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Abstract

over osteoclasts and OCL-cells.

bone resorption.

Background: Bone resorption takes place within the basic multicellular units (BMU), and the surface to be resorbed
is isolated from adjacent bone surfaces by a sealing zone between osteoclast membrane and bone matrix, which
defines the limits of the resorption lacuna. Considering that the extracellular fluid (ECF) in both BMU and the
resorption lacuna can be isolated from its surroundings, | hypothesize that flow and ion composition of the bone

ECF in these sites might contribute to the regulation of osteoclast H* secretion. To investigate this hypothesis,

| evaluated the H* secretion properties of individual osteoclasts and osteoclast-like cells (OCL-cells) and investigated
whether changes in flow or chloride content of the extracellular solution modify the H* secretion properties in vitro.

Results: The results show that 1) osteoclasts are unable to secrete H™ and regulate intracellular pH (pH;) under
continuous flow conditions and exhibit progressive intracellular acidification; 2) the cessation of flow coincides
with the onset of H" secretion and subsequent progressive intracellular alkalinization of osteoclasts and OCL-cells;
3) osteoclasts exhibit spontaneous rhythmic oscillations of pH; in non-flowing ECF, 4) pH; oscillations are not
abolished by concanamycin, NPPB, or removal of extracellular Na* or CI7; 5) extracellular CI™ removal modifies the
pattern of oscillations, by diminishing H* secretion; 6) pH; oscillations are abolished by continuous flowing of ECF

Conclusions: The data suggest, for the first time, that ECF flow and CI™ content have direct effects on osteoclast
H* secretion and could be part of a mechanism determining the onset of osteoclast H* secretion required for

Keywords: Osteoclast, Intracellular pH regulation, CIC-7, Proton secretion, Bone resorption, Bone extracellular
fluid, Fluorescence microscopy, Bis-carboxyethyl-carboxyfluorescein-AM (BCECF-AM)

Background

Bone resorption is important for maintaining mineral
homeostasis, adapting to functional loading, and healing
damaged and fractured sites. The process of bone con-
sumption is regulated by the number of osteoclasts, and
relies heavily on the ability of individual osteoclasts to
secrete H" through the ruffled border, thus lowering the
extracellular pH (pH,) at a delimited bone surface.

The first demonstration of an acidic area adjacent to
osteoclasts utilized the fluorescent probe acridine orange
[1]. Later, it was shown—using pH microelectrodes—that
osteoclasts can acidify the contact zone with a culture dish
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to less than pH 3 within a few minutes [2]. It has been
proposed that extracellular acidification is a key step for
the dissolution of the apatite-containing mineralized
matrix [3, 4] and osteoclast intracellular pH (pH;) regula-
tion [5-8]; in addition, H" secretion creates a suitable pH,
in the resorption lacuna, for enzymes to degrade the or-
ganic matrix [9]. Therefore, bone resorption depends on
the expression and activity of H*-secreting proteins at the
osteoclast ruffled border.

Several mechanisms have been implicated in contributing
to the acidification of the resorption lacuna; such as: H" se-
cretion through vacuolar H-ATPase (V-ATPase) [10] and
a H'-coupled CI secretion, by chloride channel 7 (CIC-7)
[11]. Furthermore, the Na*/H" exchanger, NHE-10 isoform
[12], and a H" conductance have been reported to regulate
pH; by means of acid secretion [5, 6, 13].
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The movement of acid—base equivalents across the
plasma membrane is crucial for pH; regulation [14, 15].
At the osteoclast plasma membrane, the base-
transporters include NBCnl (Na*-HCO3 cotransporter)
[16], and AE2 (CI'/HCO3 anion exchanger) [12, 17, 18];
and the acid-transporters include V-ATPase, Na'/H*
exchanger and the aforementioned H" conductance [5, 6,
13]. In addition to its role in osteoclast pH regulation, H"
secretion by the V-ATPase works in parallel with CIC-7
[19], which have been proposed as the key components of
cellular machinery for extracellular acidification at the ruf-
fled border (Fig. 1). It should also be noted that pH; regula-
tion is related to the translocation of several ions (as Na*
and CI") across the plasma membrane by specific proteins.

Osteoclast activity and function depends on chemical
signaling from cellular and paracrine interactions between
osteoclasts and osteoblasts, as well as bone marrow and
immune cells, and is regulated by several hormones and
cytokines [20]. One of the most important signals for in-
duction of osteoclast differentiation and function is the re-
ceptor activator of nuclear kappa-B ligand (RANK-L).

Physical stimuli, for instance functional loading and
exercise, also play a role in controlling bone formation,
resorption and remodeling. Mechanical loading of bone
promotes osteocyte responses to fluid shear stress, which
results in changes in the osteocyte activity [21-24] and
indirect inhibition of osteoclast formation and bone re-
sorption [25].

Despite the crucial role of osteoclasts in physiological
mineral homeostasis and bone adaptive responses, direct
effects of flow and ECF ion composition on osteoclast
function are otherwise not known. The primary goal of
this work is to investigate the effect of extracellular fluid
flow rate (5 mL/min versus 0 mL/min) and CI~ content
on osteoclast H" secretion. The results show that both
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Fig. 1 Schematic diagram of proteins involved in acid and base
transfer across the osteoclast plasma membrane. RB = ruffled border;
SZ = sealing zone; CA = carbonic anhydrase
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extracellular fluid flow and CI” content modify osteoclast
H" transport.

Results and discussion

H* secretion after acid load varies among cells in the
absence of extracellular solution flow

As previously described by Boron and De Weer [26],
applying a solution containing NH,Cl initially causes an
increase in pH;. Initially NHj diffuses across the cell
membrane and combines with a H* inside the cell; NH}
can also move into the cell through K* transporters,
bringing extra H', however, this process is slower. The
removal of NH,Cl solution causes a decrease in pH;
The intracellular NH; rushes out the cell, leaving the H"
inside. The cell responds to this fall in pH; by activating
acid extruding mechanisms. In a set of experiments, I
used bis-carboxyethyl-carboxyfluorescein (BCECF-AM)
fluorescence to monitor pH; changes using NH,Cl pre-
pulse technique. Indeed I was able to monitor pH;
changes following acid load (Figs. 2 and 3), in both oste-
oclasts and OCL-cells. A BCECF-loaded osteoclast is
shown in (Additional file 1: Figure S1).

It was observed that osteoclasts do not properly regu-
late pH; after the NH,4Cl prepulse in the presence of
continuous ECF flow; these cells exhibited a progressive
intracellular acidification (n=6) after discrete recovery
from the acid load, which is evidenced by the small ApH;
(Fig. 2a.) In contrast, when ECF flow was stopped, the
osteoclasts secreted H' at different rates (dpH;/dt) after
the acid load (Fig. 2b), resulting in a higher value of
ApH; in comparison to that obtained under continuous
ECF flow. During the first two minutes following the
acid load, the dpH;/dt varies from 0.01 to 0.58 pH units/
min (n=27). The values for each osteoclast studied are
presented in Additional file 2. The rates of H" secretion
do not appear to be related to cell size; however, there is
a positive correlation (r = 0.4522, p = 0.0089, n = 27; one-
tailed Pearson) between dpH;/dt and the magnitude of
acidification (i.e. the difference between initial pH; and
the lowest pH; recorded after NH,CI solution removal).
This correlation was also reported by Ravesloot et al. [6]
and may be related to the amount of H" to be trans-
ported after the acid load.

Osteoclasts and OCL-cells exhibit an oscillatory pH; in
non-flowing extracellular solution

Under no ECF flow conditions, H" secretion after the acid
load causes intracellular alkalinization to a maximal pH;
value. Subsequently, the cells initiate a period of spontan-
eous cellular acidification to a minimal pH; value; then the
alkalization restarts. This oscillatory pattern is repeated in
regular periods of spontaneous acidification and alkalini-
zation (Fig. 3a). These rhythmic pH; fluctuations were
observed in both osteoclasts and OCL-cells, and were
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Fig. 2 Changes in intracellular pH (pH;) of osteoclasts. The pHi of primary osteoclasts labeled with the pH-sensitive dye BCECF-AM (12 uM) was
monitored along time in order to evaluate the H* secretion under flow and no-flow conditions after the NH,Cl prepulse, which causes an acid
load to the cells. Experiments were performed in the absence HCO3 to inhibit base transporters. a. Flowing standard HEPES-buffered solution

(5 mL/min) after acid loading is related to a discrete H* secretion and a small ApH,. b. Non-flowing HEPES-buffered solution (0 mL/min) after acid
loading is related to a transient H" secretion and a higher ApH; than in flow condition
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Fig. 3 Changes in intracellular pH (pH;) of osteoclasts. The pH; of primary osteoclasts labeled with the pH-sensitive dye BCECF-AM (12 puM) was
monitored along time in order to evaluate the H* secretion. a. Primary osteoclast exhibit rhythmic fluctuations in pH; after the NH,Cl prepulse under
non-flowing standard HEPES-buffered solution. b. Different patterns of pH; oscillations are observed in the primary osteoclasts under non-flowing
standard HEPES-buffered solution, with variations in period and amplitude in cycles of acidification and alkalinization, in the presence or absence of
NH,Cl prepulse. Each line represents one osteoclast
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observed in 92 % of experiments performed in the absence
of ECF flow. Different patterns of pH; oscillation, with
different amplitudes and periods, were also observed
(Fig. 3b). In osteoclasts, the period of the oscillations—the
time interval between two maximum pH; values—ranged
from 12 to 45 min (n = 35), and the amplitude of the pH;
oscillations—the difference between the maximum and
minimum pH; in each cycle—ranged from 0.12 to 1.43 pH
units, the lowest and the highest values recorded, respect-
ively. This huge variation in capability of H* secretion
among osteoclasts could be due to unequally expression
of H'-transporting proteins at the plasma membrane, and
can be taken as an additional evidence for the osteoclast
heterogeneity regarding resorptive machinery already re-
ported by Everts et al. in [27]. Despite the fact that
osteoclasts differ from each other in values for period and
amplitude of oscillations, one osteoclast analyzed indi-
vidually exhibits a regular, rhythmic, oscillation, maintain-
ing the range of pH; fluctuation from one cycle to the
following and maintaining the period of the oscillations.

The present study is not the first one to report oscilla-
tions related to pH; in osteoclasts. In fact, an in situ
study using microelectrodes to simultaneously measure
H" currents and pH in the microenvironment beneath
adherent osteoclasts, showed that there were pH fluctua-
tions in that compartment [2]. Despite the methodological
differences—extracellular versus intracellular measure-
ments—both processes detect pH changes directly related
to H" transported by the osteoclast.

Inhibition of H*-transporting proteins does not abolish
the pH; oscillation, but the absence of extracellular CI™
modifies its patterns

The inhibition of the Na'/H" exchanger by applying
ECF containing zero sodium (0 Na') (n=5), the inhib-
ition of H*-ATPase by concanamycin (n = 3) (Fig. 4a and
b) or of H* channels by Zn>** (n=2) did not disrupt or
modify the oscillatory pattern of pH; in osteoclasts. Thus,
these H'-transporting proteins do not appear to partici-
pate in pH regulation by osteoclasts and OCL-cells.

While this may come as a surprise, this is not the first
time such an observation has been reported. Grano et
al. [28] demonstrated that in OCL-cells, Na*/H" exchan-
ger inhibition did not completely eliminate the ability of
these cells to regulate pH;. Another study also showed
that total replacement of extracellular Na* had no effect
on H' transport in inside-out vesicles derived from the
ruffled border of avian osteoclasts [29]. Furthermore, it
has been reported that 40 % of osteoclasts containing at
least 10 nuclei facilitate pH recovery from acid load
through H'-ATPase, without any participation from the
Na"/H" exchanger [30]. While this latter observation is
in contrast to our observed results with concanamycin,
our data is in accordance with Nordstrom et al. [31],
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which reported that in the absence of HCO3, pH; regula-
tion by H'-ATPase is negligible in cells under physio-
logical pH.

The removal of extracellular CI™ (n =3) or application
of NPPB (n = 3), inhibitor of chloride channels, also did
not abolish the pH; oscillations (Fig. 4c and d). However,
it should be noted that the removal of extracellular CI™
resulted in noticeable difference in the oscillation pat-
tern (n=3) (Fig. 4d). In control solution, the difference
between two maximum values of pH; (pH; maux; Fig. 4e) in
two consecutive cycles was —0.03 + 0.004, whilst in the
absence of extracellular CI°, the difference between two
consecutive values of pH; max raised to —0.10 +0.007,
indicating a compromised ability to secrete H'. The mean
time of intracellular acidification (T; Fig. 4e) was ~6 min
under control conditions and was increased to ~9 min in
the absence of extracellular CI”, which may be related to a
decreased ability to secrete H'. The mean time of intracel-
lular alkalinization (t; Fig. 4e) was ~15 min under control
conditions and was reduced to ~12 min in the absence of
extracellular CI°, thus shortening the time of H' secretion
by 20 %. In control solution, the difference between two
minimum values of pH; (pH; min; Fig. 4e) in two consecu-
tive cycles was —0.01 £ 0.007, whilst in the absence of
extracellular CI°, the difference between two consecutive
values of pH; min raised to -0.12+0.003, indicating
further intracellular acidification. Lastly, the mean rate of
intracellular alkalinization (dpH;/dt; Fig. 4e) was 0.004 pH
units/min under control conditions versus 0.0008 pH
unit/min in the absence of extracellular Cl°, which corre-
sponds to a 5-fold decrease in the H* secretion rate. Since
the experiments were performed in the absence of HCO3
and because the variations in pH; and dpH;/dt are related
to H' transport, the reduced ability to secrete H" in the
absence of extracellular ClI™ could be due to a impaired
exchange of external Cl” for internal H" by a ClI'/H"
exchanger.

The importance of Cl™ transporting proteins (channels)
in bone resorption emerged when Blair et al. [29] demon-
strated that in avian osteoclasts the H" secretion through
H'-ATPase was dependent on an anion conductance, and
non-linearly related to the external concentration of CI".
In fact several Cl -transporting proteins are expressed at
the osteoclast ruffled border in different species, including
CIC-3, CIC-7, and CLIC5 [32-34]. CI” secretion through
these proteins would dissipate the transmembrane poten-
tial generated by H'-ATPase activity [35].

According to my hypothesis, the absence of extracellu-
lar CI” reduces the exchange of Cl” by intracellular HY,
therefore reducing H" secretion, without any participation
of H"-ATPase. This is supported by data demonstrating
that the knockdown of CIC-7 expression by interfering
RNA reduces the ability of lysosomal acidification in vivo,
concluding that CIC-7 is the most important protein for
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Fig. 4 Effect of inhibitors of H"-secreting proteins in the oscillating intracellular pH (pH,) of primary osteoclasts under non-flowing standard
HEPES-buffered solution. a. The pH; oscillations were not abolished by applying a zero Na™ solution (0 Na*), inhibitor of Na™/H* exchanger. b. The pH;
oscillations were not abolished in the presence of concanamycin (Conc.), inhibitor of H*-ATPase. (Nig. = nigericin clamps pH; at 7.0.). ¢. The
pH; oscillations were not abolished in the presence of NPPB, inhibitor of CI” channels. d. The pH; oscillations were not abolished by applying a
zero CI™ solution (0 CI), inhibitor of CI™ transporting proteins; however there is a noticeable and progressive intracellular acidification from one cycle to
the next following the removal of extracellular CI” (0 CI). e. Parameters applied for the analyses of the oscillating pH;
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lysosomal acidification [36]. It is also important to con-
sider that bone ECF is not in equilibrium with the bulk
extracellular fluid, but instead there is evidence of such a
compartimentalization [37]. Higher concentrations of CI”
in bone ECF compared to other extracellular compart-
ments in the body can be taken as evidence that an im-
portant physiological role for Cl™ exists in bone.

Taken together, the literature and my results provide
evidence supporting the following assertion: CIC-7 may
itself secrete H' through the ruffled border at the bone-
osteoclast interface. This new functional role for CIC-7
presented here is in contrast with the function of charge
dissipation, in which Cl” ions would leave the cell in
parallel with protons transported by H'-ATPase [38].
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On the other hand, my hypothesis is in accordance with
the first documented biophysical properties of chloride-
transporting proteins located at the ruffled border, which
was shown to be outward rectifying channels [34]. My
proposal of a direct role of CIC-7 in secreting H" at the
ruffled border is also in accordance with studies showing
that the resorption lacuna of cultured osteoclasts lacking
CIC-7 is less acidic [38].

Fluid flow abolishes pH; oscillations and causes
intracellular acidification, but the cessation of flow
coincides with the onset of the H" secretion
As previously described in this work, osteoclasts and
OClL-cells exhibited spontaneous pH; oscillations in the
absence of ECF flow, even in the presence of inhibitors
of H" secreting proteins. However, when the ECF was
applied at 5 mL/min—value in accordance to the normal
intraosseous blood flow rate range reported by Laroche
(2002) [39]—the oscillations of pH; were completely abol-
ished in both osteoclasts and OCL-cells. Furthermore, H*
secretion after the acid load was absent or brief and not
sustained, in both osteoclasts and osteoclast-like cells
(OCL-cells) (Fig. 2a).

In contrast to the results obtained under no flow condi-
tions, with a flow rate of 5 mL/min the cells exhibited
progressive intracellular acidification. However, upon the
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stoppage of extracellular fluid flow H" secretion com-
mences, resulting alkalinization in osteoclasts (n=6) and
OCL cells (n=20) (Fig. 5) and the previously described
oscillatory pattern resumes (Fig. 6a). Furthermore, re-
applying flow—after a period of pH; oscillation—disrupts
the rhythmic fluctuations in pH; displayed by the osteo-
clasts (n=4) and OCL-cells (n=20) observed under no
flow conditions (Fig. 6b). Despite the fact that primary
osteoclasts and OCL-cells may have differences concern-
ing phenotype, the similar effect of extracellular fluid flow
observed in both cells indicate that the mechanisms re-
lated to the effect of fluid in H* secretion properties and
pH; regulation are preserved in OCL-cells.

This regulation of H" transport by fluid dynamics of
ECF may be relevant during BMU assembly, whereby
the canopy over the site to be resorbed isolates local
conditions from that in the bulk ECF. In addition, it
provides new evidence for a role to intraosseous circu-
lation in regulating the events occuring in the BMU, as
highlighted by Parfitt (2000) [40]. The modulation of
osteoclast H" secretion by the fluid dynamics here
described, along with the regulation of osteoclast func-
tion by hypoxia described by Arnett et al. (2003) [41],
may also serve as regulatory mechanisms for bone
resorption in situations where there is stasis or a dis-
ruption of the blood supply, such as that occuring in
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Fig. 5 a. Emitted fluorescence of BCECF-loaded osteoclast-like cells (OCL-cells) individualized in the area defined by the colored circle line by
using the MetaFluor 7.1 software (b). pH; of OCL-cells shown in (a). Each line represents one OCL-cell. At the time the flow is stopped (dashed
line), pH; become progressively more alkaline, thus indicating H* secretion since the standard HEPES-buffered solution does not contain HCO3.
c. Transmitted light image of selected osteoclast. d. pH; of the osteoclast shown in c. At the time the flow is stopped (dashed line), pH;
become progressively more alkaline, thus indicating H* secretion since the standard HEPES-buffered solution does not contain HCO3
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Fig. 6 Osteoclast intracellular pH (pH;). a. The transition from a period of continuous flow (5 mL/min) to a period of non-flowing (0 mL/min) standard
HEPES-buffered solution causes pH; oscillation. b. Inversely, the transition from a period of non-flowing (0 mL/min) standard HEPES-buffered solution
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bone fractures or in compression sites during ortho-
dontic treatments.

Conclusions

In summary, I observed that in the presence of ECF
flow, osteoclasts and OCL-cells appear to be unable to
secrete H' and the pH; continuously falls. In contrast,
when extracellular fluid flow is stopped the cells begin
to secrete H' and pH; increases as extracellular pH
reduces. The oscillations in osteoclast pH; could be due
to the reversion of ion fluxes (i.e. H" and Cl7) across the
osteoclast plasma membrane. Therefore, it is hypothe-
sized that extracellular Cl™ alters the rate of H" secretion
by the exchange of CI” and H" mediated by CIC-7 at the
ruffled border. This provides novel evidence for the par-
ticipation of CIC-7 in osteoclast H" secretion and bone
resorption.

My data highlight, for the first time, that flow and CI~
content of the ECF both modulate H" secretion by the
osteoclast, independently of H'-ATPase, and suggest
different and potentially more important roles for CIC-7
in bone resorption than previously recognized. Further
studies must be performed in order to better understand
these aspects of osteoclast biology.

Methods

Isolation of osteoclasts from long bones

Mature osteoclasts were collected under aseptic condi-
tions from the long bones of newborn Wistar rats. All
experimental procedures were performed in accordance
with the guidelines of the Standing Committee on Animal
Research of the University of Sdo Paulo (Protocol No.
090-35/02). The removed bones were washed with cold a-
MEM (Gibco, Grand Island, NE), minced, and cells were
detached by repeated pipetting. The debris was allowed to
sediment for 30 s, and then the cell suspension was col-
lected. Cells were placed on plastic coverslips at a density
of 5x10° cells/mL in 300 mOsm/L a-MEM containing

20 IU/L penicillin G, 20 pg/L streptomycin and 0.05 ug/L
amphotericin B, 10 % of fetal calf serum and 20 mM N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES).
Cells were kept in a CO, incubator (Lab-Line Instruments,
Melrose Park, IL) at 5 % CO,, pH 7.4 at 37 °C, for at least
two hours before experiments. Mature osteoclasts collected
from long bones were selected based on their morphology,
using phase contrast microscopy (Olympus IX70, Tokyo,
Japan). After selected experiments, further confirmation of
the cell phenotype was performed using tartrate resistant
acid phosphatase (TRAP) staining kit (Sigma-Aldrich, St.
Louis, MO) or by immunocytochemistry using an antibody
against the calcitonin receptor (Abcam, Cambridge, UK), a
specific marker for osteoclasts (Fig. 7).

Generation of OCL-cells in vitro

For differentiation of precursor cells in OCL-cells, marrow
cells were collected from long bones of 6 to 8 weeks-old
Wistar rats. All experimental procedures were performed
in accordance with the guidelines of the Standing Commit-
tee on Animal Research of the University of Sdo Paulo
(Protocol No. 090-35/02). Osteoclast-like cells were gener-
ated as described by Arnett et al. [41] with modifications;
briefly, by using 50 ng/mL of recombinant mouse macro-
phage colony stimulating factor (rmM-CSF) (R&D Sys-
tems, Minneapolis, MN) and 10 ng/mL of recombinant
mouse receptor activator of nuclear factor kappa B ligand
(rmRANK-L) (R&D Systems). Cells were maintained in
300 mOsm/L a-MEM containing 20 IU/L penicillin G,
20 pg/L streptomycin and 0.05 pg/L of amphotericin B,
10 % of fetal calf serum and 20 mM HEPES on plastic
coverslips, in a CO, incubator (Lab-Line Instruments,
India) at 5 % CO,, pH 7.4 at 37 °C, for up to 7 days. The
culture medium was changed every 3 or 4 days.

Experimental solutions and chemicals
All pH; experiments were performed in the absence of
NaHCOs, in order to avoid activity of proteins involved in
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(TRAP kit, Sigma, USA; 200 X) (c)

Fig. 7 Mature primary osteoclasts were selected based on their morphology, using phase contrast optic system (Olympus IX70; 200 X) (a). In
some experiments, it was performed further confirmation of the cell phenotype by immunofluorescence using antibody against calcitonin receptor
(CTR) (confocal microscope Zeis LSM510; 200 X), a specific marker of osteoclasts (b), or by cytochemistry for tartrate resistant acid phosphatase (TRAP)

base transport (i.e. Na*-HCO3 cotransporters). The com-
position of experimental solutions is shown as additional
data. The experimental solutions were maintained at 37 °C
regardless of flow conditions.

Concanamycin (Sigma-Aldrich, St. Louis, MO), the H
"-ATPase inhibitor, was used at a final concentration of
100 mM [5]. NPPB [5-Nitro-2-(3-phenylpropylamino)
benzoic acid] (Tocris Bioscience, Bristol, UK), the chloride
channel inhibitor, was used at a final concentration of
100 uM [42]. ZnCl, (Sigma-Aldrich, St. Louis, MO), the
proton channel inhibitor, was used at a final concentration
of 100 pM [5].

pH; records

The changes in cellular pH; were monitored by measur-
ing the change in 12 pM BCECF-AM (Molecular
Probes, Eugene, OR) fluorescence on an Olympus I1X70
microscope. The emitted fluorescence after excitation
at 490 nm (EF 490 nm) is related to pH;, and that emit-
ted after excitation at 440 nm is insensitive to pHj, but in-
dicates dye concentration and dye loss by photobleaching
during fluorescence records. The pH; was analyzed in the
presence or absence of inhibitors of H" ATPase, proton
channels and CIC-7; in the presence or absence of extracel-
lular Na* or CI7, in order to inhibit Na* and Cl”-dependent
mechanisms, respectively; and in the presence (5 mL/min)
or absence (0 mL/min) of extracellular fluid flow. The flow
and/or exchange of the ECF were controlled using syringe
pump (Warner Instruments, Hamden, CT).

I also investigated the effect of acid loading the osteo-
clasts by exposing the cells to a solution of 20 mM
NH,CI for 1-2 min [26]. The entry of NHj3 into the cell
causes a transient alkalinization of pH; due to the reac-
tion of NH;3 with intracellular H* forming the ion NHy;
subsequently, the entry of NH, leads to intracellular

acidification. The replacement of NH,Cl solution for a
standard HEPES-buffered solution (pH 7.4, at 37 °C)
causes the pH; to fall abruptly. The osteoclasts ability to
secrete H" after the acid load was investigated over time
in the presence or absence of ECF flow. The rates of H*
secretion were calculated as the linear regression—dpHi/
dt—for the two first minutes after the lowest pH; value
induced by the NH,CI prepulse was obtained, or for the
entire period in the analysis of pH; oscillations.

Data analyzes

The ratiometric approach was used to generate a param-
eter related to pH rather than dye concentration [14].
Briefly, the emitted light (above 510 nm) after excitation
at 490 nm (EF490) and 440 nm (EF440) was recorded
using the MetaFluor 7.1 software. The emitted fluores-
cence after excitation at 490 nm is sensitive to both dye
concentration and pH; and the emitted fluorescence
after excitation at 440 nm (isosbestic wavelength) is not
sensitive to changes in pH;. The fluorescence ratio values
(R = EF490/EF1440) were converted to pH; using a cali-
bration technique involving the use of high-[K"]/nigeri-
cin (10 pM) Invitrogen, Waltham, MA) as previously
described [6]. Detailed calibration was performed on a
set of cells and a single-point calibration was routinely
performed at the end of all the pH; records. Representa-
tive pH; values of individual osteoclasts and OCL during
the course of the experiments were plotted versus time.

Additional files

Additional file 1: Figure S1. BCECF-loaded primary osteoclast on
confocal microscope Zeiss LSM 510 (200 X). The mature osteoclast was
extracted from 2 days-old Wistar rat and incubated with the pH-sensitive
dye BCECF-AM (12 uM) for 10 min at 37°C. A. Transmitted light image. B.
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Fluorescence image of BCECF trapped in the cytosol. Note that nuclei are
not fluorescent. C. Merged image of A. and B. (PNG 260 kb)

Additional file 2: Table S1. Rates of H" secretion (dpHy/dt) for
individual osteoclasts. Table S2 Composition of experimental solutions.
Values are expressed in mM. (DOCX 15 kb)
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