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Abstract 

Background:  With the development of single-cell technology, many cell traits can be 
measured. Furthermore, the multi-omics profiling technology could jointly measure 
two or more traits in a single cell simultaneously. In order to process the various data 
accumulated rapidly, computational methods for multimodal data integration are 
needed.

Results:  Here, we present inClust+, a deep generative framework for the multi-omics. 
It’s built on previous inClust that is specific for transcriptome data, and augmented 
with two mask modules designed for multimodal data processing: an input-mask 
module in front of the encoder and an output-mask module behind the decoder. 
InClust+ was first used to integrate scRNA-seq and MERFISH data from similar cell 
populations, and to impute MERFISH data based on scRNA-seq data. Then, inClust+ was 
shown to have the capability to integrate the multimodal data (e.g. tri-modal data 
with gene expression, chromatin accessibility and protein abundance) with batch 
effect. Finally, inClust+ was used to integrate an unlabeled monomodal scRNA-seq 
dataset and two labeled multimodal CITE-seq datasets, transfer labels from CITE-seq 
datasets to scRNA-seq dataset, and generate the missing modality of protein abun-
dance in monomodal scRNA-seq data. In the above examples, the performance 
of inClust+ is better than or comparable to the most recent tools in the corresponding 
task.

Conclusions:  The inClust+ is a suitable framework for handling multimodal data. 
Meanwhile, the successful implementation of mask in inClust+ means that it can be 
applied to other deep learning methods with similar encoder-decoder architecture 
to broaden the application scope of these models.
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Introduction
Recently, the progress of single-cell technology (e.g. single-cell RNA sequencing 
(scRNA-seq) [1, 2], single-cell assay for transposase-accessible chromatin sequencing 
(scATAC-seq) [3] and single-cell bisulfite sequencing (scBS-seq) [4]) makes it possible to 
obtain a variety of traits in a single cell. These single-cell methods have greatly promoted 
our understanding of cells. As a result, the heterogeneity of cell population was revealed 
[2, 5], the trajectory of cell development was inferred [6], and the gene regulatory net-
work was reconstructed [7]. But data collected in one modality just represents a limited 
side view of the cell state. In order to obtain more holistic and comprehensive informa-
tion, data from different modalities need to be integrated together to better reveal the 
biological significance of the data.

Initially, the integration of data from different modalities was accomplished by compu-
tational approaches [8, 9]. Then, multi-omics profiling technology that could jointly pro-
file multiple traits in a single cell was developed [10]. Several methods (e.g. SNARE-seq 
[11], sci-CAR [12], Paired-seq [13], and SHAER-seq [14]) could simultaneously meas-
ure the gene expression and chromatin accessibility in a single cell. Cellular indexing of 
Transcriptomes and Epitopes by sequencing (CITE-seq) could jointly profile the gene 
expression and a panel of cell surface proteins [15, 16]. The scNMT-seq could profile 
chromatin accessibility, DNA methylation, and transcription in single cells at one time 
[17].

Several computational approaches have been developed to process and integrate data 
in single-cell analysis. Some are universal methods that could handle situations with 
either multiple monomodal data profiled from different cells in similar populations or 
multimodal data extracted from single cells [18]. Others are specially designed for pro-
cessing data generated by multi-omics profiling technology [19, 20]. Usually, for data 
generated by multi-omics profiling technology, the information from different modali-
ties is coded by different encoders first, and then integrated in the latent space. The one-
to-one correspondence between encoders and modalities is mainly due to the fact that 
data from different modalities have different data formats and lengths, which can’t be 
encoded by the same encoder. Following the encoding, the coded information from dif-
ferent modalities is integrated in the latent space, through adversarial loss [21], mixture 
of expert [22], attention-transfer [23], regulatory interaction information [24], and so on. 
After integrating data from different modalities, data from one modality could be used 
to impute data from another modality [18]. Meanwhile, integration of multimodal data 
makes the translation between different modalities possible [21]. Furthermore, the mul-
timodal data could be used as a reference to generate data of the missing modality in 
monomodal data [25].

Previously, we presented inClust (integrated clustering), a flexible all-in deep gen-
erative framework for transcriptome data [26]. Here, we extended the inClust by add-
ing two new modules, namely, the input-mask module in front of encoder and the 
output-mask module behind decoder (Fig.  1A). We named the augmented inClust 
as inClust+, and demonstrated that it could complete not only data integration but 
also gene imputation by the merits of mask modules (Fig. 1B). Furthermore, for mul-
timodal datasets with different data types for each modality, inClust+ adopted the 
architecture of stacked encoder and decoder, which was used in conjunction with the 
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mask modules. Therefore, inClust+ could integrate multimodal data, where different 
modalities have different data types (Fig. 1C). Finally, inClust+ with stacked encoder-
decoder and mask modules was used to tackle the problem of cross modal generation 
(Fig. 1D). All results show that inClust+ is an ideal tool to deal with multimodal data, 
and adding masks is a suitable way to model augmentation in the field of multi-omics.

Results
InClust+ imputes genes for MERFISH data after integrating scRNA‑seq and MERFISH data

The rationale for integrating scRNA-seq and MERFISH data by inClust+ is simple: 
just treat the multimodal data from different modalities as scRNA-seq data from 
different batches. In addition, the input-mask module and the output-mask module 
would enable the gene imputation in MERFISH data based on transferring knowl-
edge from scRNA-seq data (Fig.  2A). For scRNA-seq data, inClust+ uses the com-
mon genes to reconstruct common genes and scRNA-seq-specific genes. The 
reconstructed expression profile of the common genes and the scRNA-seq-specific 
genes were compared with the real expression profile to update the model parameters 
(Fig. 2B). For MERFISH data, only reconstructed expression profile of common genes 
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Fig. 1  Architecture of inClust+ and its application. A The architecture of inClust+. InClust+ is based on 
inClust, with a VAE backbone (an encoder, a sampling part, and a decoder) and three built-in functional 
modules (an embedding layer embedded auxiliary information into the latent space, the vector arithmetic 
part performs information integration, a classifier cluster cells into groups). In addition, two mask modules 
designed for multimodal data processing are augmented to original inClust: an input-mask module in front 
of the encoder and an output-mask module behind the decoder. Each mask module is used to filter out 
unwanted values, and achieve multimodal integration and translation. B–D The application of inClust+. B 
Cross modal imputation by inClust+. There are two datasets, one from scRNA-seq (blue) and the other from 
MERFISH with some missing genes (red). InClust+ could impute the missing genes in MERFISH dataset (in 
the purple box) by referring to the scRNA-seq dataset. C Cross modal integration by inClust+. There are two 
paired datasets, one contains gene expression (blue) and protein abundance (green), and the other contains 
protein abundance (red) and chromatin accessibility (purple). InClust+ could integrate all three modalities 
from the two datasets. D Cross modal generation by inClust+. There are three datasets, two of which are 
paired datasets with gene expression (blue and red) and protein abundance (green and orange). The third 
one is a monomodal dataset with only gene expression data (purple). InClust+ could generate the protein 
abundance data (in the red box) for the third monomodal dataset by referring to the paired datasets
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is used for parameter updating (Fig. 2C). Although expression of scRNA-seq-specific 
genes in MERFISH data did not contribute to the updating of model parameters, they 
were  still reconstructed as a by-product. Since the encoder and decoder used for 
scRNA-seq and MERFISH data are the same, the reconstructed expression of scRNA-
seq-specific genes in MERFISH data could depend on the knowledge transferred from 
scRNA-seq data (Fig. 2A).

For comparison, we randomly selected 80% of genes in MERFISH data as common 
genes, and the rest as test genes (scRNA-seq-specific) waiting for imputations, as 
described in the uniPort [18]. The inClust+ first encodes the scRNA-seq and MERFISH 
data into latent space respectively. As the input data (Fig.  3A), the encoded represen-
tations from different modalities are also separated in the latent space (Fig. 3B). After 

Fig. 2  The diagram for integration of multiple monomodal (unpaired) data and subsequently gene 
imputation by inClust+ (see details in Additional file 2). A The workflow. Training: ①Generation of the 
training dataset. The data from scRNA-seq and MERFISH were aligned with common genes, and the missing 
scRNA-seq-specific genes in MERFISH data were filled with 0. ②Generation of the masked-input for the 
encoder in inClust+. ③Data encoding, covariates elimination and data integration. ④Reconstruction 
of expression profile for both common genes and scRNA-seq-specific genes. ⑤Generation of the 
masked-output for loss calculation. ⑥Calculation of the loss for backpropagation. Imputation: after training, 
the output of the decoder (step ④) would impute the missing scRNA-seq-specific genes in MERFISH data. 
B Training inClust+ with scRNA-seq data. In encoder, only the expression data of common genes are the 
effective inputs. So, in the first layer of the encoder, only the corresponding connections actually contribute 
to the encoding process. In decoder, both common genes and scRNA-seq-specific genes are reconstructed 
and pass through the mask. The loss between input and output with both the common and specific genes 
is calculated, and all connections in the last layer contribute to the loss. In short, inClust+ uses common 
genes to reconstruct common genes and scRNA-seq-specific genes. C Training inClust+ with MERFISH 
data. In encoder, only the expression data of common genes are the effective inputs. So, in the first layer of 
the encoder, only the corresponding connections actually contribute to the encoding process. In decoder, 
both common gene and scRNA-seq-specific gene are reconstructed, while the scRNA-seq-specific genes 
are filtered out by the output-mask. Loss is calculated according to the common genes, so only connections 
corresponding to common genes in the last layer of decoder contribute to the calculation of loss. In short, 
inClust+ uses common genes to reconstruct common genes. However, after training, inClust+ would output 
common genes and scRNA-seq-specific genes from the input of common genes
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covariates (modalities) removal by vector subtraction, the samples from different modal-
ities were mixed together and clustered according to their cell types (Fig. 3C). As the uni-
Port [18], the evaluation of imputation is calculated using median and average Spearman 
correlation coefficients (mSCC and aSCC), and the median and average Pearson correla-
tion coefficients (mPCC and aPCC) over imputed and true testing genes. As shown in 
the plot, inClust+ demonstrated the higher mSCC (0.243), aSCC (0.255), mPCC (0.263), 
and aPCC (0.322), above those of uniPort (mSCC of 0.236, aSCC of 0.247, mPCC of 
0.233, and aPCC of 0.274) (Fig. 3D).

InClust+ integrate multi‑omics datasets

Single cell multi-omics can extract information from different cellular components of a 
single cell at the same time, with different data types and lengths. By flexibly adjusting 
the input (output) mask modules, inClust+ can be transformed into a model specially 
used for multimodal data processing. In order to use data from multiple modalities at the 
same time, data from all modalities are stacked together in the input (Fig. 4A). Accord-
ingly in the model, the first layer of encoder could be regarded as multiple independ-
ent neural network layers stacked together, and each part corresponds to data from one 
modality (Fig. 4B–F) (e.g. one for gene expression, one for protein abundance, and one 
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Fig. 3  The results for integration of multiple monomodal (unpaired) data and subsequently gene imputation 
by inClust+. A The UMAP plot of the scRNA-seq and MERFISH data (the top 50 PCs) colored by the modalities 
(top) and cell types (bottom). B The UMAP plot of the low dimensional representations with covariate effects 
for the scRNA-seq and MERFISH data in inClust+ colored by the modalities (top) and cell types (bottom). 
C The UMAP plot of the low dimensional representations without the covariate effects for the scRNA-seq 
and MERFISH data in inClust+ colored by the modalities (top) and cell types (bottom). D Comparison of 
imputation capability of inClust+ and uniPort. Boxplots of aPCC and mPCC (n = 12), and aSCC and mSCC 
(n = 12) between real and imputed MERFISH genes generated by inClust+ and uniPort were plotted
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for chromatin accessibility). The last layer of the decoder is also divided into multiple 
parts, respectively, with each part reconstructing the data from one modality. The model 
training is divided into multiple stages, which could be grouped as self-reconstruction 
and alternative-reconstruction. The self-reconstruction means inClust+ uses data from 
one modality to reconstruct itself (e.g. in Fig. 4B, inClust+ uses the gene expression data 
to reconstruct gene expression data). On the contrary, alternative-reconstruction means 
inClust+ uses data from one modality to reconstruct data from another modality (e.g. 
in Fig.  4E, inClust+ uses the protein abundance data to reconstruct gene expression 
data). The rationale is as follows: in the stages of self-reconstruction, each component 
of the first layer of the encoder is coupled with the corresponding part of the last layer 
of the decoder. This could be thought of as an encoder/decoder combination for data 
from one modality. Each encoder/decoder combination updated themselves relatively 
independently. In contrast, in the stage of alternative-reconstruction, each component 
of the first layer of the encoder is coupled with the alternative part of the last layer of the 
decoder. This is an attempt to translate between different modalities in a single cell and 
integrate them more thoroughly. Furthermore, the batch effect between different data-
sets could be explicitly removed by vector arithmetic in the latent space as the original 
inClust (Fig. 4A).

We first applied inClust+ to integrate the multimodal PBMC data with scATAC-seq 
data and scRNA-seq data (Additional file 1: Fig S1). Before integration, scATAC-seq data 
and scRNA-seq data were separated in the original space (Additional file  1: Fig S2A). 

Fig. 4  The diagram for integration of multimodal (triple) datasets by inClust+ (see details in Additional 
file 2). A The workflow. Training: ①Generation of the training dataset (Blue: gene expression from dataset 
1; Green and red: protein abundance from dataset 1 and dataset 2; Purple: chromatin accessibility from 
dataset 2; Black: 0-value padding). ②Generation of the masked-input for the encoder in inClust+. ③Data 
encoding, covariates elimination and data integration. ④Reconstruction for data in all three modalities 
(Dark blue and yellow: reconstructed gene expression for dataset 1 and dataset 2; Light green and light 
red: reconstructed protein abundance for dataset 1 and dataset 2; Orange and Light purple: reconstructed 
chromatin accessibility for dataset 1 and dataset 2). ⑤Generation of the masked-output for loss calculation. 
⑥Calculation of the loss for backpropagation. Data integration: after training, encoded low-dimensional 
representations are mixed together and clustered according to the cell types without the effect of covariate 
(batches and modalities). B–D Self-reconstruction. B In the first training phase, only gene expression data 
is effective for input (Blue long strip) and output (Dark blue long strip). Therefore, only the corresponding 
connections in the first layer (upper part) of the encoder and the last layer (upper part) of the decoder 
actually contribute to the training process. In short, inClust+ uses gene expression data to reconstruct itself. 
C In the second and third training phases, only protein abundance data is effective for input (Green and red 
long strip) and output (Light green and light red long strip). Therefore, only the corresponding connections in 
the first layer (middle part) of the encoder and the last layer (middle part) of the decoder actually contribute 
to the training process. In short, inClust+ uses protein abundance data to reconstruct itself. D In the fourth 
training phase, only chromatin accessibility data is effective for input (Purple long strip) and output (Light 
purple long strip). Therefore, only the corresponding connections in the first layer (lower part) of the 
encoder and the last layer (lower part) of the decoder actually contribute to the training process. In short, 
inClust+ uses chromatin accessibility data to reconstruct itself. E, F alternative-reconstruction. E In the fifth 
training phase, only protein abundance data is effective for input (Green long strip) and gene expression data 
is effective for output (Dark blue long strip). Therefore, only the corresponding connections in the first layer 
(middle part) of the encoder and the last layer (upper part) of the decoder actually contribute to the training 
process. In short, inClust+ uses protein abundance data to reconstruct gene expression data. F In the sixth 
training phase, only protein abundance data is effective for input (Red long strip) and chromatin accessibility 
data is effective for output (Light purple long strip). Therefore, only the corresponding connections in the 
first layer (middle part) of the encoder and the last layer (lower part) of the decoder actually contribute to the 
training process. In short, inClust+ uses protein abundance data to reconstruct chromatin accessibility data

(See figure on next page.)



Page 7 of 17Wang et al. BMC Bioinformatics           (2024) 25:41 	

After integration by inClust+, the data from scATAC-seq and scRNA-seq are mixed 
together in the latent space (Additional file 1: Fig S2B). As in uniPort, the Batch Entropy 
score is used to measure the degree of mixing cells across datasets and the Silhouette 
coefficient is used to evaluate the separation of biological distinctions [18]. The result 
shows that inClust+ has obtained a Batch Entropy score of 0.686 and a Silhouette coef-
ficient of 0.808, which is much higher than those of uniPort, harmony and scVI (Batch 
Entropy score of 0.619, 0.678 and 0.576. Silhouette coefficient of 0.64, 0.604 and 0.616) 
(Additional file 1: Fig S2C).

We then applied our model to integrate multiple multimodal datasets with batch 
effect. In the first example, two CITE-seq datasets from different donors with batch 
effects are used (Additional file 1: Fig S3). Both gene expression data (Additional file 1: 
Fig S4A) and protein abundance data (Additional file 1: Fig S4B) in CITE-seq datasets 

Fig. 4  (See legend on previous page.)
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have batch effects. The inClust+ integrates data from different modalities in the latent 
space (Additional file  1: Fig S4C). And the vector arithmetic further integrates data 
from different batches (Additional file 1: Fig S4D). The result shows that inClust+ has 
obtained a Batch Entropy score of 0.641 and a Silhouette coefficient of 0.724, which is 
much higher than those of harmony and scVI (Batch Entropy score of 0.225 and 0.375, 
Silhouette coefficient of 0.416 and 0.39) (Additional file 1: Fig S4E). In the second exam-
ple, a CITE-seq dataset (gene expression and protein abundance) and an ASAP-seq 
dataset (protein abundance and chromatin accessibility) are used (Fig. 4)  [27]. There are 
three modalities (gene expression, protein abundance, chromatin accessibility), where 
protein abundance data exist in both datasets with batch effect. As in the first example, 
inClust+ integrates data from different modalities in the latent space (Fig. 5A). And the 
vector arithmetic further integrates data from different batches (Fig. 5B). We compared 
the integration results of inClust+ with that of scMoMat through the metrics of adjusted 
rand index (ARI) and the normalized mutual information (NMI), which used the previ-
ous identified seven cell type labels as the ground truth clustering labels  [27]. The result 
shows that inClust+ has obtained an ARI of 0.957 and an NMI of 0.949, which is much 
higher than those of scMoMat (ARI of 0.585 and NMI of 0.650) (Fig. 5C).

Cross‑modal generation by inClust+ 

The multi-omics dataset contains data from multiple modalities, and could be used as 
a reference to complete the monomodal data into multimodal data. Our inClust+ can 
extract information from multi-omics reference, and translate monomodal data into 
data of another modality. As the situation for multimodal integration, the first layer of 
encoder and the last layer of decoder could be regarded as multiple independent neural 

Fig. 5  The results for integration of multiple multimodal datasets by inClust+. A The UMAP plot of low 
dimensional representations with batch effects for CITE-seq and ASAP-seq data in inClust+ colored by the 
covariate (top) and cell types (bottom). B The UMAP plot of low dimensional representations without batch 
effects for CITE-seq and ASAP-seq data in inClust+ colored by the covariate (top) and cell types (bottom). C 
Comparison of data integration results of inClust+ and scMoMaT. Barplots of ARI and NMI for the results of 
inClust+ and scMoMaT were plotted
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Fig. 6  The diagram for cross-modal generation of inClust+ (see details in Additional file 2). A The workflow. 
Training: ①Generation of the training dataset (Blue, red and purple: gene expression from dataset 1, dataset 
2 and dataset 3; Green and orange: protein abundance from dataset 1 and dataset 2; Black: 0-value padding).. 
②Generation of the masked-input for the encoder in inClust+. ③Data encoding, covariates elimination and 
data integration. ④The decoder simultaneously outputs the reconstructed gene expression data and the 
reconstructed protein abundance data (Light blue, light red and light purple: reconstructed gene expression 
for dataset 1, dataset 2 and dataset 3; Light green, faint yellow and brown: reconstructed protein abundance 
for dataset 1, dataset 2 and dataset 3). ⑤Generation of the masked-output for loss calculation. ⑥Calculation 
of the loss for backpropagation. Label transfer and cross-modal generation: after training, the labels are 
transferred from cells of multimodal data to the cells of monomodal data in the same clusters. The output of 
the decoder (step ④) would generate the missing modality in monomodal data. B Training inClust+ with 
gene expression data. In these stages, only gene expression data is effective for input (Blue, red and purple 
long strip) and output (Light blue, light red and light purple long strip). Therefore, only the corresponding 
connections in the first layer (upper part) of the encoder and the last layer (upper part) of the decoder 
actually contribute to the training process. In short, inClust+ uses gene expression data to reconstruct itself. 
C Training inClust+ with gene expression data and translating them into protein abundance data. In these 
stages, only gene expression data is effective for input (Blue and red long strip) and protein abundance data 
is effective for output (Light green and faint yellow long strip). Therefore, only the corresponding connections 
in the first layer (upper part) of the encoder and the last layer (lower part) of the decoder actually contribute 
to the training process. In short, inClust+ uses gene expression data to reconstruct protein abundance data
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network layers stacked together to handle the stack data of multiple modalities (Fig. 6A). 
The translation from data of gene expression into data of protein abundance in the mul-
timodal reference was carried out in two stages in each round of training. In the first 
stage, inClust+ uses the gene expression data to reconstruct itself (Fig.  6B). Alterna-
tively, in the second phase, inClust+ uses the gene expression data to reconstruct pro-
tein abundance (Fig. 6C). There is the third stage for the monomodal data that needs to 
be completed. In this stage, inClust+ uses the gene expression data to reconstruct itself 
in the monomodal dataset (Fig. 6B). After training, inClust+ could transfer labels from 
the gene expression data in the multimodal reference to the gene expression data in the 
monomodal dataset. Meanwhile, based on the gene expression data in the monomodal 
dataset, the corresponding protein abundance data could be generated by automatic 
translation.

We evaluated the capability of inClust+ to complete a monomodal dataset into a mul-
timodal dataset through two CITE-seq references and a scRNA-seq dataset. The UMAP 
plots show that inClust+ could integrate the gene expression data from different data-
sets well (Fig.  7A, Additional file  1: Fig S5). And the results of the labels transferring 
are plotted in the confusion matrix, which show that inClust+ is better than sciPENN, 
with the accuracies of 0.947 in inClust+ (Fig. 7B) and 0.915 in sciPENN (Fig. 7C). The 
generated protein abundance data by inClust+ was visualized by UMAP (Fig. 7D). And 
the prediction accuracy of protein abundance was measured by calculating the Pearson 
correlation and the Spearman correlation between the predicted data and real data. The 
results show that inClust+ (mSCC of 0.334, mPCC of 0.376) is comparable to sciPENN 
(mSCC of 0.356, mPCC of 0.405), which is specially optimized for protein abundance 
prediction related to CITE-seq multimodal data [25] (Fig. 7E).

Discussion
In this paper, we described a means to enhance inClust through adding an input-mask 
module and an output-mask module, and called the augmented version of model 
inClust+. We applied inClust+ to various datasets, ranging from multiple monomodal 
(unpaired) datasets, one or several multimodal datasets, and datasets containing mul-
timodal data and monomodal data. In these examples, inClust+ demonstrated its capa-
bility of data integration, imputation and data generation. Firstly, through the merits 
of mask modules, inClust+ was used to impute MERFISH data by referring to scRNA-
seq data with similar cell population. Then, the capability of inClust+ with stacked 
encoder-decoder architecture and mask modules for multimodal integration was eval-
uated on three examples. The results show that inClust+ can’t only mix data between 
modalities, but also separate biological differences and remove the batch effect. Finally, 
inClust+ was used to integrate data with both monomodal dataset and multimodal data-
set. The results show that inClust+ can transfer labels from multimodal data to mono-
modal data, and complete the missing modality in monomodal data. The application of 
inClust+ is not limited to the above cases. For gene imputation, there will be a situation 
where all datasets have their own specific genes, rather than just one dataset with its 
own unique genes. By adjusting the output mask, inClust+ can integrate the two data-
sets based on the shared genes, and impute the rest genes in both datasets by referring to 
the specific genes in the corresponding dataset. For missing modality generation, there 
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will be a situation where all datasets have their own specific modalities, inClust+ can 
integrate both datasets based on the shared modalities and generate the missing modal-
ity in each dataset by referring to the specific modality in the corresponding dataset.

Because inClust+ is an extension of inClust in multimodal applications, inClust+ and 
inClust can be put together as a whole when compared with other integration methods. 
What distinguishes our model (inClust and inClust +) from other integration methods 
lies in its flexibility to adapt to different situations and its ability to integrate information 
as much as possible. The flexibility is reflected in the following two points. Firstly, as we 
described in inClust, the label information could be flexibly handled [26]. This merit is 
also inherited by inClust+, and is reflected in the fact that inClust+ can transfer labels 
from reference dataset to query dataset in semi-supervised mode. Secondly, the two 
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Fig. 7  The results for cross-modal generation by inClust+. A The UMAP plot of the low dimensional 
representations without the covariate effects for the gene expression data in inClust+ colored by 
the covariate (left) and cell types (right). B Heatmap for the confusion matrix of results generated by 
inClust+ with average accuracy above. C Heatmap for the confusion matrix of results generated by sciPENN 
with average accuracy above. D The UMAP plot visualization of generated protein abundance data by 
inClust+. E Comparison of cross-modal generation results of inClust+ and sciPENN. Boxplots of PCC, and SCC 
between real and generated Protein produced by inClust+ and sciPENN were plotted
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mask modules in inClust+ could be flexibly adjusted to deal with different inputs. The 
model’s ability to integrate information as much as possible is embodied in the following 
two points. Firstly, it is proved in inClust that the model could use not only expression 
data, but also covariant information (e.g. batch) and label information [26]. This merit is 
also inherited by inClust+. Secondly, as shown in inClust+, the model could utilize not 
only the shared data (shared gene expression or shared modality) to integration, but also 
specific genes or modality to missing genes imputation or missing modality generation. 
In short, our model can not only integrate data, but also complete other downstream 
tasks on the basis of data integration (e. g. Out-of-distribution generation, label transfer 
and new type identification, spatial domain segmentation, cross modal imputation and 
generation).

Adding masks is a common way to enhance models in deep learning [28]. In inClust+, 
we augment our model through a pair of mask modules (the input-mask module and the 
output-mask module). The flexible design and use of masks enable model to complete 
a series of tasks, which usually need to be completed by multiple models respectively. 
For example, inClust+ can utilize the common and dataset-specific genes for integration 
and imputation, as uniPort [18]. Masking makes things simple: the input-mask screens 
out common genes and the output-mask screens out common and dataset-specific genes 
of the corresponding data. Meanwhile, inClust+ could integrate multimodal dataset to 
achieve multi-domain translation, as cross-modal autoencoder [21]. Input-mask and 
output-mask make inClust+ into multiple independent and related encoder-decoder 
combinations. Therefore, inClust+ can not only compress and reconstruct the data from 
the same modality, but also compress the data from one modality and reconstruct it into 
another modality, thus realizing cross-modal translation. Furthermore, inClust+ could 
integrate multimodal datasets and monomodal dataset, transfer labels from multimodal 
data to monomodal data, and complete monomodal data into multimodal data by data 
generation, as sciPENN [25]. InClust+ refers to multimodal dataset to generate the data 
of missing modality in monomodal dataset. Generally speaking, as a model augmenta-
tion technology, adding a pair of masks to the model is not only limited to inClust, but 
also can be extended to deep learning models with similar encoder-decoder structures, 
such as scArches [29].

Conclusions
The inClust+ gains the ability to process multimodal data by using two mask modules. 
It could impute genes in MERFISH data by referring scRNA-seq data with similar cell 
populations. It was also shown to have the capability to integrate the multimodal data 
(e.g. tri-modal data with gene expression, chromatin accessibility and protein abun-
dance) with batch effect. Furthermore, inClust+ was used to integrate an unlabeled 
monomodal scRNA-seq dataset and labeled multimodal CITE-seq datasets, transfer 
label from CITE-seq datasets to scRNA-seq dataset, and generate the missing modal-
ity of protein abundance in monomodal scRNA-seq data. Although the tasks mentioned 
above are different, inClust+ can flexibly change the mask modules to adapt to the cor-
responding tasks. And the performance of inClust+ in the corresponding tasks is bet-
ter than or comparable to the latest tools. The successful implementation of mask in 
inClust+ implies that the augmentation through mask modules has application in other 
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deep learning methods with similar encoder-decoder architecture to broaden the appli-
cation scope of these models.

Methods
Datasets and preprocessing

Brain scRNA-seq and MERFISH dataset: The mouse brains’ scRNA-seq and spatial tran-
scriptomics datasets were obtained from Gene Expression Omnibus (GSE113576)  [30] 
and Dryad repositories [https://​datad​ryad.​org/​stash/​datas​et/https://​doi.​org/​10.​5061/​
dryad.​8t8s2​48], respectively. Then, the data were preprocessed according to the method 
of Cao et al. [18]. We obtained 30,370 cells in scRNA-seq and 64,373 cells in MERFISH 
with 153 common genes.

Human PBMC paired multi-omics dataset: The single cell paired-omics dataset 
including DNA accessibility and gene expression comes from the publicly available data-
set (PBMCs from C57BL/6 mice (v1, 150 × 150), Single Cell Immune Profiling Dataset 
by Cell Ranger 3.1.0. 10 × Genomics, 2019), and were preprocessed according to the 
method of Cao et al. [18]. We obtained 11,259 cells with 2000 highly variable common 
genes across cells of all datasets.

Human PBMC dataset (soMoMat): The CITE-seq and ASAP-seq human PBMC data-
set is available at Gene Expression Omnibus under accession number GSE156478 [31] 
and the dataset after filtering is available at https://​github.​com/​Peter​ZZQ/​scMoM​aT  
[27]. We preprocessed the dataset using the method of Zhang et al. [27] and we selected 
2 batches of these cells which batch1 (5023 cells) is measured with gene expression and 
protein abundance simultaneously using CITE-seq and batch2 (3517 cells) is measured 
with protein abundance and chromatin accessibility simultaneously using ASAP-seq. 
The integrating three-modality matrices of the human PBMC dataset contain overlap-
ping 4768 genes, 17,442 regions and 216 proteins.

Human PBMC and MALT CITE-seq dataset: The CITE-seq of human PBMC data-
sets was obtained from Gene Expression Omnibus (GSE164378) [32]. Then, we selected 
highly variable genes (HVGs) according to the method of Lakkis et al. [25]. For gene, we 
used the scanpy 1.7.1 to normalize expression value [33]. Finally, for the PBMC dataset, 
we obtained 161,748 cells with 1000 HVGs and 224 proteins. Cells from donor 7 (25,827 
cells) and donor 8 (26,208 cells) were used in the integration experiment. In cross-modal 
generation experiment, cells from donor 6 (20,651 cells) and donor 7 were used as multi-
modal dataset and scRNA-seq data in donor 8 was used as monomodal dataset.

InClust+ : overview

InClust+ is based on inClust applied for transcriptome data [26]. InClust+ is the multi-
modal version of inClust, with an input mask module in front of the encoder and an 
output module after the encoder (Fig. 1A).

Architecture of inClust+ 

Input

InClust+ take 5 inputs, input 1 is the multimodal data and input 2 is the covariates infor-
mation such as batch or modality. Input 3 is the label information, which is optional. 

https://datadryad.org/stash/dataset/
https://doi.org/10.5061/dryad.8t8s248
https://doi.org/10.5061/dryad.8t8s248
https://github.com/PeterZZQ/scMoMaT
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Input 4 is the input-mask for screening out input. Input 5 is the output-mask for screen-
ing out output.

Input‑mask module

The input-mask is a matrix as big as the input, with 0 or 1 in each element. The input is 
multiplied element-wise with the input-mask matrix to screen out the desired elements.

Encoder

The encoder is a three-layer neural network with a non-linear function as the activation 
function.

Latent sampling layer

A neural network without activation function is used to estimate mean (μz) and standard 
deviation (Σz). The reparameterization trick was used for sampling latent variables Z1.

Embedding layer

The embedding layer embeds the auxiliary information (input2) into the latent space as 
a real-valued vector.

Vector arithmetic layer

The vector arithmetic is performed in the latent space. The estimated mean (μz) would 
substrate (or add) the embedding vector E. The resulting vector Z2 retains the real bio-
logical information after removing the unwanted covariates or mixing the auxiliary 
information.

Classifier

The real-valued vector Z2 will pass through a neural network with softmax as the activa-
tion function. The output of the classifier is the output2.

Decoder

The decoder is a three-layer neural network with non-linear function as the activation 
function.

Output‑mask module

The output-mask is a matrix as big as the output, with 0 or 1 in each element. The out-
put is multiplied element-wise with the output-mask matrix to screen out the desired 
elements.

Pseudocode

1:	 screen out the input by masking: inputin = input1⊙ input4(input-mask)
2:	 encode the input into latent space: h2 = relu(W2(relu(W1* inputin)))

3:	 estimate the parameter: μz = Wμh2, Σz = WΣh2

Reconstruction:
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4:	 reparameterization trick: Z1 = μz + Σz*εε ~ N(0,1)
5:	 decode the latent space vector z into expression profile:

output1 = relu(Wout(relu(W3Z1)))

6:	 screen out the output by masking: output = output1⊙input5(output-mask)

Clustering:

3:	 embed the auxiliary information: E = WE*input2

4:	 latent space vector arithmetic: Z2 = μz − E (or μz + E)
5:	 classification (clustering): output2 = softmax(WCZ2)

Methods for comparison

uniPort

UniPort from the python package uniPort to the comparison of data integration and 
imputation [18].

Harmony

Harmony from the R package harmony to the comparison of data integration [34].

scVI

ScVI from scvi-tool to the comparison of data integration [35].

scMoMaT

ScMoMaT from the python package scMoMaT to the comparison of data integration  
[27].

sciPENN

SciPENN from the python package sciPENN to the comparison of cross-modal genera-
tion [25].

Abbreviations
scRNA-seq	� Single cell RNA sequencing
scATAC-seq	� Single-cell assay for transposase-accessible chromatin sequencing
scBS-seq	� Single-cell bisulfite sequencing
CITE-seq	� Cellular indexing of Transcriptomes and Epitopes by sequencing
inClust	� Integrated clustering
InClust+ 	� Augmented integrated clustering
mSCC	� Median Spearman correlation coefficients
aSCC	� Average Spearman correlation coefficients
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aPCC	� Average Pearson correlation coefficients
ARI	� Adjusted rand index
NMI	� Normalized mutual information
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