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Abstract

Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The
epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the
bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is
lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is
now widely recognized that the features of the pluripotent population evolve as development proceeds from the

pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of
time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent
continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the
continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem
cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific
characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
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cells, Ground state, Chimaera

Background

Pluripotency is the potential of a single cell to gener-
ate all somatic lineages of the adult organism, com-
prising mesoderm, endoderm and ectoderm
derivatives, as well as the germ cells. During early
mammalian development, cells within the epiblast
(Epi) of the embryo are pluripotent and go on to
form the embryo-proper. As development progresses,
a combination of Fibroblast Growth Factor (FGF),
Bone Morphogenetic Protein (BMP), Wnt and Nodal
signaling triggers the loss of pluripotency by driving
differentiation of the Epi into specialized,
developmentally-restricted fates [1]. In the mouse,
pluripotent cells are present from embryonic day (E)
3.5 to 8.0, representing approximately one quarter of
the gestation period (Fig. 1). During this time, the
pluripotent population evolves, characterized by
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changes in gene expression, epigenetic profile and
functional properties. While distinct “naive” and
“primed” pluripotent states have been described, that
correspond to the pre and post-implantation Epi re-
spectively [2], the progressive nature of development
means that a broad continuum of pluripotency likely
exists within the developing embryo (Table 1). To de-
fine additional intermediate states, a high-resolution
gene expression map of these embryonic stages is re-
quired, a task made difficult by the rapid advance-
ment of in vivo development and limited availability
of material.

It is, however, possible to study pluripotency in a
more stable state in vitro using cell lines derived
from the embryo [3-6]. These cell lines offer a tool
to study early development, as well as a reservoir of
unspecified cells with significant therapeutic poten-
tial. Pluripotent stem cell (PSC) lines can self-renew
indefinitely while maintaining the capacity to
differentiate into all cell types in vitro [7-9] and in
vivo [4, 10-12]. Many iterations of pluripotency can
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Fig. 1 A schematic diagram depicting the relationship between in vitro and in vivo pluripotent state progression. The diagram depicts the location of
pluripotent cells (red) within the developing mouse embryo from embryonic day (E) 3.5 to E7.5. Prior to E3.5, cells of the pre-implantation embryo are
‘totipotent, capable of generating both embryonic and extraembryonic cell types. At E3.5, cells in the ICM of the blastocyst are a heterogeneous mix of
epiblast (Epi) and primitive endoderm (PrE) precursors. Epi cells are pluripotent and will generate all cells of the embryo-proper, including the germ cells,
proper while PrE cells will generate extraembryonic cell types such as the yolk sac. The outer trophectoderm (TE) cells will generate extraembryonic cell
types including the fetal portion of the placenta. One day later, at E4.5, the Epi and PrE cells are specified and become physically segregated into two
distinct layers and the embryo implants into the uterus. At early post-implantation stages (E5.5) the Epi is in an entirely undifferentiated pluripotent state.
At E6.5, cells within the proximal posterior of the embryo are exposed to differentiation-promoting signals from both embryonic and extraembryonic
lineages that stimulate the onset of gastrulation and differentiation of cells as they enter the primitive streak (PS) region (yellow). By E7.5, the PS has
extended distally and PS derivatives including extraembryonic mesoderm, embryonic mesoderm and definitive endoderm are being generated. The
anterior Epi has also started to differentiate into anterior neurectoderm (NE). Pluripotency is lost at approximately E8.0. Pluripotent stem cell lines can be
maintained in vitro and appear to resemble various embryonic stages of pluripotency. While embryonic stem cells (ESCs) can be derived from embryos
from E3.5 and E7.5 and epiblast stem cells (EpiSCs) can be derived from embryos between E3.5 and E8.0, ESCs resemble the naive pluripotent state (blue)
existing in the early pre-implantation embryo while EpiSCs resemble primed pluripotent cells (green) of the late post-implantation Epi during gastrulation.
Intermediate or formative states of pluripotency (orange), between the naive and primed states likely exist in the embryo. While a number of potential
states have been isolated, Epi-like cells (EpiLCs), generated from ESCs in vitro, have been most clearly defined in relation to the embryo and are more
transcriptionally similar to E5.75 Epi than EpiSCs are. Representative brightfield images of ESC, EpiLC and EpiSC cultures are shown. Extraembryonic
lineages are depicted in gray; dark gray lineages are TE-derived and light gray lineages PrE-derived. A = anterior, P = posterior, Pr = proximal, D = distal

be propagated in culture depending on the condi- normal development, or if they are merely culture ar-
tions utilized (Table 2). It is currently unclear tifacts. Here, we discuss our current knowledge of
whether these represent distinct points on a pluripo- PSC states, focusing on the mouse model, in which
tency spectrum, which also arise in vivo during most research has been carried out.
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Table 1 Overview of pluripotent states and defining characteristics. Although naive and primed states of pluripotency have been
well characterized, there is no clear consensus of the expected characteristics of their intermediate pluripotent states. This table
highlights a number of defining characteristics of naive and primed pluripotent states, and stipulates on the characteristics that
intermediate states might encompass. Although a spectrum of intermediate states may exist, here we hypothetically distinguish
between two potential intermediate states, ‘Intermediate 1', the epiblast immediately after implantation and ‘Intermediate 2’ the

epiblast at the onset of gastrulation

Pluripotent Corresponding Gene expression Epigenetic profile Functional potential
state embryonic stage
Naive - ESCs E3.5-45 Oct4, Sox2, Nanog, Kif4, Stella, Rex1, Gbx2, X reactivation. DE-controlled Oct4  Pre-imp. Chimaeras.

Tbx3, Pecam, SSEA-1, Alkaline phosphatase  expression. Poor PGCLC generation.
Primed - EpiSCs E7.25-8.0 Oct4, Sox2, Nanog, SSEA-1, Fgf5, Oct6, Otx2, X inactivation. PE-controlled Oct4  Post-imp. Chimaeras.

Brachyury, FoxA2, Sox17, Gata4, Gata6 expression. Poor PGCLC generation.
Intermediate 1 E5.0-6.25 Oct4, Sox2, low Nanog, SSEA-1, Fgf5, Oct6, X reactivation, Equal Oct4 Pre and post-imp.

Otx2 (no PS or lineage markers) regulation by DE and PE? Chimaeras.

Efficient PGCLC generation.

Intermediate 2 E6.25-7.25 Early PS/mesoderm markers e.g. X inactivation. Post-imp. Chimaeras.

Nanog, Brachyury.
No endoderm markers.

Reduced PGCLC
generation.

ESCs embryonic stem cells, EpiSCs epiblast stem cells, E embryonic day, DE distal enhancer, PE proximal enhancer, pre-imp. pre-implantation,

post-imp. post-implantation, PGCLC primordial germ cell-like cell, PS primitive streak

Embryonic stem cells

(i) derivation and culture conditions

Mouse embryonic stem cells (ESCs) were the first PSC
lines to be derived from developing embryos. ESCs are
routinely derived from and resemble the naive Epi of
E3.5-4.5 pre-implantation embryos [4, 12-14]. While
ESCs can also be derived from embryos as early as E0.5
[6, 13, 15], these embryos develop ex vivo to a late
blastocyst stage before ESCs emerge [13]. Conversely, at-
tempts to derive PSC lines from later stage embryos
using naive ESC culture conditions have been largely un-
successful, consistent with the distinct nature of the pre
and post-implantation Epi. Intriguingly, while ESC lines
cannot be established from whole explants of post-
implantation Epi [3, 16, 17], they can be derived from
dissociated E7.5 Epi [18, 19] implying that a refractory
niche may be present within the intact tissue. These
cells, referred to as reprogrammed Epi ESC-like cells
(rESCs), undergo transcriptional and epigenetic changes
consistent with reprogramming to an earlier develop-
mental state during the derivation procedure [18]. In
vitro equivalents of the post-implantation Epi (epiblast
stem cells, see below) can also occasionally revert to an
ESC state [18-23], a process enhanced by genetic
manipulation [16, 24-26]. Pluripotent cells therefore
maintain a degree of plasticity and can deviate from, or
even reverse, the normal developmental trajectory if a
permissive environment is provided.

ESCs were first derived in poorly defined serum
containing medium and were maintained on a bed of
mitotically inactivated fibroblasts (so-called ‘feeder cells’)
[4, 12]. The critical factors provided by each of these
components are now known to be activators of the
leukemia inhibitory factor (LIF) [27, 28] and BMP [29]
pathways respectively (Fig. 2, Table 2). While ESCs can

be maintained in defined conditions with LIF and
BMP4 [29-31] (or other interleukin-6 family members
[32-36]), serum and LIF (SL) is favored as an econom-
ical alternative with enhanced plating efficiency [29].
LIF and BMP stimulate the expression of pluripotency-
associated genes in ESC cultures [29, 31, 37], and BMP
may additionally inhibit differentiation-inducing
Mitogen-activated protein kinase/Extracellular signal-
regulated kinase (MAPK/ERK) signals [38, 39] (Fig. 2).
BMP also maintains Epi pluripotency in vivo by pre-
venting premature neural specification [40] and, while
LIF is not required for normal pre-implantation devel-
opment [41-45], it maintains self-renewal during dia-
pause [43]. Therefore, ESCs retain the key signaling
properties of their embryonic cell of origin and may be
similar to the Epi of diapause embryos.

(i) transcriptional and epigenetic profiles

Although ESCs can be derived from multiple develop-
mental stages, they retain no clear ‘memory’ of their de-
velopmental origin and converge at a transcriptional and
epigenetic state similar to the Epi of the E3.5-4.5
blastocyst [13, 46]. ESCs exhibit an open chromatin
structure and high levels of global transcriptional activ-
ity, similar to the pre-implantation embryo, that become
more restricted as differentiation proceeds [47-50]. This
active chromatin state is characterized by large regions
of DNA hypomethylation, histone acetylation and
H2K4me3 [51, 52] and is attributed in part to factors re-
cruited to the citrullination modification on histone H1
[53, 54]. Furthermore, female ESC lines exhibit X
chromosome inactivation, an epigenetic hallmark of the
naive pluripotent state present at this time in vivo [55],
although the level of X chromosome methylation varies
between individual cells [56]. ESCs also express a cohort
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Fig. 2 The role of signaling pathways in self-renewal and differentiation of in vitro pluripotent stem cell populations. Embryonic stem cells (ESCs)
represent a naive state of pluripotency similar to the pre-implantation epiblast (Epi). ESCs are routinely maintained in a self-renewing state in
serum (a source of BMP) and LIF (SL). Under these conditions, ESC cultures are heterogeneous and contain subpopulations of lineage-primed cells
(vellow and green cells) i.e. cells that coexpress germ layer markers alongside pluripotency markers, and are biased in differentiation towards
particular lineages. A more homogeneous ESC state can be generated by blocking FGF signaling using a MEK inhibitor (PD0325901), and
activating Wnt signaling using a GSK3 inhibitor (CHIR99021), a condition known as ‘2i". In these conditions, self-renewal occurs in the absence of
external signals, although cell propagation is enhanced in the presence of Wnt pathway activity through CHIR99021. This state is referred to as
the naive or “ground state” of pluripotency. ESCs can be pushed further along the differentiation trajectory by culturing in the presence of FGF
and Activin (FA) for 48 hours to generate a cell state referred to as Epi-like cells (EpiLCs). This is a transient cell state, and it is unknown whether
self-renewing EpiLCs can be captured by the addition of other factors. It is also not known whether EpiLCs are a homogeneous population of
cells. Upon further differentiation in FA over multiple passages, cells resemble a primed state of pluripotency akin to the later post-implantation
Epi, referred to as epiblast stem cells (EpiSCs). While FA promotes differentiation of ESCs and Epil.Cs, it promotes EpiSC self-renewal. EpiSCs can
be derived from ESCs in culture or directly from embryos with FA. When grown in FA, EpiSCs, like ESCs in SL, are heterogeneous and contain
lineage-primed populations. While activation of Wnt signaling promotes a naive ground state of self-renewal, inhibition of Wnt signaling
promotes a more homogeneous primed ground state of self-renewal. Therefore cells in naive and primed pluripotent states respond to signaling
factors with opposite outcomes, Wnt and BMP promote self-renewal of the naive state but differentiation of the primed state of pluripotency and
conversely FA promote differentiation of the naive state but self-renewal of the primed state of pluripotency. Addition of BMP4 and WNT3A in
combination with FA stimulates further differentiation of EpiSCs into PS-derived mesoderm and endoderm, while in the absence of FA, BMP or
Wnt EpiSCs differentiate to neurectoderm [127]. EpiLCs are the only pluripotent state that has been shown to efficiently generate primordial germ
cell-like cells (PGCLCs). Presumably, ESCs have not yet acquired this capacity, while EpiSCs have lost it. Cells within the dashed box are within the
pluripotency spectrum while cells outside have differentiated. Blue arrows indicate self-renewal. Orange arrows denote the direction of
differentiation along the developmental trajectory

of transcription factors characteristic of the pre- Furthermore, as in the blastocyst, Oct4 expression is reg-
implantation Epi including Oct4 (Pou5fI), Sox2, Nanog, ulated by its distal enhancer element [59]. Some of the
Kif4, Stella (Dppa3) and Rexl (Zfp42) [57, 58] (Fig. 3). key targets of this transcription factor network include
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(See figure on previous page.)

Fig. 3 Different pluripotent states have distinct expression profiles. a. Schematic diagram illustrating the change in relative protein expression levels of
the pluripotency-associated genes, NANOG, KLF4 and OCT4 during the transition from a naive to a primed state of pluripotency. KLF4 is lost as cells
exit the naive state of pluripotency, NANOG is transiently downregulated and OCT4 is maintained at similar levels throughout this period. b. Schematic
diagram showing the expression domains of NANOG, KLF4 and OCT4 from embryonic day (E) 3.5 to 7.5 of development. NANOG, KLF4 and OCT4 are
all expressed within the ICM of the early blastocyst. While OCT4 is relatively homogeneous, KLF4 and NANOG are both heterogeneously expressed. At
E4.5, the epiblast (Epi) homogeneously expresses all 3 of these markers, while the primitive endoderm expresses low levels of OCT4 and KLF4 but not
NANOG. At early implantation (E5.5), KLF4 expression is lost and OCT4 and NANOG are coexpressed throughout the Epi. By E6.5-7.5, OCT4 continues
to be expressed throughout the Epi while NANOG is restricted to the posterior Epi. c. Representative confocal optical sections of ESC, EpiLC and EpiSC
cultures. All cell lines were derived from the 129/0la E14 parental ESC line. ESCs were maintained in serum and LIF and expressed OCT4, NANOG and
KLF4 heterogeneously. EpiLCs expressed OCT4, but downregulated NANOG, and lost KLF4 expression. EpiSCs (derived by culture of E14 ESCs in FGF
and Activin for >20 passages) expressed high levels of NANOG and OCT4, but no KLF4

families of micro RNAs (miRNAs) that regulate cell
cycle progression in the self-renewing state [60-62].
These core transcription factors and miRNAs maintain
self-renewal in vitro and can even induce an ESC-like
identity when ectopically expressed in somatic cells
[63-66].

However, the pluripotent state in vivo is transient and
in a state of constant flux, hence, although ESCs share
many similarities with the early embryo, they also em-
ploy unique mechanisms to stabilize their state of pluri-
potency. Genes that regulate pluripotency in vitro are
not necessarily required for early Epi development e.g.
Esrrb and Thx3 [67, 68] and the cohorts of bivalent
genes, those with both permissive (H3K4me3) and re-
pressive (H3K27me3) epigenetic marks at their pro-
moters, differ between embryos and ESCs [69-71].
Additionally, compared to the pre-implantation embryo,
ESCs express high levels of repressive epigenetic factors
[72], which may act to shut down the differentiation
program. In fact, several thousands of genes alter their
expression during ESC derivation [72] and, although the
relevance of this is not fully understood, the majority
function in growth and metabolism [72], suggesting that
the current in vitro culture milieu may not accurately
mirror the in vivo environment.

ESCs maintained in standard SL conditions are
extremely heterogeneous (Figs. 2 and 3c). Global tran-
scriptional analysis of single cells revealed two classes of
heterogeneous gene expression, genes that are expressed
bimodally, or those that are expressed in only a small
number of cells, but at high levels — referred to as spor-
adic expression [73]. Subpopulations of cells have been
identified that share transcriptional similarities, not only
with the pre-implantation Epi [74-76] but also with
endoderm [77] and later primed Epi [76, 78]. Further-
more, a subpopulation similar to the 2-cell embryo exists
in ESC cultures, which exhibits expanded functional po-
tency and can contribute to both embryonic and extra-
embryonic lineages in chimaeras [79-81]. Zscan4,
specifically expressed within this population, is involved
in maintaining telomere length, critical for ESC expan-
sion in vitro [82-84]. It is currently unclear whether

these subpopulations are also present in newly estab-
lished ESC lines or if they emerge gradually in response
to extended culture in the in vitro environment. As
sampling of this 2-cell state maintains telomere length
[82-84], it may arise as a mechanism to limit DNA dam-
age during prolonged culture. Rather than marking
stable factions of cells, the transcriptional heterogeneity
among ESCs represents a dynamic landscape of inter-
converting states. In vivo, the blastocyst inner cell mass
(ICM) is also a mix of Epi and primitive endoderm (PrE)
precursors [85, 86] and, although there is no evidence
that these populations interconvert during normal devel-
opment [87], it is unknown whether this would occur if
the period of pluripotency were to be prolonged, for
example during diapause.

The source of ESC transcriptional heterogeneity has
been variously attributed to cell cycle, transcriptional
bursting, differences in colony size and density, partial
differentiation or a combination of the above. As
bivalent genes show a tendency towards heterogeneous
expression, epigenetic modifications may also influence
transcriptional dynamics [73, 88]. In reality, ESCs exist
in a precarious balancing act of pluripotency and differ-
entiation, prompted by their endogenous production of
two factors with opposing functions: LIF, which supports
self-renewal, and the differentiation-promoting factor
FGF [89]. This signaling tug-of-war could conceivably
manifest as cells that are transcriptionally teetering on
the edge of different states. The fact that ESC cultures
are further supplemented with exogenous LIF means
that, although spontaneous differentiation occurs, in the
majority of cases self-renewal wins. Consequently, block-
ing either signal forces cells in one or other direction.
Withdrawal of LIF stimulates terminal differentiation
while blocking FGF confines cells to a more homoge-
neous state of self-renewal, referred to as the “ground
state” of naive pluripotency [2, 90]. This ground state is
achieved by culturing ESCs in defined serum-free
medium (N2B27) with small molecule inhibitors of the
MAPK/ERK pathway (PD0032, a MEK inhibitor) acting
downstream of FGF and of Glycogen Synthase Kinase 3
(GSK3) (CHIR99021 or CHIR), together referred to as 2i
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medium [91] (Table 2). In this context, inhibition of
GSK3 stimulates Wnt activity, which relieves TCF3-
mediated repression of pluripotency-associated genes
and prevents differentiation towards a later Epi state
[92-94]. LIF is not required in 2i medium but enhances
the efficiency of ESC clonal expansion [92]. ESCs cul-
tured in 2i exhibit reduced expression of lineage markers
and almost no spontaneous differentiation [95]. Blocking
the processing of miRNAs in ESCs can stimulate a simi-
lar state of pluripotency [73]. However, single-cell ap-
proaches suggest that ESCs in these conditions are not
entirely homogeneous as they contain rare cell popula-
tions similar to the 2-cell state and extraembryonic
lineages [96, 97].

While SL and 2i are most commonly used to maintain
ESCs, numerous other systems have been developed that
support or enhance self-renewal including additional
small molecule inhibitors [98—100], and synthetic serum
substitutes, such as knockout serum replacement
(KOSR) [101] (Table 2). While ESCs propagated in these
distinct conditions all satisfy the functional definition of
pluripotency, they have different morphological,
transcriptional and epigenetic characteristics. When
compared to embryos, SL-cultured ESCs are transcrip-
tionally similar to E4.5-5.5 Epi and extraembryonic
lineages [13, 46, 72], 2i—cultured ESCs correlate with
earlier E3.5-4.5 ICM or Epi [13, 46, 97] (Fig. 1) and
KOSR-cultured ESCs show a surprising transcriptional
resemblance to endoderm [13, 46]. ESCs cultured in 2i
and KOSR also display hypomethylated DNA relative to
ESCs in SL [95, 102]. While these findings could be
interpreted as different culture conditions capturing
discrete points on the pluripotency spectrum, the major-
ity of data have been acquired from bulk cultures and
could instead represent changes in the relative levels of
particular subpopulations. Single-cell transcriptomic
analyses suggest that SL cultures are, in fact, comprised
of two main cell populations, one similar to E2.5-3.5
embryos, and another corresponding to the Epi at ap-
proximately E5.5 [103]. It is therefore now understood
to be the combination of these states that results in a
bulk transcriptional signature similar to E4.5 embryos.

(iii) functional potential

While transcriptional data provides some insight into
the nature of ESC states, functional assays are required
to assess pluripotential. When transferred to
differentiation-promoting conditions in vitro or reintro-
duced into host embryos, ESCs can differentiate into de-
rivatives of all germ layers. Traditionally, low-density
monolayer differentiation was used as a simple, rapid
means of testing functional potential. In serum-
containing medium without LIF, ESCs form endoderm
and mesoderm while neural differentiation requires
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serum-free medium (N2B27) [29, 104]. ESCs have also
been reported to generate extraembryonic primitive
endoderm (PrE) in vitro [105, 106]. However, as the ma-
jority of markers used to define these cells are also
expressed in embryonic definitive endoderm, it is diffi-
cult to distinguish between these possibilities. A multi-
tude of directed differentiation protocols have also been
established, using cytokine and small molecule inhibitor
cocktails to push cells more uniformly in a particular de-
velopmental direction. While the result is often a good
approximation of the target cell type, on many occasions
these differentiated cells are not fully functional. There-
fore, a concerted effort is being made to develop 3D dif-
ferentiation protocols, such as embryoid body (EB)-like
structures or organoids, which more accurately mimic
the complex in vivo environment [107, 108].

The gold standard test of pluripotency is whether cells
can successfully incorporate into embryos and resume
the normal developmental program. ESCs can incorpor-
ate into embryos at a range of pre-implantation stages
[10, 46, 109-111], and contribute most efficiently to Epi-
derivatives, but also at low levels to extraembryonic
lineages [10, 46, 80, 97, 112]. The frequency of ESC con-
tribution to extraembryonic cell types can be enhanced
by selecting for particular subpopulations [77, 97] or by
culture in 2i or KOSR [46, 97], consistent with the no-
tion that ESCs maintained in these conditions correlate
to earlier developmental stages than ESCs in SL and, as
such, may have a less restricted functional potential.
Remarkably, when reintroduced into developmentally
compromised tetraploid embryos, live-born mice can be
generated entirely from ESCs [113-116]. While the
capacity of ESCs to generate primordial germ cell-like
cells (PGCLCs) in vitro is limited [117], they can, albeit
inefficiently, contribute to the germline in vivo following
maturation through a later Epi state. In contrast, when
ESCs are introduced into post-implantation embryos,
they cannot integrate or differentiate [11] indicating that
the naive state of pluripotency is incompatible with the
environment of the pluripotent post-implantation Epi.

Epiblast stem cells

(i) derivation and culture conditions

While ESCs resemble pre-implantation stages of devel-
opment, PSCs have also been derived that are similar to
the post-implantation Epi. These are referred to as epi-
blast stem cells (EpiSCs) (Fig. 1). ESCs and EpiSCs are
distinct in behavior, morphology, growth factor require-
ments, transcriptional and epigenetic profiles and
functional properties. EpiSCs can be derived from the
post-implantation Epi from E5.5 until E8.0 3, 17, 118],
with decreasing efficiency at later embryonic stages
[119] correlating with the gradual loss of pluripotency.
Although  the  pre-implantation ICM  rapidly
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differentiates in EpiSC medium [3], cell lines can be
derived by first expanding the ICM in minimal medium
then transferring outgrowths to conventional EpiSC con-
ditions [120]. This primary step likely facilitates the
developmental progression of the pre-implantation Epi
to a state with later stage signaling requirements. Cells
resembling EpiSCs can also be generated in vitro by
long-term culture of ESCs in EpiSC conditions [16, 121]
(Fig. 2). While, in vivo, Epi maturation from a naive pre-
implantation to primed post-implantation state occurs
over approximately 2 days, in vitro this is a longer,
selective process involving extensive cell death and dif-
ferentiation [122]. Although ESC-derived EpiSCs (ESD-
EpiSCs) are morphologically and transcriptionally similar
to EpiSC lines derived from embryos, their full transcrip-
tional profile or functional potential has not been
directly compared.

EpiSCs are routinely maintained with FGF2 and ACTI-
VIN A (Activin) (FA conditions) [3, 17], a TGF- family
member with similar signaling properties to NODAL
(Fig. 2, Table 2). In vivo, Nodal maintains the expression
of the pluripotency markers Oct4 and Nanog and pre-
vents precocious differentiation of the Epi towards
neural lineages [123, 124]. Similarly, in vitro, Activin reg-
ulates Nanog expression in EpiSCs [22, 125]. However,
as Nanog™’~ EpiSC lines can be generated, this is not the
primary mechanism by which Activin signaling main-
tains self-renewal [118]. In EpiSC cultures, FGF, like
Activin, blocks neural differentiation and may also
prevent rare reversions of EpiSCs to an ESC-like state
[3, 17, 22]. It is not clear whether FGF signaling plays a
role in self-renewal of the post-implantation Epi in vivo,
although it may regulate proliferation [126]. Whereas
ESCs can be maintained in a relatively stable state of
self-renewal, EpiSCs undergo high levels of spontaneous
differentiation [127]. Dissociation of EpiSCs into single
cells promotes cell death and differentiation, which can
be reduced by using an inhibitor of Rho-associated,
coiled-coil containing protein kinase (ROCK, Y-27632)
[128] and passaging cells as clusters with gentle enzym-
atic dissociation or cell scraping. While ESCs are grown
on gelatin, they produce endogenous fibronectin which
is important for their self-renewal [129]. In contrast,
EpiSCs in feeder-free conditions are grown on an
exogenous source of fibronectin although there is
limited evidence as to whether this influences the EpiSC
state [130].

(i) transcriptional and epigenetic profiles

Consistent with in vivo development, EpiSCs show little
to no expression of the naive state markers Rex1, Stella,
NrObl1, Gbx2, KIf4, KIf2 and Fgf4 [3, 17] (Fig. 3). While
expression of the core pluripotency-associated factors,
Oct4, Sox2 and Nanog, is maintained, Oct4 expression is
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regulated mainly via its proximal enhancer element
[59] and Nanog expression is reduced relative to ESCs
[16, 131-133] corresponding to its downregulation
upon embryo implantation [134, 135]. EpiSCs also ex-
press the early post-implantation Epi markers Oct6,
Fgf5, Otx2 Lefty and Nodal [3, 17]. However, relative
to their in vivo post-implantation Epi counterpart,
EpiSCs exhibit elevated expression of markers of ad-
hesion (e.g. Tnc, Collal, Col6al), TGF-B, MAPK and
Wnt-associated genes [119], all factors likely affected
by the culture conditions. Compared to ESCs, EpiSCs
express a distinct cohort of epigenetic regulators and
miRNAs, exhibit an increasingly closed chromatin
conformation and utilize distinct enhancer elements
[133, 136-138]. The distribution of H3K4mel, a mark
of enhancers and actively transcribed genes, varies
significantly between ESCs and EpiSCs [138, 139].
This histone modification appears to play an active
role in establishing the primed state of pluripotency
as genetically perturbing the deposition of this mark
results significantly enhances the spontaneous conver-
sion of EpiSCs to a naive ESC state [139]. EpiSCs also
show reduced expression of SMARCADI relative to
ESCs, a protein that is suggested to block H2K9me3-
mediated heterochromatin formation [54].

As with ESCs, the fact that EpiSCs can be derived
from a wide range of embryonic stages raises the
question regards what in vivo stage, if any, they
represent. The methylation status of specific
promoters in EpiSCs is distinct from the in vivo post-
implantation Epi [140] and, although EpiSCs were
initially thought to correspond to the early post-
implantation Epi around E5.0-6.0, they express
markers of later, more differentiated cell types arising
during gastrulation, e.g. primitive streak (PS) and
mesoderm markers Brachyury, Eomes, Gsc, Mixl1 and
Fgf8 as well as endoderm markers SoxI7, Gata6,
Gata4 and FoxA2 [3, 13, 17, 21, 119, 141, 142].
EpiSCs also express imprinted genes monoallelically
[143] and female cell lines have an inactive X
chromosome, observed in vivo from E6.5 onwards
[16-18, 144]. Surprisingly, 2i—cultured ESCs exhibit a
stronger correlation than EpiSCs to pre-gastrulation
(E5.75) Epi [145] while EpiSCs are actually most tran-
scriptionally similar to E7.25-8.0 embryos in which
gastrulation is already underway [119].

In part these findings can be attributed to the exten-
sive spontaneous differentiation of EpiSCs. This is
supported by the fact that, in EpiSC cultures, endoderm
genes are mostly expressed by differentiated, SSEA-1-
negative cells [146]. However, subpopulations of cells
exist that coexpress the lineage markers BRACHYURY
and FOXA2 alongside the pluripotency markers OCT4,
SOX2 and NANOG (142, 146]. Furthermore, the level of
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expression of markers of the mesoderm and endoderm
is inversely correlated with the expression of neurecto-
derm markers such as Sox! [142], suggesting that there
may be at least two subpopulations within EpiSC
cultures. Isolated Brachyury-expressing cells show a pro-
pensity to differentiate [127], but they can expand and
regenerate a mixed culture [142], indicating that this
population, while unstable, is not on an irreversible path
to differentiation. Interestingly, subpopulations of
EpiSCs representative of later lineages, small fractions of
EpiSCs also exhibit characteristics of naive pluripotency.
These cells regulate Oct4 expression using its distal en-
hancer, express lower levels of Brachyury and Fgf5 and
high levels of naive pluripotency markers [78, 131, 147].
Although this population is transcriptionally distinct
from ESCs [131] it may represent an intermediate state
between naive and primed pluripotency. To add an
additional layer of complexity, considerable variability
exists between individual EpiSC lines. For example, some
EpiSC lines express BRACHYURY in all cells, others
have heterogeneous expression, while other lines do not
express BRACHYURY at all. The relative composition of
individual lines is also surprisingly stable as sub-clones
maintained in different laboratories retain these charac-
teristics [119]. The cause of variation between EpiSC
lines is unknown and does not correlate with the stage
from which these cell lines were derived or whether they
are ESC or embryo-derived [119].

(i) functional potential

EpiSCs can generate derivatives of all germ layers both
in vitro in cultured cells and in embryo grafting experi-
ments. As with ESCs, when differentiated in vitro in
serum-containing medium, EpiSCs mostly generate
mesoderm and endoderm, while in serum-free medium
they tend towards neurectoderm [17]. Removal or pro-
longed inhibition of FGF or Activin/Nodal signaling also
stimulates neural differentiation [3, 17, 118]. While Wnt
and BMP signaling maintain ESC self-renewal, these
pathways stimulate EpiSC differentiation into a combin-
ation of mesoderm and endoderm lineages [127],
consistent with their role during gastrulation (Fig. 2). It
has also been suggested that BMP promotes extraembry-
onic endoderm and trophoblast differentiation [3]. How-
ever, as discussed above, many markers are shared
between extraembryonic PrE and the epiblast-derived
definitive endoderm, as well as between mesoderm and
trophoblast; hence it is often difficult to distinguish
between these fates using a handful of markers. Subpop-
ulations of EpiSCs are biased towards particular lineages
e.g. Brachyury positive cells demonstrate an enhanced
capacity to form mesoderm [142] and, as EpiSC lines
maintain distinct levels of Brachyury, they also vary in
their differentiation efficiency towards particular germ
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layers [119]. The ability of BMP to induce EpiSC differ-
entiation is via downstream activation of the Wnt path-
way [127]. BMP and WNT3a also induce Fgf8 and
Nodal expression in EpiSCs [127], this is the same com-
bination of factors that cooperate to initiate gastrulation
in vivo, suggesting that differentiation in culture is
recapitulating in vivo development.

Cells of the E6.0-7.0 Epi do not contribute to embry-
onic development when heterotopically introduced into
blastocysts [148]. In keeping with this, EpiSCs also have
little or no capacity to contribute to pre-implantation
embryos [3, 17, 131, 149]. In rare cases of contribution,
EpiSCs reactivate their X chromosome [149] suggesting
that they have been reprogrammed to a naive state. Al-
though certain EpiSC subpopulations perform better in
these assays [131] their contribution is still low. In part
this could be due to adhesion-related incompatibility.
ESCs, which can readily contribute to pre-implantation
development, and EpiSCs are morphologically distinct;
ESCs grow as compact, domed colonies while EpiSCs
have a flattened morphology. Additionally, ESCs have
homogenous and high levels of E-CADHERIN protein at
cell-cell junctions, while EpiSCs have patchy, low levels
at their interfaces [127]. Overexpression of E-cadherin
(Cdhl) in EpiSCs in part rescues their contribution to
pre-implantation embryos [149], but their contribution
is still extremely limited, indicating that this is not the
primary discordancy. Recently, EpiSCs were grafted into
post-implantation host embryos, representing a closer
stage-match regards their pluripotent state. While disso-
ciated single cells could not incorporate, groups of cells
efficiently integrated into the Epi, dispersing from the
graft site and upregulated appropriate lineage markers
[11]. EpiSCs incorporated most efficiently when intro-
duced into mid or anterior PS, but remained as clumps
when introduced into the posterior PS [119]. When
Brachyury-positive EpiSCs were grafted into the PS of
post-implantation embryos, they preferentially formed
axial mesoderm and definitive endoderm [142] while
Brachyury negative cells could not successfully incorpor-
ate into the embryo [11, 142]. This is consistent with the
notion that Brachyury negative cells are comparable to
the in vivo anterior neurectoderm which does not enter
the PS. EpiSCs survive when grafted to later E8.5
embryos, when the host Epi is no longer pluripotent, but
do not disperse or upregulate appropriate markers [11].

Although EpiSCs can contribute to all germ layers,
they have not demonstrated germline transmission
(GLT), mostly due to technical obstacles in assessing this
capacity. In rare cases where chimaeras were obtained
from EpiSC injection into pre-implantation embryos,
GLT was not observed [3, 149], and it is not possible to
re-introduce post-implantation chimaeras into recipient
females for development to term. However, when grafted
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into post-implantation embryos, EpiSCs give rise to cells
that express Alkaline Phosphatase, a characteristics of
primordial germ cells (PGCs), in the region where germ
cells arise [11, 142]. In vitro EpiSCs can generate
PGCLCs only with low efficiency [145, 147] consistent
with their transcriptional correlation to E7.2-8.0 em-
bryos that have essentially lost their capacity to generate
PGCs [150].

In pursuit of intermediate pluripotent states

As discussed previously, multiple states of pluripotency
have been captured in vitro including naive ESCs, simi-
lar to the pre-implantation Epi, and primed EpiSCs,
similar to the gastrulating post-implantation Epi. PSCs
are a valuable model for studying and mimicking em-
bryo development and a potentially useful tool for
therapeutic purposes. However, to successfully differen-
tiate PSCs into functional cell types in vitro, endogen-
ous development will need to be recapitulated in a
step-wise manner. Inevitably, in vitro differentiation is
an imperfect imitation of in vivo development and
therefore unnecessary ex vivo steps, for example the
differentiation of naive ESCs to a mature Epi state,
might potentially introduce errors. Thus, it would be
beneficial to access a stable intermediate pluripotent
cell state, between ESCs and EpiSCs, equivalent to the
post-implantation Epi prior to the onset of germ layer
differentiation.

This distinct ‘formative’ state of pluripotency exists in
the embryo at E5.5-6.25, when the naive transcriptional
program has been downregulated, but lineage-associated
markers are not yet upregulated [151, 152]. Although
there seems to be no clear consensus of what character-
istics such a state would encompass, a number of con-
jectures can be made (Table 1). Whereas both the pre
and post-implantation Epi express Oct4, the pre-
implantation Epi employs the DE, while the post-
implantation Epi the PE. In vivo this is not a binary
switch [131], hence an intermediate pluripotent state
may utilize both enhancers. Furthermore, cells of the
early E5.0 Epi can contribute to embryonic development
when introduced into blastocysts [148], hence we may
expect cells in an intermediate state to maintain this
capacity, but potentially also to contribute to develop-
ment when introduced into post-implantation embryos.
One clear-cut expectation is that an intermediate pluri-
potent state would efficiently generate PGCLCs in
response to BMP. PGCs are induced in vivo in response
to BMP signaling during a very defined time window.
ESCs cannot efficiently produce PGCLCs, as BMP main-
tains naive pluripotency, and conversely EpiSCs are
representative of a developmental stage where PGC
competence is already greatly reduced. Next we discuss
a number of novel intermediate pluripotent states that
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have mostly been defined as exhibiting transcriptional
profiles somewhere between naive and primed states.

(i) Epiblast-like cells (EpiLCs)

ESCs can differentiate to a state resembling EpiSCs by
prolonged culture in FA (ESD-EpiSCs, see above). It is
therefore tempting to speculate that this maturation re-
capitulates normal developmental progression bypassing
intermediate pluripotent states that exist within the em-
bryo. In support of this hypothesis, characterization of
ESCs after 2 days in FA medium identified a transcrip-
tional state similar to the E5.75 Epi [145], just prior to
the onset of gastrulation. These culture conditions are
almost identical to those for propagating EpiSCs with
the addition of 1% KOSR to reduce cell death and in-
duce a flattened morphology (Table 2). During these 2
first days, cells rapidly proliferate and show little cell
death. Thereafter, on day 3, a wave of cell death is ob-
served [145] corresponding to the initiation of the highly
selective ESD-EpiSC program. Although cell death is ob-
served in vivo at this time [153)], it is not on a significant
scale suggesting that, while the first 2 days of in vitro
conversion to EpiSCs may represent a good model of
this transition, later time points may not be representa-
tive. ESCs also transit through a state similar to the pre-
gastrulation Epi after 2 days with FGF2 alone [154],
although these cells have only been assessed using a
limited set of markers and may have a compromised
proliferative capacity [155] (Table 2). EpiLCs display
hallmarks of pluripotency that are intermediate between
ESC and EpiSC states; naive markers, including Stella,
RexI and Kif4 (Fig. 3) are downregulated while later
differentiation-associated markers, such as Brachyury,
FoxA2, Sox17, Lefty, Soxl, are not upregulated to the
same extent as in EpiSCs and early Epi markers such as
Fgf5 and Oct6 are expressed at the same or higher levels
than in EpiSCs. Nanog is also transiently downregulated
in EpiLCs [145] (Fig. 3), consistent with the fact that it is
downregulated at peri-implantation stages and upregu-
lated again in the PS of gastrulating embryos [134].
EpiLCs efficiently generate PGCLCs [145], but their full
functional repertoire, including embryo contribution,
has not been explored.

(ii) a homogeneous ground state for primed pluripotency
Although EpiLCs represent a promising intermediate
state between ESCs and EpiSCs, their transient nature
means that any differentiation protocol still needs to
begin with ESCs, and hence a stable intermediate pluri-
potent starting population would be highly desirable.
ESC and EpiSC culture conditions have been variously
adapted in pursuit of such a state. As discussed above,
EpiSCs maintained with FA express later germ layer
markers, and exhibit high levels of spontaneous
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differentiation. Eliminating this differentiation could
push EpiSCs to a more homogeneous earlier Epi state.
As with SL-cultured ESCs, endogenous differentiation-
promoting factors destabilize the primed state of pluri-
potency. While FA mediates EpiSC self-renewal, it
promotes differentiation when combined with BMP or
Wnt signaling activation. EpiSCs express numerous
WNT ligands [127], heterogeneously express Axin, a
Wnt pathway component and show non-uniform (-
CATENIN localization [142, 156], hence endogenous
Wnt activity is a strong candidate for disrupting EpiSC
self-renewal. In vivo, FGF, NODAL, BMP and WNT
cooperate to initiate an epithelial-to-mesenchymal tran-
sition (EMT), and subsequent differentiation of cells in
the proximal posterior region of the Epi [1]. Wnt signal-
ing, downstream of BMP is required for mesoderm for-
mation [157, 158]. Blocking Wnt signaling maintains the
Epi in a prolonged state of pluripotency, while activation
pushes the entire Epi to adopt a mesoderm fate [156].
Likewise, exposing FA-cultured EpiSCs to BMP4 or
WNT3A recapitulates these events with cells undergoing
an EMT followed by expression of mesoderm markers
including Brachyury, Nodal, Wnt3, Fgf8, Mespl and
Thx6 [20, 127, 156].

Multiple reports have shown that disrupting Wnt
activity in EpiSCs with small molecule inhibitors
(XAV939, IWP-2, IWR-1) (Table 2) or genetic knock-
down of S-catenin (Ctnnbl), promotes a more homo-
geneous primed state, enhances clonal expansion of
single cells and derivation efficiency [20, 127, 142,
156, 159], and enriches for their capacity to undergo
reversion towards ESCs [127]. However, when EpiSCs
are derived in the presence of Wnt inhibitors, the
resulting cell lines are, for as yet unknown reasons,
dependent on these enhanced culture conditions.
While EpiSC lines derived in standard FA can be re-
versibly exposed to the Wnt pathway inhibitor I'WP-2
without negative effects, EpiSCs derived with FA and
IWP-2 rapidly differentiate when IWP-2 is removed
[146]. The long-term effects of Wnt signaling
inhibition therefore need to be investigated in more
detail. Wnt-inhibited EpiSCs (WiEpiSCs) have ele-
vated expression of E-cadherin, and decreased Snail
and N-cadherin (Cdh2), potentially indicating a reduc-
tion in the fraction of cells undergoing EMT.
Mesoderm and endoderm markers, such as Eomes,
Brachyury, FoxA2, Gata6, Sox17 and Lefty2, are
downregulated and pluripotency markers are upregu-
lated [127, 142, 146, 156, 159]. Global transcriptional
analysis suggests that WiEpiSCs are similar to pre or
early streak embryos [119, 127] or cells of the later
Epi before entering the PS [159]. Therefore, blocking
Wnt signaling inhibits differentiation, maintaining
cells in a more robust state of self-renewal, akin to a
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developmentally advanced version of the naive ESC
“ground state” captured by FGF inhibition.

While naive ESCs can generate chimaeras when
injected into pre-implantation embryos, primed EpiSCs
cannot. Although the functional potential of WiEpiSCs
has been tested in chimaera assays, discrepancies in cul-
ture conditions (Table 2) and experimental design, be-
tween studies means that the data are difficult to
interpret. WiEpiSCs maintained with FA and XAV939,
or FGF and IWR-1, can contribute to all germ layers
when grafted into post-implantation embryos [156, 159].
WiEpiSCs cultured with IWR-1 cannot contribute to
pre-implantation embryos [159], but are cultured in the
absence of Activin, which may limit their functional po-
tential and the functional potential of XAV-treated cells
has not been tested in pre-implantation embryos. WiE-
piSCs cultured with IWP-2 have the capacity to contrib-
ute to embryonic development when injected into
blastocysts [127], but their ability to contribute to post-
implantation embryos has not been assessed. It therefore
remains an open question as to whether these cells can
contribute to both pre- and post-implantation stages of
embryonic development.

Although Wnt signaling inhibition combined with FA
maintains EpiSCs in a relatively stable primed pluripo-
tent state, inhibition of Wnt signaling without FA leads
to gradual differentiation [20, 156]. Intriguingly, a com-
bination of small molecules that simultaneously inhibit
(XAV939) and activate (CHIR99021 or IWR-1) Wnt ac-
tivity, prevent differentiation in the absence of FA and
can be used to derive EpiSCs directly from embryos
[20], although it is not known whether these cultures are
homogeneous (Table 2). The exact function of this cock-
tail is unknown, but involves sequestering f-CATENIN
in the cytoplasm independent of its activity as a tran-
scriptional regulator. Nevertheless, S-catenin mutant
cells can be maintained in FA indicating that cytoplas-
mic B-CATENIN is not necessary for EpiSC self-renewal
under normal conditions. While CHIR/XAV EpiSCs
share many transcriptional hallmarks with FA EpiSCs,
the naive markers Dppa?2, Dppa4 and DppaSa are more
highly expressed and Eomes and Nodal are expressed at
lower levels [20]. These cells may therefore exist in an
intermediate state between EpiSCs and ESCs. CHIR/
XAV EpiSCs can differentiate in vitro into all germ
layers and form teratomas in vivo. However, unlike WiE-
piSCs, they cannot generate chimaeras when injected
into blastocysts, and their functional potential at later
developmental stages has not been assessed [20].

In addition to the promiscuous expression of lineage
markers in EpiSC cultures, there is also heterogeneous
expression of earlier ESC and germ layer genes, marked
by an Oct4-GFP reporter [131]. The effect of Wnt sig-
naling inhibition on this population has not been
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assessed, however, EpiSCs uniformly expressing Oct4-
GFP can be derived using FGF4 alone instead of FA
[160] (Table 2). When the Epi of E5.5-6.5 embryos is
explanted in FGF4 medium, most cells downregulate
Oct4-GFP and likely differentiate but rare Oct4-GFP
positive cells persist and can be purified by fluorescence
activated cell sorting (FACS) [160]. Although FGF4-
cultured EpiSCs (F4-EpiSCs) are pluripotent, they are
distinct from Oct4-GFP cells in standard FA cultures, as
they show reduced naive marker expression and high
levels of lineage markers. Therefore, while an apparently
homogeneous, stable EpiSC culture can be maintained
in FGF4 alone, it may represent a homogeneous late an-
terior PS-like state, similar to that described by Kojima
et al. [119] rather than an intermediate. Heterogeneous
expression of Oct4-GFP is reestablished when these cells
are transferred to FA but it was not determined whether
this was induced by Activin, distinct activities of FGF2
versus FGF4, or the disparity in FGF concentrations used
(5 ng/ml FGF2 versus 25 ng/ml FGF4).

(iii) combining naive and primed culture conditions

Although Wnt signaling stimulates differentiation in the
primed state of pluripotency, it stabilizes naive pluripo-
tency. It has therefore been suggested that culturing
ESCs in a combination of primed culture conditions
(FA), which normally coerce ESCs into EpiSCs, and Wnt
signaling captures an intermediate state [155, 161]. ESCs
cultured in FA and CHIR exhibit a mix of naive and
primed characteristics (Table 2) [155]. Although Wnt ac-
tivity has previously been shown to induce Brachyury
expression correlated with EpiSC instability in FA cul-
tures [142], surprisingly this was not the case in FA and
CHIR-cultured intermediate pluripotent stem cells
(INTPSCs) [155]. INTPSCs retain ESC features includ-
ing domed colony morphology, high clonogenicity, naive
marker expression (e.g. Kif4, Rexl and Esrrb), X
chromosome activation and the capacity to contribute to
embryonic development when injected into blastocysts
[155]. They also acquire some EpiSC-like features such
as the emergence of a subpopulation of cells coexpres-
sing pluripotency (OCT4, ESRRB) and germ layer
(FOXA2) markers. However, the majority of primed Epi
markers, including Fgf5, Wnt3 and Otx2, are expressed
at levels intermediate between ESCs and EpiSCs.
Although attempts were not made to derive INTPSCs
directly from embryos, PSC lines have been derived from
pre-implantation embryos under similar conditions with
FA and a comparable Wnt pathway agonist, BIO with
the addition of a LIF blocking antibody [161] (Table 2).
While FGF, Activin, BIO stem cells (FAB-SCs) express
intermediate levels Fgf5, associated with the primed
state, and naive miRNAs, they do not express other
naive markers at appreciable levels and are
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morphologically more similar to EpiSCs [161]. Further-
more, FAB-SCs are not functionally pluripotent as
assessed by in vitro differentiation, teratoma assays and
blastocyst injections [161]. While their capacity to gener-
ate teratomas could be rescued by LIF and BMP, it was
not determined whether these cells had reverted to an
ESC-like state.

Similar attempts were made to culture ESCs in the
presence of the conventional ESC propagation compo-
nent, serum (containing BMP activity), alongside the
primed culture component Activin. Clonal assays
selected for rare ESCs that can be maintained in an
undifferentiated state in serum and Activin with similar
efficiency to SL [162]. As forced expression of Nanog is
sufficient to maintain self-renewal in the absence of LIF
[74, 75] and Nanog is a direct target of Activin/Nodal
signaling, this may explain how Activin maintains pluri-
potency in this context. These cells occupy a transcrip-
tional midpoint between ESCs and EpiSCs expressing
intermediate levels of naive markers (Rex1, Stella, Kif4,
Nanog) and primed/lineage markers (Fgf5, Nodal, Lefty,
FoxA2, Otx2, Gata6, Brachyury), and are hence referred
to as intermediate ESCs (IESCs) (Table 2). While not re-
lated to standard ESC or EpiSC culture conditions, a
transcriptionally similar state can be generated by long-
term culture of ESCs in conditioned medium (MEDII)
from a human hepatocellular carcinoma cell line
(HepG2) (Table 2). In contrast to IESCs which display a
compact domed colony morphology [162], these early
primitive ectoderm-like (EPL) cells have a flattened
EpiSC-like morphology [163]. While EPL cells maintain
the expression of some naive markers including SSEA-1
and Alkaline Phosphatase, they downregulate others in-
cluding Rex! and Gbx2. Furthermore, they upregulate
the early post-implantation Epi marker, Fgf5 but not
later PS or lineage-associated genes. Transferring IESCs
or EPL cells to SL medium regenerates a standard ESC
transcriptional profile indicating that these cells are not
committed to their states. Neither IESCs nor EPL cells
can contribute to embryonic development when intro-
duced into pre-implantation embryos but their capacity
to contribute to post-implantation development has not
been assessed.

Human pluripotent stem cells

As for mouse, multiple human states of pluripotency
have been captured in vitro. Initial attempts to derive
human ESCs (hESCs) by explanting the blastocyst ICM
in mouse ESC (mESC) self-renewal conditions, SL, were
unsuccessful [164, 165]. Instead, like EpiSCs, hESCs rely
on FGF and Activin for self-renewal, exhibit a flattened
colony morphology, limited clonogenicity, preferential
use of the Oct4 proximal enhancer and reduced expres-
sion of the naive markers REXI and TFCP2L1 compared
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to the human blastocyst ICM [3, 17, 125, 127, 166-171].
The X chromosome activation status varies between
hESC lines, perhaps a result of inconsistency in the oxy-
gen levels in different derivation protocols [166, 171,
172]. Furthermore, hESC cultures experience high levels
of spontaneous differentiation and contain subpopula-
tions that coexpress pluripotency and lineage markers
including BRACHYURY and GATA4 [127, 173]. As with
EpiSCs, Wnt pathway inhibition increases hESC homo-
geneity and reduces differentiation [127, 159]. Taken to-
gether, these findings indicate that the first human PSC
state to be derived corresponds to a primed state of
pluripotency. This begs the question as to whether no-
menclature should now be re-aligned, and human ESCs
be classified as human EpiSCs.

Initially it was not known whether a naive human
pluripotent state existed. One possibility being that this
state is uniquely stabilized and more accessible in ro-
dents due to their capacity to undergo diapause. Cultur-
ing hESCs in mESC ground state conditions (2i and LIF)
results in extensive differentiation [174—177]. However,
multiple modified small molecule inhibitor cocktails
have now been identified that can induce naive proper-
ties in hESCs [175-182], some of which also facilitate
the derivation of cell lines directly from human embryos
[175-177, 181]. Purported naive hESCs share common
phenotypic properties that differ from canonical primed
hESCs including domed colony morphology, resistance
to single cell dissociation, enhanced proliferation rate,
increased X activation and decreased methylation at
naive loci [175-182]. Not surprisingly, the various, dis-
tinct combinations of inhibitors yield hESC states with
vastly different transcriptional profiles. While several of
these states transcriptionally cluster with naive mESCs,
rather than primed EpiSCs or hESCs [175-177], others
are distinct from pluripotent states existing in the
mouse. For example, Chan et al. [178] describe hESCs
that upregulate the expression of genes associated with
naive pluripotency in mouse (KLF2, KLF4, KLFS,
DPPA3, DPPAS and NANOG) but also significantly up-
regulate a long list of lineage-associated markers
(HNF4a, GATA6, GATA4, SOX17, FOXA2, T, EOMES,
GSC, CDX2, WNT3, CDX2 and NODAL) and contain a
fraction of cells that coexpress GATA6 and NANOG
protein. Additionally, the majority of these cultures re-
quire FGF and Activin/Nodal signaling, and hence may
be more similar to novel intermediate states of pluripo-
tency described in mouse than bona fide naive pluripo-
tent cells. However, FGF and Activin signaling
independence has been attained through genetic ma-
nipulation of hESC lines by forced continuous activation
of STAT3 [183] or transient expression of NANOG and
KLF2 [184]. Notably, culture conditions comprising of
the 2i inhibitors [91] alongside an inhibitor of protein
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kinase C (PKC) [184] can be used to successfully derive
novel hESC lines in FGF and Activin independent condi-
tions directly from embryos [181, 184].

Both naive and primed hESCs generate derivatives of
all embryonic germ layers when differentiated in vitro,
or in vivo in teratoma assays [185-187]. Perhaps not
surprisingly, naive hESC states exhibit a reduced cap-
acity to form mature cell types compared to primed
hESCs when challenged with the same differentiation
protocols. [188]. This is likely due to the fact that, for ef-
ficient differentiation, they must recapitulate the in vivo
developmental trajectory and first transit to a post-
implantation primed Epi state. While there are
suggestions that hESCs generate trophoblast derivatives
[127, 189-192], many of the genes used to define this
cell type are also expressed in other lineages [193], leav-
ing this issue unresolved. To determine whether hESCs
maintain the capacity to contribute to embryonic devel-
opment after periods in culture, they have also been
introduced into mouse embryos. When primed hESCs
are injected into mouse blastocysts, they persist at post-
implantation stages, but negatively affect embryonic
development [194]. Generally, hESCs also show poor
contribution when grafted into post-implantation mouse
embryos, but this can be improved by culturing hESCs
in the presence of Wnt signaling inhibitors [159]. The
capacity of naive hESCs to contribute to pre-
implantation mouse embryos is still unclear. While in
some cases contribution has been observed, there is
evidence that this is not reproducible and cells do not
integrate [175, 176, 184, 195]. However, this is by no
means an infallible experiment and potential inter-
species incompatibility means that these results are
difficult to interpret.

While hESCs share many properties with mouse
EpiSCs, akin to the post-implantation Epi around gas-
trulation, they also show a strong correlation with
EpiLCs, similar to the Epi at peri- or early post-
implantation stages of development [196]. However,
without access to post-implantation human embryos,
there are limitations on temporally aligning human
PSCs to in vivo development. Attempts have been
made to correlate human states of pluripotency with
mouse development, but transcriptional differences
between species [197-199] suggest that this may not
be the optimal approach. Nevertheless, single-cell
RNA-sequencing of embryos from the more closely
related cynomolgous monkey revealed that standard
hESCs are indeed similar to the primate post-
implantation Epi, while naive hESCs show a stronger
correlation with the primate pre-implantation Epi
[196]. Recent advances in the ex vivo culture of hu-
man embryos allow development to implantation-like
stages [200, 201], and therefore may also provide new
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insights into later human development. However,
since there is no possibility for in vivo validation,
conclusions should be drawn tentatively.

Review and conclusions

While pluripotent cells are present in the embryo for a
significant period of time during the course of develop-
ment, for the past decade, in vitro PSCs have been limited
to naive ESCs and primed EpiSCs, perhaps suggesting that
only a restricted number of stable attractor states can be
isolated and stably maintained. However, recent develop-
ments in the field have revealed that these states can inter-
convert in vitro via distinct transient intermediates, hence
the view of pluripotency as a continuum. Furthermore,
modified culture conditions can induce novel characteris-
tics in ESCs or EpiSCs confirming that the functional
definition of pluripotency can be fulfilled while encom-
passing a broad spectrum of additional properties. What
remains unclear is how these newly described states relate
to one another, and whether bona fide counterparts exist
in the embryo, neither of which are trivial questions to
answer. Our current understanding is based on data gen-
erated using a range of basal media, cytokine combina-
tions, cytokine concentrations, functional assays and
transcriptional analysis platforms making direct compari-
sons near impossible. To understand whether the differ-
ences between these states are representative of an
endogenous developmental progression, one needs to de-
termine how each state functionally and transcriptionally
relates to another in parallel controlled experiments,
followed by comparisons to high-resolution data from the
Epi population through successive stages of embryonic
development. Ideally, these comparisons would be at a
single-cell level, as heterogeneity within cell cultures, as
well as in vivo within the Epi itself, may otherwise make
these data challenging to interpret. The increase in the
availability of single-cell data from both pre and post-
implantation embryos suggests that this may soon be pos-
sible [202—206]. Furthermore, one must keep in mind that
in vivo pluripotency is not a stable state, and there is no
such thing as self-renewal, hence in vitro imitations will
inevitably exhibit a certain degree of disparity.
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