land to water approximately

52.5 Mya and subsequent changes in feeding behavior and
habitat might have contributed to the loss of the four
tastes in cetaceans. For example, basal cetaceans have sev-
eral suites of synapomorphies, including reduction of the
crushing basins of teeth, which suggested a major change
of dental function, and development of the long and nar-
row postorbital and temporal region of the skull in early
cetaceans. Those synapomorphies could affect sense
organs and may be related to dietary changes in early ceta-
ceans [50,51]. Alongside living in aquatic water environ-
ments, cetaceans have evolved unique feeding behaviors
including the swallowing of food without chewing in
toothed whales and filtering in baleen whales [52,53].
These behaviors further reduced their dependence on
taste in the search for food resources. Anatomical evi-
dence also reveals that both toothed and baleen whales
have degenerated tongue epithelia containing only few
taste buds [54-56]. The tongues of the Pacific whitesided



Table 1 Likelihood ratio tests of various models on the selective pressures on Tas1r1, Tas1r2, Pkd2l1, and Scnn1g

Models ω -lnL np Models
compared

2Δ (ln L) p-value

Dataset I: Tas1r1

All branches have one ω (A) 0.2919 12711.16 28

All branches have one ω = 1(B) 1 13033.12 27 B vs. A 643.92 0

The branches with pseudogenized Tas1r1 has ω2,
others have ω1 (C)

ω1 = 0.25599 12686.76 29 A vs. C 48.81 2.82E-12

ω2 = 0.68390

The branches with pseudogenized Tas1r1 has ω2 = 1,
others have ω1 (D)

ω1 = 0.25589 12690.33 28 D vs. C 7.15 0.01

ω2 = 1.00000

Each branch has its own ω(E) Variable ω by branch 12655.22 53 C vs. E 63.06 2.33E-05

Dataset II: Tas1r2

All branches have one ω (A) 0.20585 11866.17 24

All branches have one ω = 1(B) 1 12287.21 23 B vs. A 842.08 0

The branches with pseudogenized Tas1r2 has ω2,
others have ω1 (C)

ω1 = 0.17096 ω2 = 0.49085 11838.26 25 A vs. C 55.81 7.97E-14

The branches with pseudogenized Tas1r2 has ω2 = 1,
others have ω1 (D)

ω1 = 0.16972 ω2 = 1.00000 11850.23 24 D vs. C 23.95 9.90E-07

Each branch has its own ω(E) Variable ω by branch 11809.99 45 C vs. E 56.54 2.41E-05

Dataset III: Pkd2l1

All branches have one ω(A) 0.28788 8723.86 28

All branches have one ω = 1(B) 1 8907.34 27 B vs. A 366.97 0

The branches with pseudogenized Pkd2l1 has ω2,
others have ω1 (C)

ω1 = 0.24058 ω2 = 0.55166 8709.97 29 A vs. C 27.79 1.35E-07

The branches with pseudogenized Pkd2l1
has ω2 = 1, others have ω1 (D)

ω1 = 0.23991 8718.11 28 D vs. C 16.29 5.45E-05

ω2 = 1.00000

Each branch has its own ω (E) Variable ω by branch 8673.30 53 C vs. E 73.33 6.78E-07

Dataset IV: Scnn1g

All branches in cetaceans have a ω3, other branches
have a ω2. (F)

ω2 = 0.19790 8999.60 46

ω3 = 1.05041

M2a-rel: All branches in cetaceans have a ω3,
other branches have a ω2, ω2 =ω3. (G)

ω2 = ω3 = 0.25665 9036.40 45 F vs G 73.58 0

Site model

M1a (nearly neutral) ω0 = 0.05745 ω1 = 1.00000 9068.93 43

M2a (positive selection) ω0 = 0.05745 ω1 = 1.00000
ω2 = 1.00000

9068.93 45 M1a VS M2a 0 1

M8a ω = 1.00000 9037.05 44

M8 ω = 1.35413 9036.59 45 M8a VS M8 0.93 0.33
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dolphin (Lagenorhynchus obliquidens), bottlenose dolphin,
striped dolphin (Stenella coeruleoalba), and baiji have
been reported to lack circumvallate papilla, foliate papilla
and fungiform papilla [54-56]. Furthermore, most ceta-
ceans live in oceans where high concentrations of sodium
might mask other taste modalities. This would further de-
crease their dependence on taste for seeking out prey,
leading to the loss of basic taste modalities.
It is noteworthy that there are many reports detailing

the distribution of Tas1rs and Tas2rs in non-oral cavities,
including intestinal tract [57-60], respiratory tract [61-63],
pancreas [64] and brain [65,66], and in these non-oral cav-
ities these taste receptors can also interact with taste sub-
stances but they induce different reactions. There are also
other receptors that detect small peptides and amino acids
such as metabotropic glutamate receptors (mGluRs) and
calcium-sensing receptors (CaSRs) [67-70]. We, therefore,
cannot exclude the possibility that cetaceans may retain
some umami taste despite Tas1r1 being pseudogenized. It
will be interesting to investigate other candidate umami
taste receptors to see whether cetaceans have completely
lost the umami taste.
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Salt taste is the sole functional taste modality retained
in cetaceans
The sense of salt taste can contribute to the ingestion of
Na+ and other minerals. It is widely believed that the
epithelial sodium channel (ENaC), composed of three
homologous ENaCα, β and γ subunits, plays a crucial
role in the perception of salt taste [15,71,72]. Belonging
to the ENaC/degenerin family, ENaC was proposed to
be an α-γ-β trimer based on the structure of ASIC1 (acid
sensing ion channel 1), which is another member of the
ENaC/degenerin family [73]. Each ENaC subunit con-
sists of an intracellular N terminal region, an intracellu-
lar C terminal region, and a two-transmembrane domain
[72]. Here, we successfully amplified ENaCα, β and γ
subunits encoded by scnn1a, scnn1b and scnn1g, respect-
ively, in representative toothed and baleen whales and
in Hippopotamidae (Additional file 1: Table S1 and
Additional file 2: Tables S5-S7).
No inactivating mutation was identified in any of these

three genes. Furthermore, we have identified multiple
conserved residues in cetaceans that are essential for
channel function. These conserved residues reside in
motifs that include the conserved proline-rich motifs
containing PPPXYXXL residues in the C-terminus, HG
residues in the N-terminus, FPXXTXC in post-M1 (first
transmembrane domain), completely conserved residues in
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γV590I variation in toothed whales, a γV593I variation in
all toothed whales except for the beaked whale (Mesoplo-
don densirostris), and a αM596V variation in cetaceans
(Figure 2). These substitutions probably affect the forma-
tion of the channel pore based on their distribution in
pre-M2 and M2, which are known to participate in the
formation of the channel pore. Even though we could not
ifer
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identify all conserved sequences owing to incomplete
amplification, the above analyses strongly suggested that
the salt taste genes were intact.
We used site models (m1a vs m2a; m8 vs m8a), and

branch site model to test whether salt taste receptor
genes were under positive selection, and Clade model C
(compared with m2a_ rel, a null model for Clade model
C) was used to identify divergent selection acting on dif-
ferent clades [79,80]. For scnn1g, Clade model C marked
all cetaceans as foreground branches, with ω3 = 1.05041
for the foreground branch and ω2 = 0.19790 for the
background branch (F vs G of dataset IV in Table 1),
which is significantly better than m2a_rel (p = 0). Our
clade model showed evidence of significant divergent se-
lection, and the ω in cetacean was greater than one, sug-
gesting positive selection of this gene in cetacean clade.
M8 in the site model also identified some positively se-
lected sites, although the model was not significantly
better than the null model (p = 0.33) and the p-values of
the sites were less than 95% (Dataset IV in Table 1).
Using the latest model FUBAR [81], we also identified
four pervasive diversifying selection sites at posterior
probability ≥0.8 (data not shown). Because amino acid
substitution affects proteins by altering their physico-
chemical properties and structure, we employed a
complementary protein-level approach implemented in
TreeSAAP [82]. Our TreeSAAP analysis identified four
significant physicochemical changes owing to amino acid
residues changes in ENaCγ: equilibrium constant (ioniza-
tion of COOH), isoelectric point, power to be at the C-
terminal and tendency to form alpha-helix (Additional
file 7: Table S16). Selective pressure analysis of ENaCα
and ENaCβ failed to identify positive signatures, suggest-
ing that scnn1a and scnn1b are still under strong purify-
ing selection (data not shown). Our TreeSAAP analysis
identified eleven and five significant physicochemical amino
acid changes in ENaCα and β, respectively (Additional
file 7: Table S16). These significant changes may contrib-
ute to cetaceans’ adaptation by increasing ENaC activities.
ENaC is widely distributed in tissues associated with

Na+ transport, including kidney, distal colon, lung, sweat
ducts, salivary ducts and skin, and plays vital roles in
these tissues [41,72]. In lung, the main function of ENaC
is not only in ion and water homeostasis, but also in
maintaining the appropriate level of hydration of the
fluid layer [83]. ENaCα knockout mice die within a few
days after birth because they fail to clear fetal lung liquid
[84]. In the kidney and distal colon, ENaC is vital for the
homeostasis of blood K+ and Na+ levels, especially in the
kidney where channels have an important role in overall
Na+ balance [83]. Mutations in the conserved HG motifs
cause a renal salt-wasting syndrome called pseudohypoal-
dosteronism type 1 (PHA-1) [85], and mutations in the
conserved PPPXY motif in β- and γ-ENaC subunits are
associated with Liddle’s syndrome, a form of monogenic
hypertension [86,87]. Cetaceans living in the hyperisotonic
marine environment have to overcome the problems
caused by high concentrations of sodium in the water.
The osmotic pressure of urine is higher than the vascular
osmotic pressure in cetaceans [88-92]. Thus, the import-
ance of ENaC in ion and water homeostasis and in main-
taining the appropriate level of hydration of the fluid layer
may have provided selective pressure to preserve salt taste
receptor function in cetaceans. This is probably related to
their distribution in the kidney especially in cortical col-
lecting tubes and to their function in Na+ reabsorption
[83]. Taking into consideration the degenerated tongue
epithelia in cetaceans and the importance of ENaC in the
kidney and other organs, we propose that the intact of
ENaC may be owed to its function in kidneys and other
organs. Whether cetaceans can taste salt is still unknown;
the answer to this question awaits further investigation.

Conclusions
Receptor genes for the five specific tastes were investi-
gated among the major cetaceans and the five basic taste
modalities were assessed in marine mammals. Cetaceans
appear to have lost four basic taste modalities including
sour, sweet, umami, and the majority of the bitter taste
sensation. However, as for umami taste, there are also
other receptors that detect small peptides and amino
acids, making it necessary to detect other candidate
genes of umami to further reveal the evolution pattern
of cetacean umami receptors. The integrity of salt recep-
tor genes in all cetaceans studied here, may be owed to
their function in Na+ reabsorption, which is key to
osmoregulation during aquatic adaptation.

Methods
Polymerase chain reaction and DNA sequencing
Genomic DNA was extracted from muscle and/or blood
samples from representative cetaceans including toothed
and baleen whales, and the hippo (Hippopotamus am-
phibious) using a standard phenol1chloroform protocol
[93]. Cetacean samples were collected from stranded or
incidentally captured/killed animals in coastal China
Seas by our lab members; therefore, ethical approval has
not been requested. When the aquatic mammals were
reported to be stranded or incidental captured/killed, we
contacted local Oceanic and Fisheries Bureaus which
perform conservation and management of aquatic ani-
mals on behalf of Chinese government. Once we got
their permissions, we went to the sites of stranding or
incidental catching to collect animal tissue samples for
research purpose. The hippo sample was a piece of
muscle sampled from an died individual, which was pro-
vided to us by Chengdu Zoo, Sichuan Province, China
for the present study, and we have permission from this
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institution to conduct our experiments on this sample.
Voucher specimens were preserved at Nanjing Normal
University. Based on alignments of homologous taste re-
ceptor genes for the five taste modalities between the
common bottlenose dolphin (http://asia.ensembl.org/
Tursiops_truncatus/Info/Index) and cattle (http://asia.
ensembl.org/Bos_taurus/Info/Index), a series of degener-
ate primers were designed (Additional file 8: Table S17).
PCR reactions (30 μl) contained 0.8 μl genomic DNA, 1
unit of Taq polymerase (Takara), 0.2 μmol of each pri-
mer, 3 μl of 10 × PCR buffer, 0.2 μmol of dNTP and
2.5 μmol of MgCl2. Cycling parameters were as follows:
denaturation at 95°C for 5 min, then 35 cycles of 95°C
for 30 s, 55–58°C for 40 s, 72°C for 40 s, and finally an
elongation at 72°C for 10 min. The amplified PCR prod-
ucts were separated by agarose gel electrophoresis and
gel-purified products were cloned into pMD18-T (Takara).
PCR products were sequenced in both directions using an
ABI PRISM 3730 DNA Sequencer. Three to five clones
for each gene or pseudogene were obtained to confirm its
sequence. Other sequences used in analyses were down-
loaded from the Ensembl Genome database (http://www.
ensembl.org) and GenBank (http://www.ncbi.nlm.nih.gov)
with accession numbers listed in Additional file 9: Table S18.
The secondary structures of proteins were estimated using
TMHMM (http://www.cbs.dtu.dk/services/TMHMM/).

Phylogenetic reconstruction
To access sequence variability among different species,
we used CLUSTAL W [94] in MEGA5 [95] to conduct
sequence alignments. To analyze selective pressure,
CODEML in PAML v4.4 [79] was used, and we incorpo-
rated the widely accepted phylogenetic trees of cetaceans
[2,96-98]. For genes with intact open reading frames, nu-
cleotide sequence alignments were conducted based on
protein sequence alignment, while for pseudogenes we
selected closely related functional sequences as queries
to ascertain indels and premature stop codons. In addi-
tion, we used the TreeSAAP 3.2 software package [82] to
detect significant physicochemical amino acid changes
among residues in three ENaC members. The software
program TreeSAAP measures the selective influences on
31 structural and biochemical amino acid properties
during cladogenesis, and performs goodness-of-fit and cat-
egorical statistical tests [82]. Within TreeSAAP, magni-
tudes of non-synonymous changes are classified into eight
categories according to the change in specific physico-
chemical properties, in which 1–3 are conservative while
6–8 are radical. After running, a z-score was generated for
each category, with a positive z-score meaning that a given
region is under positive selection influence. Here, we only
considered amino acid properties with significant positive
z-scores in categories 6–8 to be under positive selection,
and a sliding window of 15 was performed.
Availability of supporting data section
The data sets supporting the results of this article are
available in the Dryad repository, http://dx.doi.org/
10.5061/dryad.7qp63 [99]. This repository contains all of
the datasets from Table 1.

Additional files

Additional file 1: Table S1. Degenerate PCR amplification of five taste-
related genes among representative cetaceans and hippopotamus. Note:
tick represents successfully amplified.

Additional file 2: Tables S2-S7. Statistics for amplified exons from
each taste receptor gene for each species. Note: tick represents
successfully amplified.

Additional file 3: Figures S1-S11. Indels and premature stop codons
in Pkdl21, Tas1r1, Tas1r2, Tas2r1-3, Tas2r5, Tas2r16, Tas2r38-39, and Tas2r60.
Indels are highlighted in red, while premature stop codons are indicated
in green.

Additional file 4: Table S8. The location of the first premature stop
codon in each pseudogenized taste receptor gene. N represents the
N-terminus, FEL represents the First extracellular loop, SEL represents
Second extracellular loop, TEL represents the Third extracellular loop, FIL
represents the Fourth intracellular loop, TM represents transmembrane
domain, SIL represents Second intracellular loop, and NA represents
non-amplification in our analysis.

Additional file 5: Figures S12-S22. Indels and premature stop codons
mapped on the species tree for pseudogenized taste receptor genes. A
list of phylogenetic trees of the taste receptor genes analyzed in the
present study with all indels and premature stop codons mapped in
order. All indels are characterized with bars, with each color representing
a different indel and the same color representing the same indel across
the tree. Premature stop codons are characterized with ellipses; we did
not differentiate premature stop codons and all have the same color.

Additional file 6: Tables S9-S15. Likelihood ratio tests of various
models on the selective pressures on seven bitter taste receptor genes.

Additional file 7: Table S16. Physicochemical properties under positive
destabilizing selection in ENaCα, β, γ.

Additional file 8: Table S17. PCR primers for each taste receptor gene.

Additional file 9: Table S18. Accession numbers for species used in
PAML analysis.
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