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Abstract

Background: The main challenge in cancer research is the identification of different omic variables that present a
prognostic value and personalised diagnosis for each tumour. The fact that the diagnosis is personalised opens the
doors to the design and discovery of new specific treatments for each patient. In this context, this work offers new
ways to reuse existing databases and work to create added value in research. Three published signatures with
significante prognostic value in Colon Adenocarcinoma (COAD) were indentified. These signatures were combined in
a new meta-signature and validated with main Machine Learning (ML) and conventional statistical techniques. In
addition, a drug repurposing experiment was carried out through Molecular Docking (MD) methodology in order to
identify new potential treatments in COAD.

Results: The prognostic potential of the signature was validated by means of ML algorithms and differential gene
expression analysis. The results obtained supported the possibility that this meta-signature could harbor genes of
interest for the prognosis and treatment of COAD. We studied drug repurposing following a molecular docking (MD)
analysis, where the different protein data bank (PDB) structures of the genes of the meta-signature (in total 155) were
confronted with 81 anti-cancer drugs approved by the FDA. We observed four interactions of interest: GLTP - Nilotinib,
PTPRN - Venetoclax, VEGFA - Venetoclax and FABP6 - Abemaciclib. The FABP6 gene and its role within different
metabolic pathways were studied in tumour and normal tissue and we observed the capability of the FABP6 gene to
be a therapeutic target. Our in silico results showed a significant specificity of the union of the protein products of the
FABP6 gene as well as the known action of Abemaciclib as an inhibitor of the CDK4/6 protein and therefore, of the cell
cycle.

Conclusions: The results of our ML and differential expression experiments have first shown the FABP6 gene as a
possible new cancer biomarker due to its specificity in colonic tumour tissue and no expression in healthy adjacent
tissue. Next, the MD analysis showed that the drug Abemaciclib characteristic affinity for the different protein
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structures of the FABP6 gene. Therefore, in silico experiments have shown a new opportunity that should be validated
experimentally, thus helping to reduce the cost and speed of drug screening. For these reasons, we propose the
validation of the drug Abemaciclib for the treatment of colon cancer.

Keywords: Machine learning, Molecular docking, Colon cancer, Prognosis, Drug repurposing, FABP6, Abemaciclib,
TCGA

Background
Colon adenocarcinomas (COAD) significantly con-
tributes to mortality and morbidity [1] of cancer in the
world population. In 2018, of the approximately 18 mil-
lion new cases, about 10% were colorectal cancer (1.8
million cases), according to data from the World Cancer
Research Fund. This type of cancer gains significance
when we focus on data within Spain, as it is the primary
cause of hospital stay in the country. It is estimated that
by 2019 there will be around 44,000 new cases of COAD.
Moreover, this problem is also alarming in Galicia, which
has the fifth highest number of COAD cases, with 2,500
new cases each year according to data from the Spanish
Cancer Association [2]. All studies indicate that early
detection and targeted treatment are the best weapons to
reduce these devastating statistics.
To achieve this goal, the scientific mass is, on the one

hand, generating different types of omics data to define
diseases molecularly and, on the other hand, designing
different data analysis models to extract valuable informa-
tion from these data.
In such context, extensive scientific contributions have

based their research on data reported by international
initiatives such as The Cancer Genome Atlas (TCGA)
[3]. The TCGA was born with the objective of obtaining
a multidimensional genomic map of the main genomic
changes in a wide variety of tumours. Analysis of the data
hosted by the TCGA offers scientists new opportunities
to obtain highly reproducible results that can be extrap-
olated to most of the world’s populations. With a sample
size of over 11,000 patients categorised into 33 differ-
ent tumour types, this repository offers the possibility of
creating models sufficiently robust for the extraction of
statistically reliable results and conclusions.
With access to such an amount of data, an ideal environ-

ment is created for the use of new computational meth-
ods capable of extracting information from the data and
simulating complex biological processes. Computational
methods such as machine learning (ML) and molecular
docking (MD) are examples that can provide new and
different visions in the fight against complex diseases,
such as COAD. Both techniques have already been used
extensively in recent years to bring about new results and
conclusions [4–9].

As far as therapeutic targets are concerned, an immense
investment is being made in terms of time, personnel,
resources and money, to experimentally validate new bio-
logical targets and new drugs that act efficiently on them.
Once the drug to be validated has been identified, experi-
ments are carried out to test and validate whether the drug
has the expected effect on cellular and animal models.
Subsequently, a clinical trial is necessary, where a signif-
icant number of patients must be recruited, all adverse
aspects must be analysed and all quality controls must be
passed. It is here, in the clinical trials phase, that budgets
skyrocket. Therefore, it is necessary to pre-screen interac-
tions, in a in silico way, to obtain potential candidates that
can be tested later in the laboratory. This prior in silico
step greatly helps to reduce experimental costs. It should
be noted that one out of every 5,000 drugs goes to the
clinic [10], which implies a disproportionate investment
on the part of the pharmaceutical companies. There-
fore, finding pathways and shortcuts from basic research
to clinical research through translational research would
offer a significant advantage to this field of research.
With this in mind, the present work has used public

data from TCGA and has employed the latest ML andMD
techniques to predict new biomarkers in COAD and sim-
ulate the effect of drugs already approved for repurposing
to this type of tumour.
For some years now, promising results have been

reported on the effect of several drugs on diseases
for which they were not designed. For example, the
drug Zidovudine, which was originally designed for the
treatment of cancer, has subsequently been used for
HIV/AIDS. Another example is Rituximab, which had
originally been indicated for various types of cancers and
has subsequently been approved for rheumatoid arthritis,
or Raloxifene, which went from being used for osteoporo-
sis to being used for breast cancer [11]. Experimentally
testing all the drugs used today in all diseases is unfeasible.
Fortunately, with the increase in computational capac-
ity, techniques of drug repurposing can give a realistic
approximation of what might occur in nature.
Both the results obtained by previous researchers

reported in the scientific literature and the results of the
in silico analysis of the present work seem to coincide that
the FABP6 gene presents all the necessary characteristics
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to be proposed as a potential candidate for an early diag-
nostic marker in COAD patients. Moreover, the results of
MD indicate a strong interaction between the drug Abe-
macicib and the different protein conformations of the
FABP6 gene, leading to a possible inhibition of the protein
activity.
It is known that FABP6 belongs to a group of low-

molecular-weight proteins related to the transport of
long-chain bioactive fatty acids in cells. In humans, there
are nine different subgroups (FABP1-9). This group of
proteins play a role in the development of different types
of cancer cells [12–16], and have also been proposed
as diagnostic markers and therapeutic targets [17–19].
Specifically, FABP6 is highly expressed in the ileum and
is an intracellular transporter of bile acids in ileal epithe-
lial cells, contributing to the catalysis and metabolism of
cholesterol. In relation to COAD cells, previous works
have observed that there are high concentrations of fae-
cal bile acids, in particular, secondary bile acids [20–22].
Furthermore, the involvement of FABP6 in the develop-
ment of colon cancer has been addressed in previous
publications [23, 24].
This work presents two distinct phases. Firstly, a search

has been carried out for previously published gene sig-
natures obtained from TCGA data using ML algorithms.
The use of these algorithms for this type of problem
offers the possibility of finding patterns and identifying
important variables that have not been identified with
the classical techniques. Thus, after a thorough review of
the different papers published under these requirements,
three gene signatures with prognostic value have been
identified for colon cancer [25–27]. Secondly, once our
meta-signature was created, the objective was to search
for and identify those genes that could behave as thera-
peutic targets in colon cancer and to carry out an in-depth
study for their validation and contribution to new treat-
ment approaches, in a in silico way. To this end, a repur-
posing of anti-cancer drugs, already approved by the FDA
for use in different types of tumour s, has been carried
out. The results of this work show a strong interaction, in
in silico experiments, between the PDB structures of the
FABP6 gene and the drug Abemaciclib. An in-depth study
of this interaction, which is detailed in this work, offers
hopeful results on a possible new treatment against colon
cancer, which must be validated experimentally.

Results
New gene signature for COAD prognosis prediction
The first objective of this work was to search for pre-
viously published gene signatures that could predict the
prognosis of COAD. In order to do this, we opted to
search for these signatures based on works using Machine
Learning techniques. We hypothesised that Machine
Learning techniques, together with different techniques

for selecting characteristics, could find variables (in this
case genes) of interest that have not previously been
identified by conventional techniques such as mutation
analysis or differential expression analysis.
In order to avoid biases between different cohorts, such

as data normalisation, as the data have been generated on
different platforms, the search for the papers focused on
those that used data from the TCGA repository, mainly
due to its heterogeneity and its large number of samples
and results published usingMachine Learning techniques.
Three papers were identified [25–27] that satisfied all

the requirements: they used colon cancer data from the
TCGA repository, applied some type of dimensionality
reduction techniques linked to Machine Learning tech-
niques, and reported a gene signature that was capable of
predicting disease prognosis with great precision.
The three signatures published by each of the selected

papers are shown in Table 1.
The three signatures were combined for later experi-

ments, generating a meta-signature of 34 genes. None of
these genes, after verification with the repository Into-
gen [28], was previously catalogued as a genetic driver
for any type of cancer. Therefore, we considered that this
set of genes could harbor some previously unidentified
biomarker or therapeutic target that could predict the
appearance of COAD, how the disease will develop, or
inhibit its growth.
Therefore, the hypothesis of the present work is that the

identification of different gene signatures, reported by dif-
ferent research groups, working under the same data and
the same problem, may harbour genes of interest that can
be used as new therapeutic targets. We will validate the
signatures in different biological problems usingML tech-
niques and conventional statistical techniques, and we will
useMD techniques to identify if there is an approved drug
that strongly interacts with any of the protein products
of the identified genes, and coul be used for the treat-
ment of COAD. Therefore, an experiment of repurposing
drugs against these targets would be carried out to identify
new therapeutic targets and their respective treatments in
colon cancer.

Table 1 Gene signatures obtained from previous works

Work Gene signature

Sun et al. 2018 TREML2, PADI4, NCKIPSD, PTPRN, PGLYRP1, C5orf53,

TREML3, NOG, VIP, RIMKLB, NKAIN4, FAM171B

Xu et al. 2017 HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK,

HTR6, GRIP2, KLRK1, VEGFA, AKAP12, RHEB,
NCRNA00152, PMEPA1

Wen et al. 2018 GLTP, METTL7A, PPAP2A, CITED2, SCARA5, CDH3,

IL6R, PKIB, GLP2R, LINC00974, EPB41L3, NR3C2
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Below are the results obtained after testing the hypoth-
esis put forward in this section. Two experiments were
carried out. Firstly, Machine Learning experiments for dif-
ferent classifications in order to clarify and validate the
real predictive value of the signature obtained. Secondly,
Molecular Docking experiments in order to search for
candidates that could be possible therapeutic targets and
the corresponding drugs that interact with them.

Machine learning and statistical analysis
To validate whether the meta-signature obtained is capa-
ble of predicting different clinical outcomes, three types of
Machine Learning experiments were designed: 1) classifi-
cation of different stages of cancer with expression data;
2) classification of the metastatic stage in lymph nodes
with expression data; 3) classification expression data of
tumour and healthy adjacent samples.
These three experiments were mainly designed to

observe the predictive potential of the meta-signature
obtained. For the first two experiments, the obtained sig-
nature was compared with others to determine if there
was sufficient information to predict advanced carcino-
genic aspects. As for the third experiment, the aim was to
observe whether the signature was capable of differenti-
ating, in a significant way, between tumour and adjacent
normal tissue, thus being able to identify specific omic
variables in tumour tissue, and generate the possibility of
finding new biomarkers or therapeutic targets specific to
the tumour. The three experiments were compared with
two algorithms and three different signatures. The Ran-
dom Forest and Glmnet algorithms were trained for three
different expression data subsets of the TCGA COAD
cohort: 1) the 34 genes of the meta-signature obtained
from the aforementioned studies, which will be the object
of study in this work; 2) a random signature of 34 genes
and 3) a signature that houses the genetic drivers for colon
cancer, obtained from the Intogen repository.

Classification of different stages of cancer
Available data from the COAD cohort of the TCGA were
downloaded. As mentioned, three different datasets were
generated for each signature to study. As a dependent
variable, patients were classified according to their stages.
Patients were grouped into two classes (stage I-II; stage
III-IV) representing the good and bad prognosis of the
patients, respectively.
Figure 1 shows the results achieved by each data-

algorithm binomial. The worst results were obtained with
algorithms trained with random signature, as expected.
As for the other two signatures, those obtained a slightly
higher yield, around 2.5 points more than the best perfor-
mance of the random signature. Due to the small differ-
ence in the three signatures, it can be deduced that this
is an extremely complicated problem and that both the

meta-signature and the genetic drivers downloaded from
the Intogen repository do not present significant infor-
mation about the problem to be solved. To confirm this
assumption, Friedman’s statistical test was performed to
see if there was any significant difference between the
models. A p-value=0.2208 indicate that no model existed
that was significantly better than the others.

Classification of patients according to their metastatic stage
in lymph nodes
The next problem addressed was the prediction of the
metastatic stage of patients. In the same way as the pre-
vious one, three different datasets were created with the
same signatures of the previous problem. In this case,
the patients were classified into two groups according to
their metastatic stage (N0 and N1-3). This problem was
established to obtain information about the very early
metastasis development. To date, there is still great uncer-
tainty about the omic variables involved in the process of
metastasis, so it is also considered a very complex problem
to solve.
In this case, Fig. 2 shows that the signature containing

the genetic drivers is superior to the other two signatures.
In this graph, we can deduce that our meta-signature does
not contain any type of useful information for discerning
different metastatic stages, since it has yields even lower
than the random signature in the training with certain
algorithms. After performing Friedman’s statistical test, a
p-value=0.27 was obtained, indicating that no model was
significantly better than the others.

Classification of tumour and adjacent healthy tissue
In the same way as in the previous experiments, three
datasets were obtained corresponding to the three sig-
natures used. In this case, the samples were classified
between tumour samples and healthy adjacent tissue
samples.
Unlike the previous experiments, we observed in Fig. 3a

a greater general precision in this problem. The dataset
formed by the genetic drivers presented an almost perfect
performance in both algorithms. As for the random sig-
nature, its performance dropped considerably. It was also
unstable and irregular between the algorithms used and
presented a randomness of the results. On the other hand,
the meta-signature studied in this work presented a per-
fect prediction of the samples, surpassing in performance
to the signature presented by the genetic drivers. Again,
Friedman’s statistical test was performed to observe if
there were significant differences between the models.
The p-value of the test was significant, with a value of
2.2e−16. Because the test was significant, a multiple com-
parison test was performed to see which models had a
significant difference. The PostHoc Friedman Conover
Test variant was used. Assuming a significance level of
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Fig. 1 Classification according to the stage of the patients. A comparative experiment was carried out with different datasets and different
algorithms for the classification of patients according to their stage. The classification consisted of a binary classification, grouping the patients in
two classes (stage I-II and stage III-IV)

0.01, it was determined that the datasets conformed by the
meta-signature and the genetic drivers were significantly
better than the dataset formed by the random signature.
As for the comparison between the first two, there were
no significant differences in performance.
We can infer, therefore, that the meta-signature

obtained is useful when differentiating patients in a very
early stage of the tumour. It is interesting to know at
this point of the analysis which of the genes presented a
greater weight within the model and a greater discrimi-
natory capacity in the classification between healthy and
tumour tissue.
For a further study of the models that were trained with

the meta-signature, the importance of the variables in the
Random Forest and Glmnet models were extracted. The
importance of the variables (standardized to have a mean
of zero and a standard deviation of one) within the Glmnet
and Random Forest models is shown in Fig. 3c. In addi-
tion, Table 2 shows, in descending order, the top 15 most
important genes obtained in both algorithms. A differen-
tial analysis of gene expression using the package edgeR

[29] was also performed on the datasets that presented
the variables of the meta-signature. The results obtained
in this analysis were compared with those obtained in the
MLmodels (see Fig. 3c and Table 2). In addition, in Fig. 3b,
a graph of differential expression obtained bymeans of the
classical approximation is observed. The figure shows how
this approximation detected the FABP6 and CDH3 genes
as the most significant according to the log fold change.
This conventional approach models the data under a neg-
ative binomial distribution, calculates the overdispersion
coefficient, and performs the exact Fischer Test to obtain
themost significant variables. Figure 3d shows a Venn dia-
gram with the coincidences of the three approximations,
and it can be seen that the three approximations reach
very similar conclusions.
The results obtained in the analysis of the impor-

tance of the variables indicate that the two algorithms
and the classical approximation reached almost the same
conclusions, and gave importance to the same vari-
ables (genes), although there is a small degree of vari-
ability. Specifically, among the top 15 variables (genes)
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Fig. 2 Classification by metastatic stage of patients. A comparative experiment was carried out with different datasets and different algorithms for
the classification of patients according to their metastatic stage of lymphatic node. The classification consisted of a binary classification, grouping
patients into two classes (stage n0 and stage 1-3)

of the three approximations, there was coincidence in
80% of them. All of them agree that the genes CDH3,
MUSK, SCARA5, NR3C2, GLP2R, EPB41L3, PKIB, IL6R,
METTL7A, VEGFA, FABP6 and VIP have great impor-
tance when differentiating between healthy samples and
tumour samples.
By defining this meta-signature as a predictor in the

diagnosis of the disease, and after the results obtained
in the different approximations, it is theoretically possi-
ble that there exists in this meta-signature, a gene that
may have an important role in the development of the
tumour and may be a new target for future treatments.
For this reason, a molecular affinity study was carried out
between the different protein products of these genes and
anti-cancer drugs that have been previously approved. In
this way, a more in-depth study can be carried out on the
results obtained and new specific therapeutic targets for
colon cancer can be proposed.

Molecular docking - drug repurposing
At this point in the work, we found a meta-signature of
genes that was able to classify with great precision, healthy
and colon cancer tissues. Another important aspect was
the importance of the variables in the different mod-
els. The three approaches (Random Forest, Glmnet and
edgeR) showed great coincidence in the most significant

variables, indicating that these genes could have an impor-
tant role in the disease. In this context, we consider it
necessary to conduct an experiment in silico to observe
the interactions between the protein products of these
genes and various anti-cancer drugs previously approved
by the FDA.
The 34 genes of the signature studied were converted

into their different 3D structures, annotated in the PDB
repository [30] (only those structures with a validated 3D
annotation were chosen). Of these 34 genes, only 16 were
3D annotated: PADI4, VIP, GRIP2, NCKIPSD, PGLYRP1,
FABP6, CDH3, VEGFA, NOG, EPB41L3, IL6R, CITED2,
NR3C2, RHEB, PTPRN and GLTP. These genes represent
60% of those indicated in Table 2. These 16 genes resulted
in a total of 155 PDB structures. Figure 4 shows a diagram
representing the number of PDB structures obtained for
each gene.
A list of anti-cancer drugs that had been approved by the

FDA was selected. In the Supplementary information file
S1, a complete list of the name of the 81 drugs correspond-
ing to the compounds downloaded from the ChEMBL
repository, which have been used for the Molecular Dock-
ing experiment, are shown. All of them are marketed for
use in different cancer treatments.
After the execution of the Molecular Docking experi-

ment of confronting the 155 PDB structures with the 81
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Fig. 3 Results of analyisis prediction from tumor and helath tissues. a) A comparative ML task was carried out with three different signatures
(Random signature, Meta signature and Drivers Intogen) to predict between tumor and helth tissues. TCGA expression values of these three
signatures were the input in training phase for two ML algorithms (Random Forest and glmnet). The accuracy of the models for each signature is
shown. b) Mean difference plot after differencial gene expressión is shown. Up and Down expression genes are highlighted in red and blue
respectively. FABP6 and CDH3 were the genes with major gene expression differences. c) Comparative variable importance for metasignature in
Random Forest and glment algorithms. Values were scaled for comparative analysis. d) Pie chart with intersections of same genes obtained by two
ML approaches and differential gene expression. The three approaches obtained very similar conclusions
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Table 2 Top 15 Variable Importance obtained through Glmnet
and Random Forest algorithm. In addition, we have compared
these results with a classical analysis aproach for differential
expression analysis with edgeR package

Glmnet Random Forest edgeR

GLTP GLP2R CDH3

CDH3 GLTP GLP2R

MUSK IL6R VEGFA

SCARA5 SCARA5 MUSK

NR3C2 NR3C2 PKIB

GLP2R CDH3 SCARA5

EPB41L3 METTL7A PMEPA1

PKIB MUSK FABP6

IL6R PKIB RHEB

METTL7A EPB41L3 IL6R

CITED2 CITED2 NR3C2

VEGFA VIP VIP

FABP6 FABP6 EPB41L3

VIP VEGFA GRIP2

RIMKLB HES5 METTL7A

drugs, the results were obtained for each PDB structure-
drug binomial, indicating the value of the interaction in
kcal
mol . As a result of the study, the 50 strongest interactions
(see Supplementary information file S2) were evaluated
and only 4 different genes were identified among them,
shown in Table 3. For this experiment, a significant inter-
action was considered for values that were lower than
−7 kcal

mol .
It is important to point out that among the 50 strongest

interactions (see Supplementary information file S2), 92%
involved some structure of the GLTP gene. In position 40
and 44 of the ranking, we found PDB structures of the
PTPRN gene, in position 48, the PDB structure of the
VEGFA gene and in position 49, the PDB structure of the
FABP6 gene. Although there is a predominance of PDB
structures of the GLTP gene, there is little difference in the
force of interaction, showing a decrease of only −1.6 kcal

mol
between the strongest interaction (3SOI-Nilotinib) and
the one in position 49 (2MM3-Abemaciclib).
A review study was made for each of these four genes to

see which might be possible therapeutic targets.

Study of each of the genes
A comparative study of the four genes was carried out to
analyse if any of them could behave as a possible therapeu-
tic target. In Fig. 5 the expression between tumour tissue

Fig. 4 Percentage of 3D PDB structures for each gene obtained
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Table 3 Top interactions of the 4 genes that have appeared
among the 50 best interactions

Gene Protein Drug AE (kcal/mol)

GLTP 3S0I Nilotinib -13.7

PTPRN 3NP5 Venetoclax -12.3

VEGFA 4GLS Venetoclax -12.2

FABP6 2MM3 Abemaciclib -12.1

and adjacent healthy tissue of each of the four genes from
the COAD cohort of the TCGA is seen.
As can be seen, the genes GLTP and PTPRN present

an underexpression in tumour tissue, so attacking it
through inhibitor drugs will not produce a positive conse-
quence when slowing tumour development. On the other
hand, VEGFA and FABP6 genes are overexpressed in
tumour tissue, which makes them possible candidates for
inhibitory therapy. This is an important step because in
addition to observing whether the gene is over- or under-
expressed in tumour tissue, it is crucial to know what its
status is in normal tissue. As shown in Fig. 5, VEGFA
has significant expression in normal tissue. Whereas the
FABP6 gene showed no expression in normal tissue, which
is beneficial if our objective was to propose it as a pos-
sible biomarker and therapeutic target. Therefore, the
biological function of this gene has been deepened.
Docking studies show that the drugs venetoclax and

abemaciclib (previously known as LY2835219) have a sig-
nificant interaction with the VEGFA and FABP6 genes,
respectively. As for the drug venetoclax, itwas approved
in 2016 as therapy for patients with Chronic Lymphocytic
Leukemia (CLL). The mechanism of action of this drug
focuses on inhibition of the apoptosis regulator Bcl-2,
which is a ’single protein’ [31]. Moreover, textitabemaci-
clib was approved in 2017 for breast cancer patients.
Like the previous drug, this is an inhibitor against cyclin-
dependent kinase 6, which is also a ’single protein’ [32].
In this way we ruled out genes underexpressed in

tumour due to the type of drugs we tested. As for the
VEGFA and FABP6 genes, the first of them (Vascular
Endothelial Growth Factor A - VEGFA) is a specific
growth factor for vascular endothelial cells, capable of
inducing angiogenesis in vivo [33]. This gene is the cen-
tral axis in tumour angiogenesis, and there are already
different experimental therapies tested against this gene
[34, 35]. In addition, different studies are working to pre-
dict the different peptides, in silico form, that act against
this target [36–39].
The FABP6 gene produces Ileal lipid-binding protein

(ILBP) which is a member of a family of fatty acid binding
proteins, retinoic acids, and intracellular bile acids [40].
In relation to cancer, the FABP family has been reported
to play a role in the development and pathogenesis of

cancer [41], and as a possible therapeutic target in clear
renal cell carcinoma [42]. Specifically, the FABP6 gene has
been suggested as a potential drug discovery target [24,
43], although to date no therapy directed against this gene
and/or protein product has been approved.
Our findings are in line with the conclusions shown in

the work of Ohmachi et al. [23] published in 2006 by a
high impact journal such as Clinical Cancer Research. In
this work, they observed that the expression of FABP6 was
higher in primary colorectal cancers and adenomas than
in normal epithelium, thus suggesting that FABP6 plays an
important role in early carcinogenesis. The results of our
research are linked to this conclusion, firstly by observ-
ing how our signature, in which FABP6 was present, was
able to predict more accurately, evenmore than previously
identified genetic drivers, between healthy and tumoural
tissue. In addition, analysis of the importance of variables
in ML models and differential expression analysis showed
that FABP6 was at the top of both lists (see 3 b and c).
Omachi et al. [23] also focused their research on the

FABP6 gene because of the large difference in gene expres-
sion between healthy tissue and tumor tissue. In addition,
the results of [23] were based on a Chinese population,
while ours are from the USA. It can be inferred that the
function of this gene could be cross-sectional in differ-
ent world populations. These differences are explained by
the high concentration of secondary bile acids present in
patients with colonic adenoma.
Reinforcing our hypothesis that FABP6 may be an inter-

esting biomarker for colon cancer, in the same work
Ohmachi et al.[23] found that tumours expressing higher
levels of FABP6 were smaller, supporting that theory that
FABP6 could be a biomarker for the early stage of carcino-
genesis.
In addition to being an early stage marker in COAD, we

believe that FABP6 may also behave as a therapeutic tar-
get because: 1) it is known that each of the nine types of
FABP proteins shows tissue specificity, with FABP6 being
the ileum, thus generating specificity in future treatment;
and 2) the expression of FABP6 in tumour tissue is due to
an increase in secondary bile acids, and it is known that
the action of these bile acids triggers cellular apoptosis
[44]. Therefore, avoiding the metabolisation of these acids
would cause apoptosis in cells of the cancerous tissue,
abruptly stopping their growth.
Therefore, the data we found in the literature led us to

design a drug repurposing experiment to find an already
approved drug that could specifically bind to this possible
therapeutic target.

Deepening in Abemaciclib and FABP6 interaction
The Molecular Docking results presented in this work
show a significant specificity of all protein PDB struc-
tures of the FABP6 gene with the drug Abemaciclib. Our



Liñares-Blanco et al. BMCMolecular and Cell Biology           (2020) 21:52 Page 10 of 18

Fig. 5 Box diagram of the expression of the four genes between healthy and diseased tissues of the COAD cohort of the TCGA

experiment took into account a total of six PDB struc-
tures (2MM3, 1O1U, 1O1V, 5L8I, 5L8N, 5L8O). In Table 4,
the interaction force of the Abemaciclib with all the PDB
structures annotated in the FABP6 gene is shown. As
shown in the Table 4, all interaction forces have a value of
less than -7 kcal/mol, and all are considered significant.
In order to understand the docking details, a new open

science Web tool was introduced as COAD-DRD: Colon

Table 4 Interaction force of Abemaciclib with all PDB structures
of the FABP6 gene

Gene PDB structure Drug AE (kcal/mol)

FABP6 2MM3 Abemaciclib -12.1

FABP6 1O1U Abemaciclib -8.0

FABP6 1O1V Abemaciclib -10

FABP6 5L8I Abemaciclib -9.0

FABP6 5L8N Abemaciclib -9.5

FABP6 5L8O Abemaciclib -10

Adenocarcinoma Drug Repurposing with Docking, avail-
able at https://muntisa.github.io/COAD-DRD/. There are
six different sections: Abemaciclib-FABP6 - dedicated to
the interactions of Abemaciclib with the six PDB struc-
tures, Selected - with the most interesting interactions
between drugs and genes in COAD, Top50 - with statisti-
cal plots about the docking signature of the best 50 drugs
in COAD, Full by Genes - with statistical box plot for the
interactions of each gene with all the drugs (without any
cutoff for the AE), Full by Drugs - with graphics that show
the drug signature on all the genes in COAD, and Full DB
- a pivot table with graphics that give the possibility to
represent all docking results by any criteria.
COAD-DRD sections provide interactive graphics,

interactive 3D structures for the complexes that pro-
vide direct visualisation with the binding poses, inter-
active tables with specific datasets for each section
(with filtering, searching), interactive pivot tables with a
high degree of flexibility to visualize the entire dataset
for this study, and direct visualisation of important

https://muntisa.github.io/COAD-DRD/
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docking information (docking outputs, search box con-
figuration, pdbqt files, pictures of interactions, contact
atoms, or hydrogen bonds, etc.). The source code and
all the other files, including the script to generate the
dynamic elements, are available as an open GitHub
repository at https://github.com/muntisa/muntisa.github.
io/tree/master/COAD-DRD.
Based on our findings, the FABP6 gene and, specifi-

cally, its protein products, are proposed as therapeutic
targets for the development of colon cancer. In addition,
owing to the drug repurposing experiment, we present
the drug abemaciclib as a possible drug that may interact
specifically against the protein products of this gene.
Blind molecular docking means that the search of the

best Abemaciclib interaction uses the entire surface of the
FABPs without defining an active site of the natural lig-
ands (lipids). This could generate docking results where

Abemaciclib could interact out of the active site with-
out implications in the FABP activity. Therefore, Fig. 6
presents the three FABP structures with the natural lig-
ands and the best interaction of Abemaciclib with the
FABPs in order to check the location of these interac-
tions. FABPs are represented using ribbons (white), the
natural ligand using lines (violet) and Abemaciclib using
sticks and balls (blue-green).
Figure 6 presents FABP with PDB ID 1O1V: human

ileal lipid-binding protein (ILBP) in complex with
cholyltaurine (ligand). This protein has a single lig-
and active site defined by 10 amino acids: TYR14,
MET18, ILE23, VAL27, TRP49, TYR53, ASN61, MET74,
LEU90, ARG121. 1O1V amino acid – Abemaciclib atom
interactions are SER54:HG, MET59:CE, ILE23:CD1,
TYR53:CE2, VAL27:CG1, ILE23:CG2, LYS77:CD,
GLN51:HE21, VAL27:CG2, MET74:CG, SER24:H,

Fig. 6 Three FABP structures (white ribbon) with the natural ligands (violet lines) and Abemaciclib (blue-green sticks and balls): 1O1V a, 2MM3 b,
and 5L8N c

https://github.com/muntisa/muntisa.github.io/tree/master/COAD-DRD
https://github.com/muntisa/muntisa.github.io/tree/master/COAD-DRD
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TYR53:CD2, TYR14:OH, VAL27:CB. Thus, Abemaciclib
interacts with TYR14, ILE23, SER24, VAL27, GLN51,
TYR53, SER54, MET59, MET74, LYS77. From these
amino acids, five of them are defining the active site
of 1O1V: TYR14, ILE23, VAL27, TYR53, and MET74.
In addition, the visualization of Fig. 6a demonstrated
that Abemaciclib occupy the FABP active site, with
consequences in the lipid transport activity.
Figure 6b presents FABP with PDB ID 2MM3: human

ileal bile acid-binding protein with glycocholate and
glycochenodeoxycholate (two ligands). This protein has
two active sites for the two ligands. AC1 site for glyco-
cholate ligand (CHO202) is defined by 22 amino acids:
PHE2, PHE6, MET8, MET18, ALA31, ILE36, THR38,
VAL40, PHE47, TRP49, GLN51, MET74, LEU90, SER101,
GLU102, LEU108, VAL109, GLU110, TYR119, ARG121,
and SER123. AC2 site for glycochenodeoxycholate lig-
and (GCH201) is defined by 17 amino acids: LEU21,
ILE23, TRP49, ASN61, PHE63, GLN72, THR73, MET74,
GLY75, LYS77, PHE79, VAL83, LEU90, VAL92, TYR97,
and GLN99. 2MM3 amino acid – Abemaciclib atom
interactions are PHE47:CZ, GLN99:HE21, MET8:CB,
PHE47:CE1, GLN99:NE2, PHE2:CB, PHE47:CE2,
THR38:CB, GLN51:HE21, PHE2:CD2, PHE79:CZ,
LEU90:CB, GLN51:NE2, GLN99:CD, TYR97:CE2,
ARG121:CD, VAL109:N, SER101:CB, TRP49:CZ3,
VAL109:C, MET8:CG, SER101:HG, THR38:CG2,
PHE2:C. Thus, Abemaciclib interacts with PHE2, MET8,
THR38, PHE47, TRP49, GLN51, PHE79, LEU90, TYR97,
GLN99, SER101, VAL109, and ARG121. All these amino
acids are defining both active sites for both natural lig-
ands in 2MM3: PHE2, MET8, THR38, PHE47, GLN51,
SER101, VAL109, ARG121 from AC1 active site and
TRP49, PHE79, LEU90, TYR97, GLN99 from AC2 active
site. Figure 6b shows that Abemaciclib occupy both FABP
active site in the same time. This interaction should
disturb the both lipid transport activity.
Figure 6c presents FABP with PDB ID 5L8N: human

FABP6 protein with fragment 1 + 3,6,9,12,15,18-
hexaoxaicosane-1,20-diol (P33); 5,6-dimethyl-1 H-
benzimidazol-2-amine; di(hydroxyethyl)ether (PEG).
This protein has several active sites and only the one
for P33 and PEG will be compared with the Abemaci-
clib interaction preference: AC5 site is defined by 11
amino acids - PHE18, TRP50, ILE72, THR74, GLY76,
LEU91, TYR98, GLN100, THR101, SER102, ARG122.
5L8N amino acid – Abemaciclib atom interactions
are ALA32:CB, PHE64:CZ, MET19:CE, LEU91:CB,
VAL28:CG1, PHE64:CE2, GLN100:NE2, TRP50:CE2,
TRP50:CG, GLY76:CA, ILE72:CD1, TRP50:CD2, and
MET75:CB. Thus, Abemaciclib interacts with MET19,
VAL28, ALA32, TRP50, PHE64, ILE72, MET75, GLY76,
LEU91, and GLN100. Five of these amino acids are
defining AC5 active sites in 5L8N: TRP50, ILE72, GLY76,

LEU91, and GLN100. Fig. 6c shows that Abemaciclib
occupy the FABP active site where normally interacts
both ligands: P33 and PEG. This interaction should
modify the ability of FABP to transport lipids.
In conclusion, Abemaciclib prefers interactions

inside the active site of FABPs using more nonpo-
lar/aliphatic/hydrophobic amino acids (GLY, ALA, VAL,
LEU, ILE, MET, TRP, PHE) than hydrophilic uncharged
amino acids (SER, THR, TYR, GLN) or charged/basic
amino acids (LYS, ARG). This is explained by the FABP
preference for aliphatic interactions to link natural lipids
for transport.
The results will then be discussed, focusing mainly on

the interaction of FABP6 and abemaciclib protein prod-
ucts. Proposing in this way, a new potential candidate to
be validated experimentally.

Discussion
The results obtained in this work report the FABP6 gene
as a possible therapeutic target and the drug abemaciclib
as a possible drug directed towards the gene products of
this gene.
As mentioned above, this gene functions as a receptor

for lipids and bile acids. It is curious to observe how its
genetic expression is almost totally specific to the small
intestine - terminal ileum, with average values around 500
RPKM. In other tissues, as can be seen in the data from
theGenome Browser [45], its expression is practically null.
Therefore, the data shown in Fig. 5 indicate an abnormal
function of that gene in carcinogenic tissue.
It is interesting to note the expression behaviour of this

gene in different tumour. With the available TCGA data,
the expression of the FABP6 gene in healthy and tumour
tissue has been compared (see Fig. 7).
The results show a significant difference in certain types

of tumour. Firstly, we observed how the expression is prac-
tically null in all the healthy tissues of each one of the
different patients, being indifferent to the type of can-
cer. However, the PCPG cohort shows some contradictory
results to what was previously proposed, which could har-
bour new functions and roles of the FABP6 gene. On the
other hand, although there is a significant difference in
certain tumours (as may be the case of the breast ade-
nocarcinoma (BRCA), stomach adenocarcinoma (STAD)
or cholangiocarcinoma (CHOL) cohort, for example), this
difference is mainly due to the outliers, as shown in the
different box diagrams. This does not occur in the READ
cohort (rectum adenocarcinoma), which presents high
levels of FABP6 in tumour tissues throughout the sample.
This fact coincides with the results shown in this work,
supporting the idea of specificity of FABP6 expression in
colorectal tissue.
In this context, we can conclude that FABP6 is a spe-

cific biomarker for COAD and READ, so the action of
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Fig. 7 Box plot panel with the comparision between tumour and control samples through 21 tumour s types from TCGA

an inhibitory mechanism could lead to positive results in
slowing down the growth of the tumour . Furthermore, as
mentioned above, FABP6 is an early diagnostic biomarker,
which would greatly assist the various possible treatments
of this type of cancer.
Regarding its function, this gene intervenes mainly in

the signalling peroxisome proliferator-activated receptor
(PPAR) pathway. The FABP family activates the PPAR
signalling pathway, which acts as transcription factors,
regulating the expression of different genes related to lipid
metabolism, adipocytic differentiation, adaptive thermo-
genesis, cell survival, gluconeogenesis and ubiquitination
[46]. These functions may be related to the development
and differentiation of cancer cells. In addition, previous
studies have already linked this pathway to cancer, and
specifically to colon cancer [47–50].
Comparisons with other studies and databases, show

a significant decrease in the survival of patients with a
high copy number of the FABP6 gene, as seen in Fig. 8,
obtained from the web and article [51, 52]. From this sur-
vival curve and the function of the gene, it can be inferred
that when there is a very abrupt change in the coding of
the FABP6 gene, there can be serious problems in the sur-
vival of the patient. Due to its function of regulating fatty
acids and bile acids, and after development of COAD, the

patient will present greater deregulation in gastrointesti-
nal homeostasis, which would justify its worst prognosis.
At this point, it is interesting to point out that the aberra-
tion or inhibition of this gene in tumour cells alone could
theoretically provide an advantage when considering this
gene as a possible therapeutic target. Due to the need for
tumour cells to provide continuous energy, the metabolic
pathways related to fatty acids must be expressed in a
significant way. Deregulation of these cellular pathways
could provide detection of the growth and development
of the tumour . This annotation could justify the results,
previously commented on in the article [42].
On the other hand, the drug selected as the ligand for

this gene, Abemaciclib, has reasonable characteristics to
be used as a drug against this type of cancer. It is a small
molecule specific inhibitor of cyclin-dependent kinase
4/6, so its effect lies in the detection of cell division by
acting on the regulation of G1 phase of the cell cycle. It
was approved for use in breast cancer patients in 2017.
Although there are no results from clinical trials for this
type of cancer and this drug, large pharmaceutical compa-
nies are already testing it in combination with other drugs,
such as Ramucirumab for patients with advanced cancer,
colon cancer, and mantle cell lymphoma [53], which also
supports our hypothesis.
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Fig. 8 Survival curve according to the number of copies of the FABP6 gene. Extracted from [52]

Finally, and after the evidence gathered, both in our
own experiments and in previous work, the FABP6
gene and the drug Abemaciclib are proposed as a pos-
sible targets and treatment, respectively, in colon can-
cer. The effect of the drug on other types of cancer, as
well as the results obtained in this work, support the
hypothesis put forward by the present researchers that
this drug will join CDK4/6 and FABP6 protein prod-
ucts (specifically in carcinogenic tissue due to its low
expression in different tissues), inhibiting both functions
and therefore significantly reducing the development
of cancer. Although this hypothesis must be validated
experimentally, there is sufficient theoretical evidence to
think of the gene and the drug as potential anti-cancer
therapies.

Conclusions
The results in silico of this work show how the drug
Abemaciclib, previously approved for treatment in breast
cancer could be used, a priori, in the treatment of colon
cancer. In breast cancer, Abemeciclib inhibits CDK4/6,
interrupting the cell cycle and the development of the
tumour. In this work, we report that this drug could also
be used for the treatment of colon cancer, after subse-
quent experimental validations, due to its strong inter-
action with all the protein PDB structures of the FABP6
gene. A thorough comparative study was carried out, to
observe the evidences that existed after the inhibition of
this protein product. All of the evidence indicates that
inhibition of the expression of the FABP6 gene, specifi-
cally in tumour cells, would reduce the development and
growth of the tumour .
This work demonstrates that in silico techniques,

such as Machine Learning and Molecular Docking tech-
niques, create added value to the data reported by other

initiatives. Owing to the reuse of free access data, it is
possible to use computational methods to validate, test,
and prove a hypotheses, and thereby considerably reduce
research costs.
Finally, in order to obtain new alternatives in the treat-

ment of cancer, the presented hypothesis need to be
experimentally validated in the laboratory.

Methods
Datasets
RNASeq2 data from the COAD cohort was downloaded
from the TCGA repository [3] using the TCGA2STAT
package [54]. Patients were filtered according to the type
of problem being studied. For classification according to
the metastatic status in the lymph nodes, a total of 283
patients were obtained, classifying 166 in stageN0 and 117
between stages N1 and N3.
For the disease stage classification problem, 154 patients

were classified between the stages S1 and S2, while 120
were classified between the stages S3 and S4.
Finally, for the problem of classification between healthy

and tumour tissues, 26 patients were included in the
analysis. These patients presented RNASeq data of their
tumour tissue and adjacent normal tissue. For a better
understanding of this cohort, some of the clinical data of
these patients can be seen Supplementary information file
S3.

Differential expression analysis
A differential expression analysis was performed using
the edgeR package. This package assumes that the num-
ber of readings in each sample (j) assigned to a gene (i)
is modeled through a binomial negative distribution with
two parameters, the mean μi, j and the overdispersion
parameter �ij.
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Yij corresponds to the non-negative whole number of
readings in each sample (j) assigned to a gene (i). The
values of the mean and the overdispersion, in practice,
are not known so we must estimate them from the data.
Finally, using the exact test for the negative binomial
distribution, differentially expressed genes are estimated.

Machine learning
The following algorithms were implemented: random for-
est (RF) and generalized linear model (glmnet). A nested
cross validation was used for training the models. In other
words, there were two validation phases. Firstly, a hold-
out was used for the selection of the best hyperparameters
(2/3 for training and 1/3 for testing) and secondly, a Leave
One Out was used for the validation of the model.

Molecular docking
The strength of the interactions were quantified by the
affinity energy (AE, kcal/mol) of ligands for protein tar-
gets using the open software AutoDock Vina [55]. The
entire processing was done into the BioCAI cluster from
the University of A Coruna (Spain). The docking flow had
several steps that included the ligand and protein pro-
cessing, conversion and geometry optimisation before the
docking calculations.
Thus, the ligands are presented as a list of commer-

cial drug names. Using PubChem APIs, the compounds
for all drugs have been downloaded as SDF 2D. The lig-
and molecules were converted into PDB by optimising
the 3D structure using babel software [56]. The protein
targets were only filtered for the first PDB model, the
non-protein part was eliminated (water molecules, other
ligands, etc.). The PDB of ligands and proteins were con-
verted into PDBQT format using AutoDockTools scripts
(prepare_ligand4.py and prepare_receptor4.py) [57]. The
protein target was considered rigid in all docking calcu-
lations and the interaction searching was considering the
entire surface of the targets. The docking flow is based
on python and bash scripts, including the reading of the
final results. The cut-off for stable interactions is consid-
ered AE < −7.0 kcal

mol [58]. The results are based on the
first docking conformer of the ligands with reference root-
mean-square deviation of atomic positions (RMSD) of 0
[59]. We are presenting the top 50 interactions (the most
negative AE values). We used 155 protein targets and 151
compounds (24.273 dockings/AE values). The list of inter-
actions and the docking figures are presented for one of
the best interaction such as nilotinib – compound 644241
(ligand) with 3s0i (protein target).
In order to understand all the details, a new open

Web tool was introduced as COAD-DRD: Colon Ade-
nocarcinoma Drug Repurposing with Docking (https://

muntisa.github.io/COAD-DRD/). The tool includes sev-
eral sections about the best proposed drug for COAD,
the top 50 interactions, our selection of interaction and
the entire dataset of docking results. All the files and
the source of the tool is available as an open GitHub
repository at https://github.com/muntisa/muntisa.
github.io/tree/master/COAD-DRD. The sections of the
web included interactive tables, plots, pivot table and
3D structures widgets (generated with python jupyter
notebooks based on HTML, plotly - https://plotly.
com, ipywidgets - https://ipywidgets.readthedocs.io/
en/latest/, nglview - https://github.com/arose/nglview
(DOI:10.5281/zenodo.3700850), pivottablejs - https://
pivottable.js.org and datatables - https://datatables.net).
Thus, it is possible to zoom into the 3D complex struc-
tures between drug binding poses and targets, search
for specific results, find details into plots, understand
the drug signature on all COAD genes, check the con-
tact atoms and hydrogen bonds of the interactions, and
download all docking files.

Analysis pipeline
In this section we will describe the pipeline followed to
obtain the candidates for genes presented in this work.
Next, each of the stages carried out in this work will be
described step by step.

State of the art review
The objective of this work consisted of the search and val-
idation of signatures and therapeutic targets for colorectal
cancer already reported in the literature.
To this end, a review of published papers that have used

TCGA data for the execution of Machine Learning algo-
rithms was carried out. Of all the works found, only those
studies in which the dependent variable was related to the
prognosis of the disease were chosen. Finally, three papers
were identified. Each of these studies reported a signature
of genes related to the prognosis of colon cancer patients.

Generation of themeta-signature
Secondly, a gene signature was built by merging the
three previously identified signatures. A total of 34 genes
were obtained. The signature was checked for previously
defined drivers for colon cancer. For this purpose, the
drivers defined in colon cancer were downloaded from the
Intogen database, and no coincidence was found between
the two lists.
If we assume that the expression of these genes influ-

ences the prognosis of individuals, it is interesting, firstly,
to know if this signature accurately predicts the progno-
sis of patients in a cohort such as TCGA and secondly,
if any of these genes could be a future protein target,
which could be attacked with drugs already approved in
the industry.

https://muntisa.github.io/COAD-DRD/
https://muntisa.github.io/COAD-DRD/
https://github.com/muntisa/muntisa.github.io/tree/master/COAD-DRD
https://github.com/muntisa/muntisa.github.io/tree/master/COAD-DRD
https://plotly.com
https://plotly.com
https://ipywidgets.readthedocs.io/en/latest/
https://ipywidgets.readthedocs.io/en/latest/
https://github.com/arose/nglview
https://pivottable.js.org
https://pivottable.js.org
https://datatables.net
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Table 5 List of genes, with PDB annotation, used for the
Molecular Docking experiment

PADI4 VIP GRIP2 NCKIPSD

PGLYRP1 FABP6 CDH3 VEGFA

NOG EPB41L3 IL6R CITED2

NR3C2 RHEB PTPRN GLTP

The signature was then validated for two different types
of problems. Firstly for the classification of the stage of
cancer, and secondly, for the classification of patients
between healthy and sick. This experiment was followed
by a study of the importance of the variables within the
best models.

Search for new therapeutic targets
The next focus in this work was the detection of pos-
sible new therapeutic targets using drug repurposing.
This experiment presents two well-differentiated parts:
the obtaining of targets (proteins) and the obtaining of
ligands (drugs).
In order to obtain the targets, the signature of genes

(HGNC nomenclature) and all of its possible protein PDB
structures were transformed. The transformation was car-
ried out through the biomaRt package. In this step, part of
the genes were lost because there is no annotation in PDB
for all the protein products of all the genes. In the end, we
were left with 16 genes that do have PDB annotation. In
the Table 5, the list of genes used for the Molecular Dock-
ing experiment is shown. A total of 155 PDB structures
derived from these genes were analysed.
To obtain the ligands, anti-cancer drugs that have

already been approved for treatment were chosen. The
objective of this process was to find a drug, already
approved, that has a significant interaction force against a
protein target in order to reuse it, in this case, for colon
cancer.
The anti-cancer drugs were obtained from the web-

site of the National Cancer Institute [60]. To validate all
the names of the drugs, they were downloaded from the
repository DRUG REPURPOSING HUB [61]. We made a
combination of both lists and only kept those that were
already passed the clinical trial and, therefore, are in the
market. Finally, after processing, we were left with 81
approved anti-cancer drugs.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12860-020-00295-w.

Additional file 1: Additional file S1. List of ligands with their
corresponding annotation in ChEMBL. It showed a list of ligand used in the
docking experiment. A total of 159 ChEMBL coumpounds are listed from
81 anti-cancer drugs downloaded.

Additional file 2: Additional file S2. Top 50 interactions from docking
experiment. In this excel file it can be found the interaction force between
ligand (drug) and target (protein). The interaction force is measured by
kcal/mol.

Additional file 3: Additional file S3. Clinical data of patients involved in
classification between tumour and health tissue. In this excel file it can be
found several clinical variables that correspond to patients involved in
tumour and health tissue classification.
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