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Abstract 

Background:  Inflammation is the most common cause of kidney damage, and inflammatory responses in a number 
of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described 
the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p 
affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells.

Methods:  LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase 
the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, 
mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and 
the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investi-
gated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay.

Results:  The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury 
compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). 
HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all 
P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and 
the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p 
mitigated these effects of LPS (all P < 0.05).

Conclusion:  LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
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Introduction
Sepsis is caused by the dysfunctional response of the 
host to infection, which produces a large number of 
inflammatory factors. Acute kidney injury (AKI) is a 
common complication among hospitalized patients 
with sepsis, is associated with increased mortal-
ity [1, 2], and is characterized by endothelial injury 

with hemodynamic dysfunction [3]. Inflammatory 
cytokines (IL-1β, IL-6, IL-8, TNF-α) produced by the 
proximal tubular epithelial cells of the damaged kid-
ney, penetrate into the renal interstitium and further 
damage renal function; the resultant damage indi-
cates that the pathogenesis of AKI is complicated by 
inflammation [4–6]. Oxidative stress, together with 
inflammation, can accelerate the decline of renal func-
tion [7, 8]; therefore, the exploration of inflammatory 
responses in renal injury will contribute to the treat-
ment and improve the survival rate of patients with 
this condition. The NF-κB (p65) and MAPKs (p38) 

*Correspondence:  13599040300@139.com

3 Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 
Daoshan Road, Gulou District, Fujian, Fuzhou 350001, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12860-022-00455-0&domain=pdf


Page 2 of 10Wang et al. BMC Molecular and Cell Biology           (2022) 23:60 

signaling pathways are the main pathways that regu-
late the production of inflammatory cytokines [9], so 
the activation of these pathways will improve the pro-
duction of inflammatory cytokines. Furthermore, sep-
sis-induced AKI is considered to be a comprehensive 
response, including transcriptional events, mitochon-
drial activity, and apoptosis [3].

MicroRNAs (miRNAs) are non-coding RNAs con-
taining approximately 20–24 nucleotides that target 
the 3’-untranslated region of messenger RNA (mRNA) 
to regulate its degradation or translation [10, 11]. miR-
NAs affect the development of inflammatory diseases, 
according to mounting evidence [6, 12–14]. For exam-
ple, miRNA-221 and miRNA-222 inhibit endothelial 
cell proliferation and angiogenesis in chronic inflam-
mation [8], whereas by targeting C-Myc in HK-2 
cells, miRNA-103 aggravates the inflammatory dam-
age caused by lipopolysaccharide (LPS). Additionally, 
miRNA-30b enhances LPS-induced inflammatory 
damage in HK-2 cells, and promotes the production 
of inflammatory cytokines, and these processes lead 
to cell dysfunction [6, 12, 15]. Another example is 
miRNA-500 A-3p, which has anti-inflammatory prop-
erties that can alleviate renal injury [16].

MiRNA-338-3p (miR-338-3p) is located in the sev-
enth intron of the apoptosis-associated tyrosine kinase 
gene [17]. Apoptosis is the main mode of cell death, 
the decrease of mitochondrial membrane potential 
is the early activity of apoptosis, and the dysregula-
tion of apoptosis-related proteins (Bcl-2, Bax, cleaved 
caspase-9, and cleaved caspase-3) plays an important 
role in the occurrence and development of apoptosis 
[18]. Therefore, the investigation of the relationship 
between miR-338-3p and apoptosis-related proteins 
(Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3) 
is helpful to reveal the molecular mechanism of miR-
338-3p’s regulation of inflammatory damage in renal 
cells. The level of miR-338-3p is decreased in virus-
induced neurodegenerative diseases [19]. miR-338-3p 
can alleviate inflammatory damage. For example, miR-
338-3p inhibits inflammation in acute liver injury 
caused by N-acetyl-p-aminophenol, and relieves LPS-
induced inflammatory damage in 16HBE cells (human 
bronchial epithelioid cells) [20, 21]. However, it is 
unknown what role miR-338-3p plays in renal injury.

In this study, HK-2 cells were stimulated by LPS to 
establish an in  vitro model of inflammatory damage. 
HK-2 cells overexpressing miR-338-3p were treated 
with LPS, and then cell viability, the secretion of 
inflammatory cytokine, mitochondrial membrane 
potential (MMP) changes, and apoptosis were detected 
to study the role of miR-338-3p in LPS-induced 
inflammation.

Materials and methods
Cell culture
The HK-2 cell line, which is an epithelial cell line of the 
proximal convoluted tubule of the human renal cortex, 
was purchased from Xiamen Immocell Biotechnology 
Co., Ltd. (Catalog number: IM-H060). DMEM with 10% 
fetal bovine serum and 5ng/ml epidermal growth factor 
was used to culture the cells. The cells were incubated at 
37 °C, with 5% carbon dioxide, and 70–80% humidity.

Grouping of cells
Dimethyl sulfoxide (DMSO), LPS, LPS + mimic nega-
tive control (NC), and LPS + miR-338-3p mimic groups 
designed with HK-2 cells in 6-well plates. In the DMSO 
group, HK-2 cells were treated with complete medium 
supplemented with 0.1% DMSO (as a negative con-
trol) for 24 h. In the LPS group, HK-2 cells were treated 
with 5 µg/mL LPS for 24 h. LPS + mimic NC group and 
LPS + miR-338-3p mimic group were transfected with 
200 pmol negative control of miR-338-3p mimic (mimic 
NC) and miR-338-3p mimic for 24  h, respectively, and 
then the cells were treated 5  µg/mL LPS. After 24  h, 
cells or cell supernatants were collected for subsequent 
experiments.

Blood sample collection
The Fujian Maternity and Child Health Hospital Eth-
ics Committee approved this study (approval number: 
2022KD0133), which was carried out in compliance with 
the Helsinki Declaration. Informed consent papers were 
signed by all volunteers. Vacuum vascular collection was 
used to collect peripheral venous blood (5 mL) from all 
volunteers in the morning while they were fasting. The 
blood was centrifuged to isolate the serum which was 
stored at -80 °C for further analysis.

Real‑time polymerase chain reaction (RT‑PCR)
To extract RNA, cells were treated with TRI reagent® 
(Sigma-Aldrich, Catalog number: T9424) and serum 
was treated with serum miRNA isolation kit (TIAN-
GEN, Catalog number: DP503) according to the manu-
facturer’s instructions. The obtained RNA was reverse 
transcribed with the PrimeScript RT Reagent Kit 
(Takara, catalog number: RR047A). Reverse transcrip-
tion of the miRNAs was completed using specific prim-
ers (Table 1). RT-PCR was performed using the reverse 
transcriptional RNA, Agilent-Strata gene MxReal-Time 
qPCR system, and SYBR Green Master Mix (VAZYME, 
catalog number: Q111-02). The thermocycling con-
ditions of qPCR were 95  °C for 5  min, followed by 40 
cycles at 95 °C for 10 s and 60 °C for 30 s. The relative 
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expression levels of genes were normalized to the 18 S 
rRNA levels using the 2−ΔΔCq method. The primers 
used for RT-PCR are shown in Table 1.

MTT assay
To explore the effects of LPS and miR-338-3p on cell 
viability, we used MTT assay to detect cell viability. The 
treated HK-2 cell was seeded in 96-well plate at 1 × 104 
per well. After 12  h, 5  mg/mL MTT (10 µL per well) 
was added and incubated at 37 °C for 4 h. Then, we dis-
carded the culture medium and added 150 µL DMSO to 
each well. The SpectraMax Absorbance Reader (Molec-
ular Devices, San Francisco, CA, USA) was used to 
measure the absorbance at 490 nm.

Western blotting
Protein was extracted using ice-cold RIPA buffer (Beyo-
time, Catalog number: P0013C). After quantification 
using the BCA protein concentration determination kit 
(Beyotime, catalog number: P0012S), the protein was 
separated by gel electrophoresis. The protein was then 
transferred to a PVDF membrane (Millipore, catalog 
number: IPVH00010), and incubated with 5% skim milk 
at 25  °C for 1  h. The protein-loaded PVDF membrane 
was incubated with BCL-2 antibody (catalog number: 
12789-1-AP, Proteintech), BAX antibody (catalog num-
ber: 50599-2-Ig, Proteintech), GAPDH antibody (catalog 
number: 10494-1-AP, Proteintech), Cleaved Caspase-3 
antibody (catalog number: ab32042, abcam), Cleaved 
Caspase-9 antibody (catalog number: ab2324, abcam), 

Table 1  Primers for RT-PCR

Name Sequence (5′-3′) miRbase/Gene ID

miR-326-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​TGG​AG MIMAT0000756

miR-326-F CGC​CTC​TGG​GCC​CTTC​

miR-126-5p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​GCG​TA MIMAT0000444

miR-126-5p-F GCG​CGC​ATT​ATT​ACT​TTT​GG

miR-338-3p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​AAC​AA MIMAT0000763

miR-338-3p-F CGC​GTC​CAG​CAT​CAG​TGA​TT

miR-599-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACG​TTT​GA MIMAT0003267

miR-599-F CGC​GCG​GTT​GTG​TCA​GTT​TA

miR-548 m-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​AAA​AA MIMAT0005917

miR-548 m-F CGC​GCA​AAG​GTA​TTT​GTG​G

miR-16-5p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​GCC​AA MIMAT0000069

miR-16-5p-F CGC​GTA​GCA​GCA​CGT​AAA​TA

miR-214-5p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACG​CAC​AG MIMAT0004564

miR-214-5p-F CGC​GTG​CCT​GTC​TAC​ACT​TG

miR-30c-5p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACG​CTG​AG MIMAT0000244

miR-30c-5p-F GCG​CGT​GTA​AAC​ATC​CTA​CACT​

miR-221-3p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACG​AAA​CC MIMAT0000278

miR-221-3p-F CGC​GAG​CTA​CAT​TGT​CTG​CTG​

miR-4763-3p-RT GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACC​CCG​CC MIMAT0019913

miR-4763-3p-F GCA​GGG​GCT​GGT​GCTG​

Bcl-2-F ATC​GCC​CTG​TGG​ATG​ACT​GAGT​ 596

Bcl-2-R GCC​AGG​AGA​AAT​CAA​ACA​GAGGC​

Bax-F TCA​GGA​TGC​GTC​CAC​CAA​GAAG​ 581

Bax-R TGT​GTC​CAC​GGC​GGC​AAT​CATC​

U6-F CTC​GCT​TCG​GCA​GCACA​ 26,827

U6-R AAC​GCT​TCA​CGA​ATT​TGC​GT

public reverse primer for miRNA AGT​GCA​GGG​TCC​GAG​GTA​TT

18 s-F ACC​CGT​TGA​ACC​CCA​TTC​GTGA​ 100,008,588

18 s-R GCC​TCA​CTA​AAC​CAT​CCA​ATCGG​

F Forward primer, R Reverse primer, RT Specific primer of reverse transcription
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p65 antibody (catalog number: 10745-1-AP, Proteintech), 
p38 antibody (catalog number: 14064-1-AP, Proteintech), 
phospho-p38 antibody (catalog number: 28796-1-AP, 
Proteintech), or phospho-p65 antibody (catalog number: 
ab76302, abcam) at 4  °C overnight, followed by incuba-
tion with HRP-conjugated Affinipure Goat Anti-Rabbit 
IgG (catalog number: SA00001-2, Proteintech) at 25  °C 
for 1 h. After washed, the membranes were visualized by 
ECL chemiluminescence (Thermo Fisher Scientific).

Detection of mitochondrial membrane potential (MMP)
After the treated cells were obtained, MMP was detected 
using JC-1 staining assay kit (Beyotime, catalog number: 
C2006) as directed by the manufacturer. The cells were 
then examined by flow cytometry (ACEA Bioscience 
Inc.) at Ex/Em = 549/575 nm.

Apoptosis assay
Subsequent to treatment with the indicated compounds, 
HK-2 cells were collected to analyze apoptosis using an 
apoptosis detection kit (Vazyme, catalog number: A211-
01) as directed by the manufacturer. Flow cytometry 
(ACEA Bioscience Inc.) was used to detect and analyze 
cell apoptosis.

Enzyme‑linked immunosorbent assay (ELISA)
The supernatant was collected after the treatments, and 
the IL-1β, IL-6, IL-8, and TNF-α levels were analyzed 
using Human IL-1 beta/IL-1F2 DuoSet ELISA Kit (R&D 
systems, catalog number: DY201-05), Human IL-6 Quan-
tikine ELISA Kit (R&D systems, catalog number: D6050), 
Human IL-8/CXCL8 Quantikine ELISA Kit (R&D sys-
tems, catalog number: D8000C), or Human TNF-alpha 
Quantikine ELISA Kit (R&D systems, catalog number: 
DTA00D), as directed by the manufacturer. Finally, the 
protein concentration was determined with a microplate 
reader (Thermo Fisher Scien- tific, UK).

Statistical analysis
The difference between two groups or among multiple 
groups was assessed using Student’s t-test (unpaired) or 
analysis of variance (ANOVA) in SPSS software (version 
22.0), respectively. A difference of P < 0.05 was considered 
significant. GraphPad Prism 8.2.1 was used to obtain the 
graphs.

Results
LPS negatively regulates miR‑338‑3p
To investigate the effect of LPS on miRNA, we used 5 µg/
mL LPS to stimulate HK-2 cells for 24  h, and RT-PCR 
was used to detect the levels of miRNAs in HK-2 cells. 

Fig. 1  LPS decreases miR-338-3p level. A: The levels of 10 miRNAs in HK-2 cells stimulated by LPS for 24 h were tested by RT-PCR. B: miR-338-3p 
level in cells stimulated by LPS at different concentrations for 24 h was detected by RT-PCR. C: miR-338-3p levels in cells incubated by 5 µg/mL LPS 
for 12, 24, and 48 h were detected by RT-PCR. D: miR-338-3p level in the blood of patients with sepsis-induced acute kidney injury was determined 
by RT-PCR. SIKI, volunteers with sepsis-induced kidney injury; LPS, lipopolysaccharide. Ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001
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The results showed that in LPS-stimulated cells, the lev-
els of miR-326, miR-16-5p, miR-30c-5p, miR-338-3p, 
miR-548, and miR-599 were significantly decreased 
(Fig. 1A). Subsequently, we discovered that the decrease 
of miR-338-3p in HK-2 cells occurred with the increase 
of LPS dose or the prolongation of stimulation time 
(Fig. 1B, C). Moreover, patients with sepsis-induced kid-
ney injury had significantly higher levels of miR-338-3p 
in their blood than healthy volunteers (Fig.  1D). LPS 
inhibited miR-338-3p expression in HK-2 cells, accord-
ing to these findings.

LPS suppresses cell survival by targeting miR‑338‑3p
LPS affects the survival of cells by activating inflamma-
tory response in the cells [6, 12]. The viability of HK-2 
cells was determined using the MTT assay after they 
were stimulated with various concentrations of LPS or 
5 g/mL LPS for various time periods. The results veri-
fied that the survival of cells was impaired by LPS, and 
the higher the amount of LPS, or the longer the LPS 
action time, the lower the survival rate of cells (Figs. 2A, 

B). The HK-2 cells were simultaneously treated with 
LPS and supplemented with miR-338-3p, and the levels 
of miR-338-3p and cell survival rate were detected. The 
results suggested that LPS reduced miR-338-3p level, 
but miR-338-3p level was increased when the HK-2 
cells were treated with LPS and transfected with the 
miR-338-3p mimic (Fig.  2C). In addition, miR-338-3p 
diminished the LPS-induced decrease in cell survival 
(Fig.  2D). These data indicated that LPS impaired cell 
survival by inhibiting miR-338-3p expression.

LPS induces inflammatory factor expression by reducing 
mir‑338‑3p level
To explore whether LPS targeting miR-338-3p affects 
inflammatory factor expression, the LPS-treated cells 
were supplemented with miR-338-3p. We found that 
supplemented miR-338-3p alleviated LPS-induced 
expression of IL-1β, IL-6, IL-8, and TNF-α (Fig.  3). 
These findings implied that LPS induced the expression 
of inflammatory factors by targeting miR-338-3p.

Fig. 2  LPS inhibits HK-2 cell proliferation by targeting miR-338-3p. A–B: After incubation of HK-2 cells with various doses of LPS for 24 h, or with 
5 µg/mL LPS for 12, 24, and 48 h, MTT assay was used to tested cell proliferation. C-D: After HK-2 cells were treated with DMSO, LPS, mimic NC, 
or miR-338-3p mimic, miR-338-3p level and cell proliferation were detected by RT-PCR and MTT assay, respectively. LPS, lipopolysaccharide; NC, 
negative control. *: p < 0.05, **: p < 0.01, ****: p < 0.0001
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Overexpression of mir‑338‑3p relieves LPS‑induced 
apoptosis
According to previous report [22], LPS induces apopto-
sis, and the aforementioned results show that LPS targets 
miR-338-3p; therefore, it is possible that LPS promotes 
apoptosis by targeting miR-338-3p. We performed JC-1 
staining to assess the changes in the MMP in HK-2 cells. 
The presence of green fluorescence indicates a decrease 
in MMP. As shown in Fig.  4A, LPS stimulation sig-
nificantly reduced the MMP, while supplemented miR-
338-3p alleviated the decrease in the MMP caused by 
LPS, indicating that LPS caused a decrease in the MMP 
by inhibiting miR-338-3p expression. Furthermore, an 
apoptosis assay showed that miR-338-3p’s overexpression 
reduced LPS-induced apoptosis (Fig. 4B). LPS promoted 

the phosphorylation of p65 and p38, while overexpres-
sion of miR-338-3p inhibited the LPS-promoted phos-
phorylation of p65 and p38 (Fig. 5A). LPS reduced Bcl-2’s 
mRNA and protein levels and increased Bax’s mRNA 
and protein levels, and enhanced cleaved caspase-9 and 
caspase-3 levels (Fig. 5B, C). In contrast to these results, 
the supplementary miR-338-3p eliminated these effects 
(Fig. 5B, C). These data suggest that LPS led to apoptosis 
by reducing miR-338-3p levels.

Discussion
Sepsis is a systemic inflammatory response syndrome 
caused by infection that can lead to a variety of tis-
sue and organ lesions, such as kidney damage and brain 
damage [23, 24]. Many miRNAs are associated with 

Fig. 3  Increasing miR-338-3p level suppresses inflammatory factors’ expression induced by LPS. DMSO, LPS, LPS + mimic NC, or LPS + miR-338-3p 
mimic were applied to HK-2 cells. A-B: Inflammatory factors (L-1β, IL-6, IL-8, and TNF-α) mRNA and protein levels were tested by RT-PCR (A) and 
ELISA (B), respectively. LPS, lipopolysaccharide; NC, negative control. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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inflammation [14, 25]. In this study, to create an inflam-
matory injury model, we employed LPS to activate HK-2 
cells. We observed that LPS caused HK-2 cells to become 
inflamed and die. We found that LPS damage in cell pro-
liferation was reduced and the release of inflammatory 
cytokines was inhibited in HK-2 cells stimulated by LPS 
when miR-338-3p was overexpressed. Consistently, over-
expression of MiR-338-3p has been shown to alleviate 
LPS-induced WI-38 cell damage [26]. In addition, LPS-
induced apoptosis and reduced the MMP was alleviated 
when miR-338-3p level was increased. These data suggest 
that miR-338-3p has an anti-inflammatory effect in HK-2 
cells.

Studies have shown that due to the role of miRNAs 
in regulating gene expression through targeted mRNA, 
miRNAs have regulatory effects on proliferation, apop-
tosis, autophagy, and inflammatory cytokines [12, 27]. 
Moreover, an increasing number of studies have shown 
that miRNAs can act as inflammatory response modu-
lators [28, 29]. MiR-146a promotes the development of 
inflammation in CKD [30], and downregulation miR-
223-3p and miR-93-5p in CKD led to stable increases 
in IL-6 and IL-8 [31]. Interestingly, miR-338-3p is 
implicated in the occurrence and progression of a vari-
ety of tumors, including breast, renal cell, cervical, 
colorectal, and lung cancers [32–40]. Some research 

Fig. 4  Elevated miR-338-3p alleviated LPS-induced apoptosis. A: MMP was detected by JC-1 staining. B: Annexin V-FITC/PI staining was used to 
gauge cell death. MMP, mitochondrial membrane potential; MFI, mean fluorescence intensity; PI, propidium iodide; LPS, lipopolysaccharide; **: 
p < 0.01, ***: p < 0.001, ****: p < 0.0001
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has also linked miR-338-3p to inflammation in a vari-
ety of disorders. For example, miR-338-3p directly 
targets the IKKβ gene to regulate osteoclastogenesis, 
inhibits TNF-α-induced lipogenesis, and mitigates 
inflammatory damage induced by LPS in 16HBE cells 
[21, 41, 42]. Furthermore, miR-338-3p is associated 
with immune inflammatory responses in mice [43]. 
MiR-338-3p in the serum of patients with pancreatic 
cancer is correlated with the neutrophil count [44]. 
Here, we demonstrated that miR-338-3p has a role in 
the inflammatory response in HK-2 cells, and that LPS 
increases IL-1β, IL-6, IL-8, and TNF-α expression, and 

impairs cell proliferation by reducing miR-338-3p lev-
els in cells.

The researchers looked at the impact of miR-338-3p 
on apoptosis and MMP changes in LPS-stimulated HK-2 
cells. miR-338-3p promotes apoptosis by downregu-
lating WNT2B expression in ovarian cancer cells [40]. 
However, we discovered that the LPS-induced apop-
tosis of HK-2 cells was assuaged when miR-338-3p was 
enhanced. These data imply that miR-338-3p has a dual 
function in apoptosis. Moreover, SW480 cell apoptosis 
is regulated by miR-338-3p, which targets MACC1 [45]. 
Downregulated miR-338-3p inhibits morphine-induced 

Fig. 5  Overexpression of miR-338-3p inhibits LPS-induced phosphorylation of p65 and p38, as well as the regulation of apoptosis-related gene 
expression by LPS. A: Western blotting was used to test p65, p38, P-p65, and P-p38 levels. B: Bcl-2 and Bax mRNA levels were measured by RT-PCR. C: 
Western blotting was used to test Bcl-2, Bax, cleaved caspase-9 and cleaved caspase-3 protein levels. LPS, lipopolysaccharide; *: p < 0.05, **: p < 0.01, 
***: p < 0.001, ****: p < 0.0001
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apoptosis by upregulating SOX4 expression and caspase-
3-dependent apoptotic signaling pathways [46]. Nev-
ertheless, our study shows that miR-338-3p mitigates 
apoptosis by reducing LPS-induced MMP reduction, 
Bax expression, caspase-9 and caspase-3 cleavage, and 
increasing Bcl-2 expression. Therefore, we conclude that 
miR-338-3p relieves LPS-induced cell proliferation dam-
age by decreasing LPS-induced mitochondrial apoptosis.

Biological targets of miR-338-3p, such as RAB14, HIF-
1, cyclinD1, ZEB2, PREX2a, and FOXP4, have been par-
tially identified [32, 41, 47–49]. However, the precise 
molecular mechanism by which LPS targets miR-338-3p 
to induce apoptosis of HK-2 cells remains to be further 
studied. In addition, due to the lack of animal models of 
inflammatory kidney damage, the present study could 
not directly prove the role of miR-338-3p in inflamma-
tory kidney injury.

Conclusion
In summary, miR-338-3p alleviates inflammatory dam-
age caused by LPS by regulating MMP, Bcl-2, Bax, P-p65, 
P-p38, and cleaved caspase-9 and caspase-3 levels. Thus, 
these results provide a new understanding of the patho-
logical mechanism of inflammatory kidney injury and a 
theoretical basis for the treatment of this disease.
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