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Abstract

Background: Gap junction protein alpha 3 (GJA3), an important pathogenic gene of congenital cataracts, encodes
the transmembrane protein connexin46, which functions as an intercellular channel for voltage and chemical
gating by forming dodecamers. This study systematically collected nsSNP information for the GJA3 gene from SNP
databases and literature and screened for nsSNPs with high risks of pathogenicity.

Results: A total of 379 nsSNPs of GJA3 were identified. A total of 88 high-risk pathogenic GJA3 nsSNPs were found,
including 31 published nsSNPs associated with congenital cataracts and 57 novel nsSNPs predicted by all eight online
tools. The 88 high-risk pathogenic mutations, which are related to 67 amino acids in the wild-type sequences, cause a
decrease in protein stability according to I-Mutant 3.0, MUpro and INPS. G2 and R33 were predicted to participate in
post-translational modification and ligand binding by ModPred, RaptorX Binding and COACH. Additionally, high-risk
mutations were likely to involve highly conserved sites, random coils, alpha helixes, and extracellular loops and were
accompanied by changes in amino acid size, charge, hydrophobicity and spatial structure.

Conclusions: Eighty-eight high-risk pathogenic nsSNPs of GJA3 were screened out in the study, 57 of which were
newly reported. The combination of multiple in silico tools is highly efficient for targeting pathogenic sites.
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Background

The lens is a transparent organ whose main function is to
transmit light and focus it on the retina. Gap junctions,
formed by docking between lens cells, are responsible for
intercellular communication. The lens expresses three gap
junction proteins: connexin43 (Cx43, encoded by the
GJAI gene) is expressed primarily in lens epithelial cells,
whereas connexind6 (Cx46, encoded by the GJA3 gene)
and connexin50 (Cx50, ending by the GJAS8 gene) are ex-
tensively expressed in lens fibre cells. Cx46 and Cx50 co-
localize at gap junction plaques and form mixed hexamers
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[1, 2]. Accumulating evidence demonstrates that congeni-
tal dysfunction of the GJA3 gene is an important genetic
risk factor in autosomal dominant congenital cataracts
(ADCCs) [3-5], strongly supporting their close relation-
ship with maintenance of lens transparency [6].

The human GJA3 gene, mapped on 13q12.11, includes
two exons, and exon 2 encodes the 435-amino acid pro-
tein Cx46. Cx46 protein contains four transmembrane do-
mains (TM1-TM4), two extracellular loops (E1 and E2),
an intracellular loop (CL), and cytoplasmic NH2- and
COOH-termini [7]. The two extracellular loops are the
most conserved regions and play a crucial role in regulat-
ing hemichannel docking [8]. Similar to other connexins,
Cx46 functions as an intercellular channel for voltage and
chemical gating [9]. After the Gja3 gene is knocked out,
mice present with high calcium influx and dramatically
decreasing glutathione in the nucleus, leading to
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crystalline cleavage and insoluble complex aggregation,
eventually, developing into cataracts [10-12]. The first
two mutations (N63S and 1137insC) of the GJA3 gene
that cause ADCC were reported by Mackay et al. in 1999
[13]. In 2016, we used targeted exome sequencing to also
observe the novel c. 584C>T (p.S195F) missense muta-
tion in the GJA3 gene causing ADCCs [14].

In the human genome, SNPs are considered responsible
for over 90% of sequence variations [15], and play a crucial
role in identifying common genetic variants and potential
biomarkers for investigating deleterious and neutral effects
on protein function associated with numerous diseases or
disorders. In protein coding regions, nsSNPs, which might
be missense variants, could cause changes in the protein
by substitution of amino acids [16]. Over the past few
years, using in silico tools to predict deleterious nsSNPs
has been an efficient approach requiring less time and cost
than experimental procedures, and preliminary screened
deleterious nsSNPs are candidates for subsequent func-
tional verification experiments.

The present study aims to combine use of several in
silico tools that based on different principles to investigate
the potentially detrimental effects of nsSNPs of the GJA3
gene. Instead of biological experiment confirmation, the
study tries to provide a useful method for fast and cost-
effective screening for pathologic nsSNPs.
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Results

nsSNP retrieval

Four databases were searched by the keyword “GJA3”,
and the dbSNP database contained the most nsSNPs
(353), followed by the HGMD (31), the ClinVar database
(28), and the DisGeNET database (12). Thirty-one
nsSNPs were described in the literature as being associ-
ated with congenital cataracts, of which only 2 nsSNPs
(S195F, E48G) were not found in the above four data-
bases. As shown in Fig. 1, after redundancy was re-
moved, 379 nsSNPs were retrieved for further analyses
with only 10 overlapping nsSNPs (G2D, T19M, P59L,
N63S, R76H, T87M, G143R, P187L, N188I, F206I) from
all four databases and literature.

There 291 nsSNPs contained the information of minor
allele frequency (MAF). Except for R133, L299 and
G412, other MAFs of nsSNPs were lower than 1%
(Additional file 1).

Predicting deleterious nsSNPs of the GJA3 gene

Multiple approaches were employed to screen the dele-

terious GJA3 nsSNPs and identify their structural and

functional impacts. A graphical representation of nsSNP

prediction by eight web tools is shown in Fig. 2.
Although different options were used, the SIFT, PRO-

VEAN, PhD-SNP, Pmut, MutPred2, and MutationTaster2

DisGeNET database

.

Fig. 1 Venn diagram representing the nsSNPs of the GJA3 gene overlapping in the dbSNP database, ClinVar database, HGMD and
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tools commonly resulted in binary classification, and these
results were then classified into two categories, “neutral”
and “deleterious”, in this study (Fig. 2a). Out of 379
nsSNPs, 162 nsSNPs were predicted as “damaging” by
SIFT, 143 nsSNPs were predicted as “deleterious” by PRO-
VEAN, 129 nsSNPs were predicted as “disease” by PhD-
SNP, 127 nsSNPs were predicted as “disease” by Pmut,
113 nsSNPs were scored higher than 0.5 (suggesting
pathogenicity) by MutPred2, and 195 nsSNPs were pre-
dicted as “disease causing” by MutationTaster2.

Prediction outcomes of PolyPhen-2 and PANTHER-
PSEP were a ternary classification: probably damaging, pos-
sibly damaging, or benign (probably benign). PolyPhen-2
predicted 131 nsSNPs (34.6%) as “probably damaging” and
58 nsSNPs (15.3%) as “possibly damaging”, all of which
were considered “deleterious”. PANTHER-PSEP predicted
216 nsSNPs to be “deleterious”. Among them, 160 nsSNPs
were predicted as “probably damaging”, and the remaining
56 nsSNPs were predicted as “possibly damaging”.

After the results of the above eight computational in
silico tools were integrated, intersections between various
methods suggested unanimous prediction outputs
(Additional file 2). As shown in Fig. 2b and c, 85 nsSNPs
were simultaneously predicted as “deleterious” with a
score of 8 and thus defined as high-risk nsSNPs, while 112
0-score nsSNPs were suggested as “neutral” nsSNPs. As
expected, among 85 high-risk nsSNPs, 28 were reported
as causes of congenital cataracts. The remaining three
reported nsSNPs obtained high pathogenicity scores. The
mutation L11S (score 7) was predicted as a

“polymorphism” by MutationTaster2, E62K (score 7) was
predicted as “neutral” by PhD-SNP, and N55D (score 5)
was predicted as “neutral”, “tolerated”, and “neutral” by
SIFT, PROVEAN, and PhD-SNP, respectively.

Although the sensitivity and accuracy of these bioinfor-
matics tools were not perfect, eighty-eight high-risk, dele-
terious nsSNPs (85 8-score nsSNPs and the 3 remaining
reported nsSNPs) screened in this study might provide
clues to identify deleterious nsSNPs of GJA3 and were
taken into consideration for further analysis.

Predicting effects of high-risk nsSNPs on protein stability

The effects of 88 high-risk nsSNPs of GJA3 on protein
stability were predicted using I-Mutant 3.0, MUpro and
INPS tools through comparing free energies
(Additional file 3 and Fig. 3). A AAG prediction by I-
Mutant 3.0 showed that the 79 nsSNPs decreased stabil-
ity (AAG<0), whereas 9 nsSNPs increased stability
(AAG > 0). Analysed by MUpro and INPS-MD, 86 and
80 nsSNPs were found to decrease protein stability, re-
spectively (Fig. 3a). In total, 72 nsSNPs, including 29
reported pathogenic variants, were predicted as destabil-
izing; however, no nsSNPs were found to increase pro-
tein stability using the three tools (Fig. 3b). The 19
variants L11S, I31F, F32L, R33H, W45S, E48G, R76H,
R76G, F77V, 182N, P88S, L146R, F155V, F173L, R183G,
V190G, F193S, P197S, and L220Q unanimously showed
AAG values less than -1 kcal/mol calculated by three
tools, which would be predicted to disturb the structure
and function of the protein.
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Predicting effects of high-risk nsSNPs on post-
translational modification sites

To analyse the effect of high-risk nsSNPs in GJA3 on the
PTM of the corresponding protein, the ModPred web
server was applied. In the Cx46 protein, 210 amino acid
residues were verified to be sites for 16 different modifi-
cations with a score of confidence > 0.5 (Additional file 4).
As shown in Table 1, 21 residues with 5 modifications
were involved in 31 high-risk nsSNPs, including 17 resi-
dues (G2, D3, S5, H17, R33, E42, D47, S50, D67, R76,
G94, H98, R101, G143, R147, T148, G172) predicted as
proteolytic cleavage sites, G2 predicted as an N-terminal
acetylation site, T19 predicted as an amidation site,
K156 predicted as a SUMOylation site, and P187 and
P197 predicted as hydroxylation sites.

Predicting effects of high-risk nsSNPs on ligand binding
sites

RaptorX Binding and COACH ligand binding site pre-
diction servers were used to predict ligand binding sites
in the Cx46 protein. According to the RaptorX Binding
server, a pocket multiplicity value greater than 40 indi-
cates an accurate prediction. However, for the Cx46 pro-
tein, the largest pocket multiplicity was 39 with a
predicted iron (+3) cation ligand, which binds to the
residues W25, 129, R33, Q81, E160, F163, A211, and
S214. The COACH server results show that a cobalt
(2+) cation binding the Cx46 protein occupies the rank
1 position with a C-score of 0.15 with aspartate residues
substituted at 129, R33, E160, A211, and S214. The rank
2 site binds a zinc (2+) cation at C54, C61, N63, and

Table 1 Effect of high-risk nsSNPs in GJA3 gene on post
translational modification sites predicted by ModPred tool

Residue Modification Score  Confidence High-risk nsSNP

G2 N-terminal acetylation 053  Low G2D, G2S
Proteolytic cleavage 052  Low

D3 Proteolytic cleavage 0.7 Medium D3H, D3Y

S5 Proteolytic cleavage 059  Low S5R

H17 Proteolytic cleavage 051 Low H17R

T19 Amidation 097  High TI9M

R33 Proteolytic cleavage 067 Low R33H, R33P, R33L

E42 Proteolytic cleavage 079  Medium E42A

D47 Proteolytic cleavage 062  Low D47N, D47Y

S50 Proteolytic cleavage ~ 0.75  Medium S50P

D67 Proteolytic cleavage 0.8 Medium D67N

R76 Proteolytic cleavage 055  Low R76H, R76G

G9%4 Proteolytic cleavage 067  Low G94A

H98 Proteolytic cleavage 092  High H98Q

R101 Proteolytic cleavage 095 High R101P

G143 Proteolytic cleavage ~ 0.78  Medium G143R, G143k

R147 Proteolytic cleavage 075  Medium R147Q, R147W

T148 Proteolytic cleavage 055 Low T148|

K156 SUMOylation 052  Low K156Q

G172 Proteolytic cleavage 052 Low G172D, G172S

p187 Hydroxylation 057  Low P187L, P187S

P197 Hydroxylation 064  Medium P197S
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C65 with a C-score of 0.08. Therefore, the high-risk
nsSNPs R33H, R33P, R33L, N63S, Q81P, and A211V
were predicted to be significant mutations, as they might
affect protein-ligand interactions.

Phylogenetic conservational analysis of high-risk nsSNPs
Phylogenetic conservation analysis suggested that com-
pared to those in non-conserved regions, amino acids
situated in conserved regions were highly damaging.
ConSurf predicts amino acids to play structural or func-
tional roles based on conservation and solvent accessibil-
ity. Residues are predicted as functional when they are
highly conserved and exposed and as structural when
they are highly conserved and buried.

As shown in Fig. 4a, amino acids 1-105, 141-225, and
401-435 were most conserved, and the remaining loca-
tions were more variable. ConSurf results indicate that
88 high-risk nsSNPs refer to 67 amino acids, most of
which are highly conserved, including 45 with conserva-
tion scores of 9, 14 with scores of 8, and the remaining 8
with scores of 3 to 7. Of the above mentioned 67 amino
acid sites, half were predicted as functional residues,
while the rest were predicted as structural residues
(Fig. 4b, Additional file 5).

Prediction of amino acid secondary structure of the
protein corresponding to GJA3

The secondary structure of Cx46 was predicted by
SOPMA, which explained the distributions of alpha
helix, beta sheet, and coil. The result indicated a large
number of random coils (194, 44.60%), followed by 162
alpha helixes (37.24%), 65 extended strands (14.92%) and
14 beta turns (3.22%) in the predicted secondary struc-
ture (Fig. 4c). For the 67 amino acid residues that cor-
respond to 88 high-risk nsSNPs, 23 were located in
random coils, 29 in alpha helixes, 10 in extended
strands, and 5 in beta turns (Fig. 4d).

Transmembrane protein display of GJA3

TOPO2 was used to display the transmembrane protein
expressed by GJA3 and the locations of the 67 amino
acids containing high-risk nsSNPs. Nine nsSNPs occur
in the COOH-terminus, 7 in the 1st transmembrane
helix, 12 in the 1st extracellular loop, 8 in the 2nd and
3rd transmembrane helixes, 6 in the intracellular loop,
11 in the 2nd extracellular loop, 4 in the 4th transmem-
brane helix and only 2 in the NH2-terminus (Fig. 5).

Predicted effects of high-risk nsSNPs on protein
properties

HOPE was used to predict the effects of the mutations
from 88 high-risk pathogenic nsSNPs of GJA3 on amino
acid size, charge, hydrophobicity, spatial structure and
function. Thirty-eight mutated amino acids were smaller
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than their wild-type counterparts, while 30 mutated
amino acids were larger. There were 33 sites with charge
changes: 4 changed from neutral to negative, 9 from
neutral to positive, 8 from negative to neutral, 11 from
positive to neutral, and only 1 from negative to positive.
Eighteen mutations reduced hydrophobicity, and 28 in-
creased hydrophobicity. This result suggests that
changes in physicochemical properties because of amino
acid mutations at these sites lead to changes in protein
structure and changes in interactions between protein
domains and other molecules, thereby affecting protein
function (Additional file 6).

Discussion

Congenital cataracts are often involved in breakdown of
the lens micro-architecture, and most of these cataracts
result from gene mutations. Of the cataract protein fam-
ilies for whom the mutant gene is known, approximately
45% show mutations in lens crystallins, 16% in connexins,
12% in various growth or transcription factors, 5% in
intermediate filament proteins, 5% in membrane proteins,
5% in the protein degradation apparatus, and approxi-
mately 8% in a variety of other functionally divergent
genes, including those for lipid metabolism [17]. Cx46 is a
member of the connexin family, mainly distributed in lens
fibrin, myocardium and kidney, and plays an important
role in maintaining lens transparency.

In the present study, 379 nsSNPs in the GJA3 gene
coding region were found in the dbSNP database,
ClinVar database, HGMD, and DisGeNET database and
related published literature. However, to date, only 10
nsSNPs (G2D, TI19M, P59L, N63S, R76H, T87M,
G143R, P187L, N188I and F206I) have overlapped
among different databases, and only 33 nsSNPs have
been published as congenital cataract-causative muta-
tions. Most of known MAFs of nsSNPs in the GJ/A3 gene
were less than 1%, except for R133, L299 and G412.

SIFT, PROVEAN, PolyPhen-2, PANTHER-PSEP, PhD-
SNP, Pmut, MutPred2, and Mutation Taster2 were used
to predict the pathogenicity of 379 nsSNPs of GJA3, and
88 of them were identified as “GJA3 gene high-risk
pathogenic nsSNPs” with simultaneous harmful predic-
tions by 8 tools and published pathogenic nsSNPs.
Twenty-eight of them have been published to be associ-
ated with congenital cataracts, and another 57 are novel
high-risk nsSNPs. The other 3 published nsSNPs (L118,
N55D, E62K) were scored 7, 5 and 7, respectively, and
thus were considered disease-causing by four of eight
software methods (PolyPhen-2, MutPred2, PANTHER-
PSEP and Pmut). In the deleterious prediction, nsSNPs
with high MAFs obtained lower scores (R133P, R133Q
2, L299M and G412R got 4, 2, 0 and 1 points, respect-
ively), which indicated was consistent with the past un-
derstanding [18, 19].
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Different computational methods present various pre-  sensitivity, while PROVEAN shows consistently high
diction characteristics based on different databases. A  specificity based on ClinVar, TP53 and PPARG bench-
previous study, which compared 12 objective indicators = mark data, ranging from 65.00 to 76.99% [20]. Addition-
from 23 tools based on three independent benchmark ally, SIFT, PolyPhen2 and PROVEAN present high
datasets, shows that Mutation Taster, Polyphen2 and values in AUC, high-specificity AUC and high-sensitivity
SIFT present high sensitivity based on ClinVar bench- AUC (area under the curve) [20]. Consequently,
mark data. In the meanwhile, compared to other tools, ~Mutation Taster 2, Polyphen2, SIFT and PROVEAN
Mutation Taster, Polyphen2 and SIFT present higher were brought into prediction. In order to increase the
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Fig. 5 The membrane topological structure of Cx46 was generated based on TMpred using TOPO2. The red dots refer to the high-risk nsSNPs

polymorphism of calculation methods and databases
involved, PANTHER-PSEP, PhD-SNP, PMut and
MutPred2 were also included.

The stability of proteins is critical to their biological
function, activity and regulation of biomolecules. Incor-
rect folding and decreased stability are the major conse-
quences of pathogenic missense mutations [21, 22]. The
folding free energy (AG) is used to measure the thermo-
dynamic stability of proteins and equals the difference in
free energy between folded and unfolded states. Both the
wild type and mutants type have their own AG values,
and the difference between them is the folding free en-
ergy change (AAG), which is calculated by the equation
AAG value = AG (mutant protein) — AG (wild-type pro-
tein) in kcal/mol at pH 7 and 25 °C. In general, AAG >0
is equivalent to increased stability in the mutant protein,
while AAG <0 indicates a decrease in stability. Out of 88

high-risk nsSNPs, 72 were calculated to decrease protein
stability by I-mutation 3.0, MUpro and INPS, and the
remaining 16 nsSNPs showed negative AAG values ac-
cording to at least one of the methods I-mutation 3.0,
MUpro and INPS. However, one should be cautious
when analysing the mutations based on AAG. Whether a
mutation with a AAG other than zero causes significant
structural changes in the protein depends on the relative
values of AG and AAG [23]. A mutation that leads to a
small magnitude of AAG may not result in a significant
structural change in a protein with a large AG. In
addition, some harmful mutations can be stabilizing,
which indicates that predicting pathogenicity through a
single method is very uncertain [24].

Conformational changes are required for the function
of many proteins [25]; therefore, conformational flexibil-
ity and rigidity must be finely balanced [26]. The high-
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risk nsSNPs R33H, R33P, R33L, N63S, Q81P and A211V
were predicted as ligand binding sites by RaptorX Bind-
ing and COACH ligand binding site prediction servers,
all of which were confirmed as highly conserved with a 9
score by ConSurf, which could be used in screening
deleterious mutations because neutral nsSNPs are more
common in variable positions, while the deleterious
nsSNPs are more frequent in conserved positions [27].

According to SOPMA secondary structure calcula-
tions, 88 high-risk nsSNPs were located in 66 amino acid
sites, and 77.27% of sites were located in alpha helixes
and random coils, which is in accordance with the previ-
ous recognition that both harmful and polymorphic mu-
tations are mainly located in helixes and coil regions and
not frequently in B turns [23]. Proteins populate a range
of conformations instead of being static. Regional flexi-
bility mainly depends on the local residue microenviron-
ment and side chain lengths [23]. As shown in
Additional file 6, the wild-type amino acid glycine is
flexible enough to twist, and the mutations in G2, G94,
G143, G162, and G172 are all highly harmful. In
addition, past analysis indicated that compared with mu-
tations on the surface, mutations fully or partially buried
tend to be more harmful. Consistent with this observa-
tion, the wild-type residues E12, R33, A40, V44, E48,
P59, D67, V85, P88, L90, S197, and A211 are all buried
in the core of the protein, while the corresponding mu-
tated residues were not fit for the size changes. In
addition, R33 and A211 were predicted as binding sites,
which implies that conformational changes occur when
proteins interact.

In most cases, proteins perform biological functions as
temporary or permanent complexes by interacting with
other macromolecules. Cx46 functions as a transmem-
brane hexamer that interacts with a similar structure
docking on the neighbouring cells. In addition, Cx46 can
form into a heteromeric and heterotypic intercellular
dodecamer with connexin50 in the lens [28]. The dode-
camer plays an important role in maintaining eye lens
transparency as an intercellular channel to deliver vari-
ous chemical messages and remove metabolic waste by
passing ions, metabolites, hormones, and other small sig-
nalling molecules [29]. Therefore, mutations in or near
some special amino acids that contribute to the func-
tional spatial conformation are at a high risk of causing
pathologies. Missense mutations result in the substitu-
tion of amino acids and consequent changes in amino
acid size, charge and hydrophobicity, which may disturb
protein folding and interaction. According to the ana-
lysis from HOPE, the changes associated with mutations
would lead to either loss of interactions or structural
perturbations, especially in the transmembrane domains.
Additionally, the introduction or loss of charge or
hydrophobicity would cause repulsion, misfolding or loss

Page 8 of 13

of interactions. D3 is critical for polarization and trans-
junctional voltage, and the substitution of D3 leads to
obstruction of gating [30, 31]. W4, L7, 110, L11 and V14
in the NH2-terminus participate in the formation of the
hydrophobic face with the NH2-terminus [32]. Consist-
ent with this finding, several mutations near those sites
were predicted to result in a high risk of pathology, as
shown in Fig. 6.

Although it is more reliable to distinguish patho-
genic mutations through experiments, it takes much
time to perform repeated experiments on all nsSNPs.
Different methods present a certain degree of
consistency for hazard prediction. The methods in the
current study offer clues to the various effects of mu-
tations, which were used to describe pathogenicity.
However, there are some limitations in the study.
First, the reported causative nsSNPs were limited in
number, and the prediction results have not been
verified by laboratory, so the PPV, NPV, sensitivity,
specificity and accuracy for the GJA3 gene were
hardly calculated. Thus, the results of the prediction
could only be considered as a reference resource. The
second limitation is that the pathogenic analysis is
based on public data. It is difficult to acquire add-
itional clinical or heredity information behind each
nsSNP except for those published. The third is that
there are some overlaps of the disease prediction
mechanism among different in silico tools because
most of them were based on changes in conserved
residues over time.

Conclusions

In this study, out of 88 predicted high-risk pathogenic
nsSNPs, 57 were novel sites involved in the pathogenesis
of congenital cataracts. Combinations of multiple in
silico tools provide many more dimensions to predict
the effects of mutations on proteins, which could be a
cost-effective and fast screening method to further guide
diagnostic and experimental strategies. Nevertheless, in
silico tools cannot replace conclusive experiments, and
their results should be verified by further biology
verification.

Methods

The deleterious nature of variations in the structure, stabil-
ity and function of the Cx46 protein was predicted using
various in silico tools. An overview of the computational
methods used in the present study is depicted in Fig. 6.

Data retrieval of nsSNPs

The nsSNP distribution of the GJA3 gene was collected
from the dbSNP database (http://www.ncbinlm.nih.gov/
projects/SNP/) [33], the ClinVar database (https://www.
ncbi.nlm.nih.gov/clinvar) [34] of the National Center for
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Fig. 6 Diagrammatic representation of the GJA3 gene in silico work flow used to analyse the deleterious nsSNPs and perform their structural

Biotechnology Information (NCBI), the Human Gene
Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/
ac/index.php) [35], and the DisGeNET database (http://
www.disgenet.org) [36] using limits of “Homo sapiens”
and “coding nonsynonymous”. The previous literature
was also reviewed. The amino acid and DNA sequences,
SNP IDs, wild-type amino acids, amino acid positions,
missense amino acids, minor allele frequency (MAF),
and other information were collected.

Prediction of deleterious nsSNPs
In the present study, eight web tools were used to pre-
dict the functional impact and pathogenic nature of
nsSNPs. All tools were used according to their default
settings if not stated otherwise.

SIFT

SIFT [37] (Sorting Intolerant From Tolerant, https://sift.
bii.a-star.edu.sg/) predicts whether an amino acid substi-
tution causes deleterious based on sequence homology
and the physical properties of amino acids. A missense
variant is predicted to be deleterious, when the SIFT
score < 0.05, while a score > 0.05 indicated that a variant
is benign.

PROVEAN

PROVEAN [38] (Protein Variation Effect Analyzer,
http://provean.jcvi.org/index.php) is a tool for predicting
the functional effect of amino acid substitutions, inser-
tions and deletions, that introduces a delta alignment
score of a protein query sequence to measure the effect
of a variation. High delta scores are considered as varia-
tions with neutral effects, while low delta scores are con-
sidered as amino acid variations with negative effects on
protein function. In order to provide binary predictions,
the cutoff value of PROVEAN scores is set to 2.5 to ob-
tain high balanced accuracy.

PolyPhen2

PolyPhen2 [39] (Polymorphism Phenotyping v2, http://
genetics.bwh.harvard.edu/pph2/), which uses the Hum-
Var and HumDiv datasets and is based on a naive Bayes
classifier trained by supervised machine learning. An it-
erative greedy algorithm was used to selected predictive
features, including eight sequence-based and three
structure-based features, through which different muta-
tions are categorized as “probably damaging”, “possibly
damaging”, or “benign”.

PANTHER-PSEP

PANTHER-PSEP [40] (PANTHER -position-specific
evolutionary preservation, http://pantherdb.org/tools/
csnpScoreForm.jsp) uses a metric relevant but different
from ‘evolutionary preservation™ the possible sequences
of ancestral proteins at nodes in a phylogenetic tree are
reconstructed based on homologous proteins. From
current state of each amino acid, its history can be
traced back to calculate the duration that amino acid
has been preserved in its ancestors. The PSEP score was
classified as “probably damaging” (the preservation
time > 450 my), “possibly damaging” (200 my < the pres-
ervation time < 450 my) and “probably benign” (the pres-
ervation time < 200 my).

PhD-SNP

PhD-SNP [41] (Predictor of human Deleterious Single
Nucleotide Polymorphisms, http://snps.biofold.org/phd-
snp/phd-snp.html), which is simply designed, is
supported by a machine-learning core and based on
comparative conservation scores of multiple sequence
alignments. PhD-SNP was trained and tested based
on the ClinVar dataset, which contains about ~36,000
deleterious and benign SNVs, identifies a SNP effect
as a disease or neutral and gives a reliability index
score.
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PMut

PMut [42] (http://mmb.irbbarcelona.org/PMut/) was trained
and tested by the manually created database SwissVar
(October 2016 release), which includes 27,203 harmful
and 38,078 benign mutations for 12,141 proteins. The
prediction scores of PMut are from O to 1, and the
cutoff value is set to 0.5 (neutrual, 0 to 0.5; patho-
logical, 0.5 to 1).

MutPred2

MutPred2 [43] (http://mutpred.mutdb.org/) is a machine
learning-based software package that analyses the infer-
ences of structural, functional and phenotypic conse-
quences of sequence variants. It was trained and tested
on 53,180 deleterious and 206,946 unlabelled (assumed
benign) variants collected from the HGMD, the Swiss-
Var database, the dbSNP database and inter-species pair-
wise alignments. A missense mutation with a MutPred2
score > 0.5 is considered “harmful”.

MutationTaster2
MutationTaster2 [44] (http://www.mutationtaster.org/),
which combines numerical publicly available SNPs from
Genomes Projects, ClinVar and HGMD, was designed to
predict the functional effects of amino acid mutations
and variations across intron-exon borders. Variants were
categorized as a “polymorphism” or “disease causing”.
To integrate the predictive results of eight web tools,
the results were classified into two categories: “neutral”
and “deleterious”. Results of “benign”, “tolerated”, “poly-
morphism”, “probably benign”, and “harmless” were cat-
egorized into “neutral” with a score of 0; meanwhile, the
results “pathogenic”, “deleterious”, “possibly damaging”,
“probably damaging”, “disease causing” or “harmful”
were categorized into “deleterious” with a score of 1.
Intersections between various methods were analysed
using TBtools. The 8-score nsSNPs and the nsSNPs re-
ported in previous studies were defined as “high-risk
nsSNPs”.

Predicting effects of nsSNPs on protein stability

[-Mutant 3.0, MUpro and INPS-MD were used to evalu-
ate the protein stability changes of Cx46 caused by the
high-risk nsSNPs of the GJA3 gene.

I-mutant 3.0

I-Mutant 3.0 [45] (http://gpcr2.biocomp.unibo.it/cgi/
predictors/I-Mutant3.0/I-Mutant3.0.cgi) was trained
and tested on a AAG Mut dataset obtained from
ProTherm. The predictor can estimate the stability
change, which is measured by AAG value (kcal/mol),
upon single-site mutation based on a protein struc-
ture or a protein sequence. A AAG value less than ‘0’
indicates that the variant decreases the protein
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stability. On the contrary, a AAG value greater than 0
indicates that the variant elevates the protein stability.

MUpro

MUpro [46] (http://mupro.proteomics.ics.uci.edu/), based
on support vector machines and neural networks machine
learning methods, which can be used to predict the effects
of single-site amino acid mutations on protein stability.
MUpro can predict protein stability changes merely using
sequence information or combining that information with
tertiary structure. The cut-off value of AAG is same to I-
mutant 3.0.

INPS-MD

INPS-MD [47, 48] (Impact of Non-synonymous muta-
tions on Protein Stability-Multi Dimension, https://
inpsmd.biocomp.unibo.it) is a method used to predict
stability of protein variants from sequences and struc-
tures. The INPS-MD predictor using sequences is based
on a simplified support vector (SVR) as implemented by
the libsvm package, which was only tested by linear and
radial basis function (RBF) kernels. INPS-MD predic-
tions can be interpreted to identify stabilizing (AAG > 0)
and destabilizing (AAG < 0) variations.

Prediction of post-translational modification sites
ModPred [49], which based on sequence, is used to pre-
dict potential post-translational modification (PTM) sites
in proteins. It consists of 34 ensembles of logistic regres-
sion models trained separately on a combined set of 126,
036 non-redundant experimentally verified sites for 23
different modifications that were obtained from public
databases and an ad hoc literature search. The Cx46
protein sequence in FASTA format was used as input to
predict various PTM sites.

Prediction of ligand binding sites
The ligand binding sites in Cx46 were predicted by using
the RaptorX Binding server and the COACH server.

RaptorX

RaptorX Binding [50] (http://raptorx.uchicago.edu/BindingSite/)
is a web portal for predicting the binding sites of a
protein sequence based upon a 3D model predicted
by RaptorX. RaptorX predicts protein secondary and
tertiary structures, contact and distance maps, solvent
accessibility, disordered regions, functional annotation
and binding sites. For binding site prediction, one
measure of pocket multiplicity, in addition to P-value,
uGDT (GDT), and uSeqID (SeqID), is used to judge
the quality of a predicted pocket. The higher the
score is, the more accurate the predicted pocket, es-
pecially when the score is over 40.
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COACH

COACH [51, 52] (https://zhanglab.ccmb.med.umich.
edu/COACH/) is a meta-server approach to protein-
ligand binding site prediction using two comparative
methods, TM-SITE and S-SITE, which recognize ligand-
binding templates from the BioLiP protein function
database by binding-specific substructure and sequence
profile comparisons. In the COACH server, the top 10
models were ranked by the cluster size and given a C-
score, and their PDB hits, ligand names, available down-
loadable complex structures, and consensus binding
residues were given. The predicted C-scores lie between
0 and 1, where the scores increase with reliability.

Phylogenetic conservation analysis

The ConSurf web server [53] (http://consurf.tau.ac.il)
analyses the evolutionary pattern of the amino/nucleic
acids of the macromolecule to reveal areas important for
function and/or structure. The corresponding conserva-
tion score ranges from 1 to 9, where 1 indicates rapidly
evolving (variable) regions, 5 indicates regions that are
evolving mildly, and 9 indicates conserved positions.
Exposed residues with high scores are thought to be
functional residues, whereas buried residues with high
scores are considered structural.

Prediction of the amino acid secondary structure
produced from the GJA3 gene

SOPMA [54] is an advanced version of the self-
optimized prediction method (SOPM), which can pre-
dict the secondary structure(a helix,  turn and coil) of
69.5% of amino acids in the entire database containing
126 non-homologous (less than 25% homologous) pro-
tein chains. The SOPMA and a neural network method
(PHD) jointly correctly predicts 82.2% of residues for
74% of co-predicted amino acids.

Prediction of high-risk nsSNPs effects on protein structure
TOPO2

TOPO2 (http://www.sacs.ucsf.edu/TOPO2/), which is a
simple graphics program, was used to create images of
transmembrane protein according to the sequences.

HOPE

HOPE [55] (http://www.cmbi.ru.nl/hope/) can build an
automatic mutant analysis server that can provide
insight into the structural effects of a mutation. Struc-
tural information was collected from a series of sources,
including calculations on the 3D protein structure, se-
quence annotations in UniProt and prediction from
Reprof software. The program Yasara, with an automatic
modelling script only needing the sequence of the pro-
tein of interest, was used to build a homology model
when possible.
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