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Background
Cancer, a highly complex disease, is caused by the interaction of various carcinogenic 
factors. It significantly impacts global human health and poses a threat to human life. 
Individuals with the disease exhibit heterogeneity in both genetic and phenotypic 
aspects, primarily due to the tumor microenvironment’s clonal diversity of cancer cells 
and non-malignant cells with changed phenotypes. This heterogeneity leads to partial 
or non-responsiveness of certain patients to therapeutic strategies such as chemother-
apy, targeted therapy, and immunotherapy during the cancer treatment process [1]. In 
other words, even when implementing the same therapeutic strategies for patients of 
the same cancer type, there are still variations in treatment responses, making responses 
to cancer treatment generally unpredictable. Additionally, it is important to note that 
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not all cancers and anticancer drugs are strongly associated with targetable genetic bio-
markers. Therefore, relying solely on the relationship between drug targets or muta-
tion status may be insufficient to predict the efficacy of specific targeted therapies [2, 3]. 
And implementing targeted therapies without taking drug resistance into account may 
reduce patient survival rates. Drug resistance may show up as the activation of alterna-
tive signaling pathways promoting tumor growth or clonal expansion under the selective 
pressure induced by treatment [4]. Therefore, drug response prediction (DRP) is criti-
cally important in cancer therapy and has become a significant topic in personalized 
medicine research. Accurate prediction of treatment response assists in designing more 
effective treatment plans for patients and provides valuable insights for the development 
of novel disease-inhibiting drugs.

With the rapid development of high-throughput genomics technologies, large-scale 
pharmacogenomics databases have gradually accumulated. The Cancer Cell Line Ency-
clopedia (CCLE) [5] provides a platform for systematic study of cell lines. The Genomics 
of Drug Sensitivity in Cancer (GDSC) [6] is one of the largest public databases, cover-
ing information regarding the sensitivity of cancer cells to drugs and related molecu-
lar markers. The Cancer Therapeutics Response Portal (CTRPv2) [7] provides extensive 
data on drug sensitivity. These high-throughput screening research resources collectively 
form a vast knowledge base [1]. Based on these abundant data resources, numerous 
researchers have established various DRP models to predict the response of anticancer 
drugs.

Menden et  al. compared anticancer drug sensitivity prediction models constructed 
using different methods by utilizing two large-scale drug genomics datasets, and demon-
strated that genomics can validate the response of specific drugs as an explanatory vari-
able [8]. Ammad-Ud-Din et al. employed a novel nuclear norm-based Bayesian matrix 
factorization approach that combined drug chemical structure features and genomic 
characteristics for DRP [9]. Zhang et al. introduced an integrated model to predict drug 
response in a specified cell line and demonstrated its superiority over the elastic net 
model [10]. Wang et al. predicted drug response by utilizing the chemical structure of 
drugs and gene expression profiles, employing a similarity regularized matrix factoriza-
tion method [11]. Chang et al. proposed the CDRscan, which utilizes cell lines’ genomic 
mutations and molecular fingerprints of drugs for predicting drug efficacy [12]; Sakel-
laropoulos et al. constructed a model named Precily based on gene expression data for 
DRP and demonstrated its superior performance over Elastic Net and Random Forest 
models [13]; Choi et  al. introduced an innovative deep neural network model named 
RefDNN for better drug resistance prediction and biomarker identification related to 
drug response [14].

Despite significant progress in DRP research, there are some issues worth consider-
ing. For instance, most studies represent drugs as strings, which is an unnatural way of 
representing molecules and may result in the loss of structural information [15]. Addi-
tionally, the pathway-specific combinatorial implication (or gene sets) of genes are dis-
regarded, and gene expression levels are treated as independent variables, which may 
overly emphasize machine learning techniques [16, 17].

To address these issues, we propose GPDRP (Graph and Pathway based Drug 
response prediction), a novel multimodal deep learning architecture, that can predict 
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drug responses on cell lines by modeling drugs as molecular graphs. In addition, Graph 
Transformer was combined with Graph Isomorphism Network (GIN) to improve the 
capacity for more precise DRP. We compared GPDRP with two recently published 
works: Precily [18], which represents drug moleculars using simplified molecular-input 
line-entry system (SMILES) strings, and GraTransDRP [19], encoding cell lines’ genomic 
and epigenomic characteristics through one-hot encoding. Our approach performs 
better considering root mean square error (RMSE) and Pearson correlation coefficient 
(PCCs), according to experimental results. Also, by applying GPDRP to 15,094 drug-cell 
line pairs lacking response values and xenograft datasets, we demonstrated the poten-
tial of the model to predict unknown drug-cell line pairs, as well as the applicability of 
the model and interpretability using gene pathway scores. The primary contributions of 
GPDRP include:

1.	 We integrate the drug molecular graph with gene pathway activity score, leveraging 
the strengths of both types of data to enhance the predictive power of our model.

2.	 We introduce GPDRP, a novel multimodal framework for DRP, which leverages 
Graph Convolutional Networks in conjunction with Graph Transformer and deep 
neural networks. The performance of GPDRP is demonstrated using the CCLE/
GDSC dataset, and it outperforms two recently published models, Precily and 
GraTransDRP.

3.	 GPDRP demonstrates the potential to predict unknown drug-cell line pairs. It was 
utilized to predict the pairs that were missing from the GDSC, and some published 
works were located and discussed that supported our predictions.

4.	 GPDRP exhibits excellent applicability. We applied it to predict the LNCaP xenograft 
dataset and provided explanations based on gene activity pathway scores.

Results
Performance comparison on the CCLE/GDSC dataset

To assess GPDRP’s prediction accuracy, we trained the model using the CCLE/GDSC 
dataset and employed the same data splitting strategy as in Precily [18]. We separated 
the dataset according to the cell lines, making sure that the test, validation, and training 
sets did not share any cell lines. Of the total drug-cell line pairs (80,056), we randomly 
selected 90% (72,156) for the dataset, with 80% of cell lines allocated to the training set 
and 10% to the validation set for hyperparameter tuning. The remaining 10% (7900) of 
the pairs were designated for the testing set. The test results revealed a PCCs value of 
0.8833 and a RMSE value of 0.0321 in the best model as shown in Fig. 1.

We then compared GPDRP with some recently published models. For methods relying 
on the identical dataset, PCCs and RMSE were computed. The performance is shown in 
Fig. 1B and Table 1. Evidently, our model GPDRP outperforms Precily and GraTransDRP 
for almost all graph convolutional networks. Among three GNN models: Graph Convo-
lutional Networks (GCN), Graph Attention Networks (GAT), and GIN, the GIN model 
performed the best, achieving a PCCs of 0.8827. This illustrates GIN’s potential for graph 
representation and lends credence to the idea that GIN is one of the most potent GCN 
models [20]. Therefore, we considered combining GIN with the Graph Transformer, 
resulting in the best PCCs of 0.8833 and the best RMSE of 0.0321.
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Prediction of responses for unknown drug‑cell line pairs

In this part, we used the optimal model, GPDRP_GIN_TRANSFORMER, to predict 
the response for the processed 15,094 drug-cell line pairs lacking response values (see 
Additional file 1: Table S3). All the prediction results are provided in Additional file 1: 
Table S4. The predicted LN IC50 values for the unknown response pairs grouped by 
drug are displayed in Fig. 2 using a box plot. Drugs are sorted by the median of their 
distributions, with each drug’s box representing the numerical distribution of values 
associated with its corresponding cell lines. The figure displays six drugs with the 
highest values and six drugs with the lowest medians. As the true values for these 
unknown response pairs are unavailable, the accuracy of our prediction is determined 
by works as follows.

The LN IC50 is the logarithm of the concentration IC50 at which a drug inhibits bio-
logical activity. A smaller value indicates greater sensitivity of the cell lines to the drug, 
indicating its effectiveness. Our predictions identified the top six most effective drugs as 
Bortezomib, Daporinad, Vinblastine, Vinorelbine, Paclitaxel, and Vincristine. It is note-
worthy that Bortezomib, Vinblastine, Paclitaxel, and Vincristine were also identified as 
potentially effective drugs in the pioneering model proposed by Liu et al. [21].

Our analysis identified Bortezomib as the most potent drug. Bortezomib has dem-
onstrated extensive antitumor activity and has been shown to enhance the efficacy 

Fig. 1  Performance comparison. A Scatter plot demonstrating the performance of GPDRP across all drug-cell 
line pairs in the CCLE/GDSC test data. P-value was calculated using a two-sided t-test. B Barplot shows the 
Pearson’s correlation coefficients (PCCs) for different models

Table 1  The performance comparison of PCCs and RMSE on the GDSC/CCLE dataset (the best 
performance is in bold)

Model PCCs RMSE

Precily [18] 0.8733 1.3773

GraTransDRP [19] 0.8790 0.0333

GPDRP_GCN 0.8774 0.0325

GPDRP_GAT​ 0.8814 0.0322

GPDRP_GIN 0.8827 0.0323

GPDRP_GIN_TRANSFORMER 0.8833 0.0321
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of various chemotherapeutic drugs [22]. Its capacity to sensitize cell lines to numer-
ous other drugs was noted in a study by Friedman et al. [23]. Bortezomib, the initial 
proteasome inhibitor authorized for the treatment of malignant diseases, is approved 
for addressing multiple myeloma and mantle cell lymphoma. It has shown positive 
clinical outcomes as a standalone treatment or as part of a combination therapy, 
enhancing the effects of chemotherapy/radiation or overcoming drug resistance [24]. 
Notably, in our predictions, the DOHH2 cell line exhibited the highest sensitivity to 
Bortezomib among all the unknown drug-cell line combinations. DOHH2, a human 
non-Hodgkin lymphoma cell line, is frequently used in lymphoma research, and there 
is evidence supporting Bortezomib’s potential in treating non-Hodgkin lymphoma 
[25].

Daporinad, a potential small molecule compound, exhibits anti-tumor and anti-
angiogenic properties. It binds to and inhibits nicotinamide phosphoribosyltransferase 
(NMPRTase), thereby suppressing the biosynthesis of nicotinamide adenine dinucleo-
tide (NAD+) from nicotinamide (vitamin B3). This activity has the potential to exhaust 
energy reserves in metabolically active tumor cells and trigger apoptosis. Furthermore, 
Daporinad may hinder the production of vascular endothelial growth factor (VEGF) in 
tumor cells, thereby inhibiting tumor angiogenesis. Daporinad has been clinically tested 
for treating melanoma, cutaneous T-cell lymphoma, and B-cell chronic lymphocytic leu-
kemia [26].

Vinblastine is employed in treating various cancers, including breast cancer, testicular 
cancer, lymphoma, neuroblastoma, Hodgkin’s and non-Hodgkin’s lymphoma, as well as 
fungal infections, histiocytosis, and Kaposi sarcoma [27]. Research by Brugie’res et  al. 
suggested that vinblastine might be effective in treating relapsed anaplastic large cell 

Fig. 2  Box plot of predicted LN IC50 values for unknown response pairs. The drugs are arranged based on 
the median of their predicted LN IC50 values for cell lines. The horizontal axis denotes the drug names, and 
the vertical axis denotes their LN IC50 values with cell lines. The top 6 drugs with the lowest median LN IC50 
values indicate that they may be the most effective drugs, while 6 drugs with the highest median LN IC50 
values suggest that they may be the most ineffective drugs
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lymphoma, leading to durable remissions [28]. Vinorelbine, another vinca alkaloid drug, 
is frequently employed in cancer therapy, encompassing non-small cell lung cancer and 
breast cancer [29]. Vincristine has maintained a steady role in cancer therapy research, 
being an integral part of anti-cancer treatment [30].

Paclitaxel, often referred to as an ’anti-cancer superstar,’ is a naturally occurring sec-
ondary metabolite extracted and purified from the bark of the yew tree, Taxus brevifolia. 
It has been clinically validated to possess superior anti-tumor properties and is widely 
used in treating malignancies such as breast cancer, ovarian cancer, and gastric cancer. It 
is one of the most frequently used chemotherapeutic drugs in clinical practice [31].

The six least effective drugs identified in our study are AZD5991, Fludarabine, 
SB216763, AZD1208, Nelarabine, and Carmustine. A literature review revealed that 
these drugs are typically used in combination therapies. For example, Nelarabine is used 
to treat relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) and T-cell 
lymphoblastic lymphoma (T-LBL) following the failure of at least two previous treat-
ment regimens [32]. Fludarabine can have significant side effects, and careful monitor-
ing of hematologic and non-hematologic toxicities is recommended when used as an 
anti-cancer drug.

In conclusion, our method has shown exceptional performance in predicting drug 
responses for unknown drug-cell line pairs, thereby confirming the accuracy and prac-
ticality of GPDRP. This allows us to better understand the effects of drugs on specific 
cell lines, offering robust support for drug development and the creation of personalized 
treatment strategies.

Predictions in LNCaP xenografts

Patient-Derived Xenografts (PDXs) are widely used in vivo tumor models to investigate 
therapeutic responses and forecast drug responses in cancer patients sharing analogous 
traits. In our study, we applied the GPDRP method to analyze the GSE211856 dataset, 
which was obtained from the NCBI GEO database (www.​ncbi.​nlm.​nih.​gov/​geo/). This 
dataset comprises bulk RNA-seq data from an extensively annotated study on the pro-
gression of prostate cancer, focusing on the responsiveness and development of resist-
ance to AR-targeted therapies. Androgens are required for the establishment and early 
growth of LNCaP xenograft tumors in male mice (pre-castration group, PRE-CX). Cas-
tration reduces androgen receptor (AR) activity and tumor growth (post-castration 
group, POST-CX). This initial sensitivity to castration, however, consistently progresses 
to castration resistance (castration-resistant prostate cancer, CRPC). Further treatment 
of CRPC with the AR targeting drug enzalutamide (ENZ) produces an initial therapeu-
tic reaction (ENZ Sensitive, ENZS), but resistance develops over time (ENZ Resistant, 
ENZR). The dataset includes a total of 54 samples, encompassing multiple biological 
replicates for each condition and treatment group, as summarized in Table 2.

To predict drug responses, we used the GPDRP_GIN_TRANSFORMER model trained 
on the CCLE/GDSC dataset. By applying this model to the 54 samples (see Additional 
file 1: Table S5), we obtained the predicted sensitivity of 173 drugs on LNCaP xenograft 
tumor samples, as depicted in Fig. 3. As our response values are continuous and Z-score 
normalized with a mean of 0 and a standard deviation of 1, we employed Euclidean dis-
tance for clustering analysis to enable comparison on a consistent scale. Figure 4 reveals 

http://www.ncbi.nlm.nih.gov/geo/
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Table 2  GSE211856 dataset overview

Sample Sample Size Group

PRE-CX 9 Condition

POST-CX 8 Condition

CRPC 10 Condition

ENZS 12 treatment

ENZR 15 treatment

Fig. 3  Predictions and analysis in LNCaP xenografts. A Heatmap represents the predicted LN IC50 values of 
173 drugs across the 54 samples, where lower LN IC50 values are indicated by bluer color bars, indicating 
greater sensitivity of the predicted samples to the drugs. The samples were grouped based on the Euclidean 
distance. B Boxplots showing the distribution of GSVA scores of proliferation-related pathways (n = 12) across 
three clusters (n = 12, n = 25 and n = 17 samples from cluster 1, cluster 2 and cluster 3, respectively)

Fig. 4  Illustration of the predictive analysis workflow of GPDRP. A Drug molecular graph construction. The 
structure information of drugs was collected from PubChem and we represented drugs as molecular graphs 
using RDKit. B Gene pathway activity scores calculation. For the cancer cell lines obtained from CCLE, we 
computed pathway activity scores for canonical pathways using GSVA. C Two subnetworks for learning 
drug features and cell line features respectively. GPDRP took molecular graphs of drugs and gene pathway 
activity scores of cell lines as inputs to the drug subnetworks and cell line subnetworks, respectively. The two 
representations are then concatenated and put through two FC layers to predict the response. D Results and 
downstream analysis of this work. Including performance comparison, prediction of unknown drug-cell line 
response and predictions in LNCaP xenografts
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the division of the 54 samples into three main clusters. We summarized the samples 
with the highest predicted values as Cluster 1, shown as the most red-colored region in 
Fig.  3A. This cluster exhibits the strongest drug resistance, indicating the lowest drug 
sensitivity, and is mainly composed of tumor samples treated with ENZ (a total of 12 
samples, with 7 ENZS and 3 ENZR). Conversely, we summarized the samples with the 
lowest predicted values as Cluster 3, shown as the most blue-colored region in the figure, 
which demonstrates the highest sensitivity to the 173 drugs. Notably, ENZR samples are 
distributed across all three clusters, suggesting heterogeneity in treatment outcomes and 
implying that ENZ resistance may involve different underlying mechanisms, potentially 
involving interactions with stromal components in the tumor microenvironment [18].

To further elucidate the clustering results, we focused on pathway activity scores 
related to cell proliferation, as shown in Fig. 3B. The pathways related to cell prolifera-
tion that we utilized are provided in Additional file 1: Table S6. Box plots were utilized 
to illustrate the variances in pathway activity scores among the three clusters. Cluster 1 
exhibited the lowest pathway activity scores in cell proliferation-related pathways, which 
may account for the lowest sensitivity to drug responses in this cluster. Conversely, 
Cluster 3 displayed the highest pathway activity scores, indicating a higher prolifera-
tion index, thereby explaining the increased sensitivity to drug responses in this cluster. 
Therefore, the use of gene activity scores makes the model results more interpretable.

Discussion
Accurate prediction of drug response in cancer cells is pivotal for personalized oncology. 
This work introduces GPDRP, a multimodal deep learning framework leveraging the 
Graph Transformer architecture to forecast the response to cancer treatment, utilizing 
information from both drug molecular graphs and gene pathway activity. We employed 
four GNN variants: GCN, GAT, GIN and Graph Transformer with the combination of 
GIN, used for learning drug features. Subsequently, the drug-cell line pairs were used to 
predict LN IC50 values. Notably, our model combines drug molecule graphs with gene 
pathway activity scores, outperforming some recently published methods in terms of 
performance comparisons based on RMSE and PCCs.

The experimental results indicate that GPDRP outperforms in terms of RMSE and 
PCCs. Through performance comparison, we believe that representing drugs using 
graphical structures may preserve the essence of their chemical structures, making 
it more appropriate than using strings. In this experiment, GPDRP_GIN_TRANS-
FORMER demonstrated superior performance, possibly due to the addition of a Graph 
Transformer layer. Firstly, the multi-layer feature extraction capabilities of GIN and 
Graph Transformer complement each other. GIN excels in capturing local neighborhood 
features, while the Graph Transformer layer effectively captures long-range dependen-
cies and global relationships among nodes through its self-attention mechanism. The 
combination of these two layers enables the model to learn more comprehensive and 
informative graph structure features. Secondly, the integration of local and global infor-
mation enhances the model’s representational power. GIN’s neighborhood aggregation 
process may overlook long-distance relationships, which can be effectively addressed 
by the Graph Transformer layer’s ability to capture global dependencies. By incorpo-
rating the Graph Transformer layer after the GIN layers, the model achieves a better 
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fusion of local and global information. This integration leverages the strengths of both 
models, allowing for comprehensive feature extraction, effective combinations of local 
and global information, and improved generalization abilities on graph data. Further-
more, when predicting responses for drug-cell line pairs with unknown responses in the 
CCLE/GDSC dataset, we identified Bortezomib, Daporinad, Paclitaxel, and vinca alka-
loids as drugs with the lowest response values, highlighting their anti-tumor properties. 
Conversely, drugs with the highest response values exhibited lower sensitivity to cancer, 
illustrating the model’s potential to learn from data and predict responses for new drug-
cell line pairs. We further demonstrate the applicability of GPDRP in LNCaP xenografts 
and its interpretability using gene pathway activity scores.

One limitation of GPDRP is the interpretability of the model. We employ GNN to learn 
the latent features of drug molecular graphs. While Nguyen et al. [15] demonstrated that 
GNN can assign significance to clearly defined chemical features automatically without 
prior knowledge, the majority of the learned latent variables still defy explanation using 
available descriptors (specific details provided in Additional file 1: Supplementary Mate-
rials C). Furthermore, our study solely focuses on cell lines, and when it comes to data 
splitting based on drug compounds, the model falls short of achieving the anticipated 
outcomes (specific details provided in Additional file  1: Supplementary Materials D). 
This may be attributed to the vast chemical space of drug compounds. In the future, we 
will place a particular emphasis on researching model interpretability and give greater 
attention to drug-based research to enhance the model’s interpretability and improve its 
effectiveness in predicting drug responses. Additionally, RGCN and RGAT may enhance 
the predictive capabilities of the model, and we will explore their use to achieve better 
predictive performance.

Conclusions
In this paper, we propose a multimodal deep learning model, GPDRP, which enables 
more accurate prediction of drug responses. By employing drug molecular graphs as the 
representation of drugs and leveraging GNN with Graph Transformer for feature extrac-
tion, this approach may better preserve the structural information of drug molecules, 
enhancing the model’s understanding and predictive capability of drug features. Fur-
thermore, through the incorporation of gene pathway activity scores, GPDRP provides 
valuable interpretability. The introduction of this model holds significant implications, 
offering a precise tool for personalized medicine and cancer treatment, and driving 
advancements in cancer research.

Methods
We propose a multimodal deep learning architecture, called GPDRP for DRP. The DRP 
problem is formulated as a regression task, wherein a drug-cell line pair serves as the 
input and a continuous measurement of the response value LN IC50 of that pair serves 
as the output. Molecular graphs are used to represent drugs, which allows the model to 
directly capture atom-to-atom bonds. GPDRP is trained using the Pytorch [33]. Figure 4 
illustrates the proposed framework.



Page 10 of 16Yang and Li ﻿BMC Bioinformatics          (2023) 24:484 

Data acquisition

For comparison purposes, we followed the same procedure as in Precily [18], obtain-
ing 550 CCLE cell lines’ bulk RNA-seq gene expression profiles that overlap with the 
GDSC2 dataset of the GDSC database. The relevant response data was extracted from 
the GDSC2 dataset. We collected information on drug responses for 173 compounds, 
and their SMILES notations were retrieved using PubChemPy [34]. Specific data pro-
cessing is provided in Additional file 1: Supplementary Materials A.

Drug molecular graph construction

For drug features, we perceive drug compounds as graphs depicting the interactions 
among atoms. Firstly, 173 molecular compounds’ chemical structure data was obtained 
in terms of a Canonical SMILES using PubChemPy (see Additional file 1: Table S1). Then 
using the open-source cheminformatics program RDKit [35], we translated the Canoni-
cal SMILES into the corresponding molecular graphs and extracted atomic features. We 
employed a collection of atomic attributes adapted from DeepChem [36] to characterize 
a node in the molecular graph. Each node is represented as a multidimensional binary 
feature vector conveying five distinct pieces of information: the atomic symbol, the 
number of neighboring atoms, the number of neighboring hydrogen atoms, the implicit 
valence of the atom, and whether the atom is part of an aromatic structure. The presence 
of a bond between a pair of atoms triggers the establishment of an edge. Consequently, 
an indirect binary graph, comprising nodes endowed with associated attributes, is con-
structed for each input Canonical SMILES.

Gene pathway activity scores calculation

For cell lines features, we used pathway activity scores (see Additional file 1: Table S2). 
Based on the gene expression matrix, we computed Gene Set Variation Analysis (GSVA) 
scores using the GSVA [37] R software package, utilizing 1329 gene sets from the Molec-
ular Signatures Database (MSigDB) [38] make up the c2 canonical pathway collection 
(MSigDB.CP.v.6.1, see Additional file  1: Supplementary), with min.sz set to 5. By cal-
culating GSVA scores, we transformed the gene expression matrix into a GSVA score 
matrix comprising 1329 pathway activity scores and 550 cell lines. The resulting GSVA 
score matrix served as the cell line feature matrix. To enhance the convergence and sta-
bility of the model, each feature is normalized to the [0,1] range using min–max scaling. 
For the k th cell line on the i th pathway, the normalization is performed as follows:

where xik represents the kth cell line’s pathway activity score on the ith pathway, while 
min(xi) and max(xi) respectively denote the minimum and maximum values of pathway 
i across all cell lines.

Processing of the response variable

After processing the drug and cell line data, we obtained 95,150 drug-cell line pairs. 
There were 15,094 pairs for which corresponding response values LN IC50 are not 

x̂ik =
xik −min(xi)

max(xi)−min(xi)
,
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available in the GDSC database, and 80,056 pairs have LN IC50. Therefore, we used 
these 80,056 pairs along with their corresponding response values for model training 
and testing. Additional file 1: Supplementary Materials B contained the dataset’s sum-
mary statistics. In addition, we scaled the drug response values LN IC50 values within 
the range of (0,1) to facilitate the training. For a given LN IC50 value x , the actual 
value is y = ex , and the subsequent function is employed to normalize y : the actual

in order to distribute the result more evenly on (0, 1),the parameter value of −0.1 is typi-
cally selected when y is very small ( < 10−3 ) [8].

Two subnetworks for drugs and cell lines

Conceptually, GPDRP can be viewed as a multimodal deep learning model comprising 
two subnetworks designed for processing drug and cell line features.

For drug features, graph convolutional networks may be well-fitting for DRP because a 
graph is used to represent the drug’s molecular structure. In light of the widespread uti-
lization of Graph Convolutional Networks (GCN) in the context of drug response pre-
diction [19, 39, 40], we investigated four graph convolutional models, including Graph 
Convolutional Networks (GCN) [41], Graph Attention Networks (GAT) [42], Graph Iso-
morphism Network (GIN) [43] and Graph Transformer with the combination of GIN, all 
of which we described as follows. Following the GNN, a fully connected layer (FC layer) 
was additionally utilized to transform the outcome into 128 dimensions.

For cell line features, we used pathway activity scores and employed deep neural net-
works (DNN) with three hidden layers to learn features. The DNN architecture con-
sisted of an input layer succeeded by three dense layers with sizes of 512, 1024, and 128, 
respectively, using Rectified Linear Unit (ReLU) as the activation function. The archi-
tecture incorporated a dropout layer with a rate set to 0.2 after the second dense layer 
to prevent overfitting. Then the output was flattened to a 128-dimensional vector. Sub-
sequently, the 256-dimensional vector, encompassing both drug and cell line features, 
traversed two FC layers to predict drug response, with 1024 and 128 nodes respectively. 
The LN IC50 was used to quantify GPDRP output and indicated how well a medication 
inhibited the growth of a particular cancer cell line. A high level of drug efficacy was 
indicated by small IC50 values, which suggested that the drug was sensitive to the cor-
responding cancer cell line [28]. The hyper-parameters utilized in our experiments are 
listed in Table 3. They were chosen on the basis of prior research experience rather than 
tuned.

Graph convolutional networks (GCN)

Predicting a continuous value that represents the LN IC50 of drug sensitivity in cell 
lines is our main goal in this work. We employ GCN to learn about each drug graph 
representation. Formally, G = (V ,E) denotes the graph of a given drug, where V  is the 
set of N ∈ R nodes, each characterized as a C-dimensional vector, and E represents 
the set of edges, which is denoted by an adjacency matrix A ∈ RN×N . A node feature 
matrix X ∈ RN×C and an adjacency matrix A are inputs to the multi-layer GCN. Then 

ŷ =
1

1+ y−0.1
,
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it generates a node-level output Z ∈ RN×F with F  denoting the quantity of features each 
node output. A normalized form is employed to express the propagation rule as follows:

where Ã = A+ IN , D̃ is the graph diagonal degree matrix. And σ is an activation 
function, H (l) ∈ RN×C is the l - th layer’s activation matrix, H (0) = X , W  is learnable 
parameters.

Three consecutive GCN layers are used in our GCN-based model, and the ReLU func-
tion is applied after each layer. After the last GCN layer, a global max pooling layer is 
incorporated to capture the representation vector of the entire graph, which is then 
combined with the representation of the cell line to predict the response value.

Graph attention networks (GAT)

The GAT is constructed through the layering of a graph attention layer. It introduces an 
attention-based structure to acquire latent node representations within a graph, employ-
ing a self-attention mechanism. The GAT layer uses a weight matrix W  to apply a linear 
transformation to each node in a set of graph nodes that it receives as input. And the 
attention coefficients between node i and its first-order neighbors j are computed in the 
graph as

Subsequently, these attention coefficients undergo normalization through a softmax 
function and are employed to calculate the output features for the nodes as

where σ(·) is a non-linear activation function and αij are the normalized attention 
coefficients.

Our GAT-based model consists of three GAT layers activated by a ReLU func-
tion, followed by a global max pooling layer to obtain the graph representation vector. 

H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l)),

α(Wxi ,Wxj ).

σ

j∈N(i)

αijWxj ,

Table 3  Hyper-parameters for different graph neural network variants used in our experiments

Hyper-parameters Setting

Activation ReLu

Optimizer Adam

Learning rate 0.0001

Dropout 0.2

GCN Layers 3

GAT Layers 3

GIN Layers 3

GIN_TRANSFORMER Layers 3

DNN Layers 3
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Multi-head-attentions are used for the first GAT layer, with the number of heads set to ten. 
The second and third GAT’s output features are limited to 128.

Graph Isomorphism network (GIN)

The GIN is a recent approach believed to attain optimal discriminative capability within 
graph neural networks. It employs a multi-layer perceptron (MLP) model for updating 
the node features as

where µ is either a learnable parameter or a fixed scalar, x is the node feature vector, and 
N(i) is the set of nodes neighbor to i.

Three GIN layers are stacked in our GIN-based model to build architecture, with a 
batch normalization layer added after each layer. A global max pooling layer is added for 
aggregating a graph representation vector, similar to previous architectures.

Graph transformer

GCN and GAT are designed to learn on homogeneous graphs. GIN updates node repre-
sentations by utilizing only the features of local neighboring nodes, which may result in 
insufficient capture of global information. In contrast, Transformer can facilitate better 
feature learning for more generalized drug graphs. With its self-attention mechanism, 
Transformer can simultaneously consider the information from all nodes in the graph, 
enabling a more effective integration of global information.

Drug graph G = (V ,E) has a set of node type Tv , and a set of edge type Te . There is an 
adjacency tensor A ∈ RN×N×K  , where K = |Te| and feature matrix X ∈ RN×F . A meta-
path is defined to predict new connections among nodes as

where Ati is an adjacency matrix for the i th edge type of meta-path. For Ati , a soft adja-
cency matrix Q using 1× 1 convolution is

where φ is a convolution layer and Wφ ∈ R1×1×K  . Combining with GCN, node represen-
tations are constructed as

Z is a function of neighborhood connectivity. Extracting features from the graph poses 
challenges in determining the node positions because of the inherent characteristics of 
the graph, the Graph Transformer utilizes Laplacian eigenvectors to address this con-
cern as.

where U and � are eigenvectors and eigenvalues, respectively.

MLP



(1+ µ)xi +
�

j∈N(i)

xi



,

AP = At1 · · ·Atp,

Q = F(A,Wφ) = φ(A, softmax(Wφ)),

Z =

∥

∥

∥

C
i=1σ(D̃

−1
i Ã

(l)
i XW ) .

� = I − D−1/ 2AD−1/ 2 = UT�U ,
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In our model, we combined one Graph Transformer layer with two GIN layers to 
improve feature extraction and prediction accuracy.

Performance evaluation

Two metrics were utilized to assess the performance of the models: Root Mean 
Squared Error (RMSE) and Pearson Correlation Coefficient (PCCs). RMSE is calcu-
lated as the square root of the mean squared error, representing the average squared 
difference between the actual and predicted responses. PCCs endeavors to gauge 
the presence of a linear correlation between two variables. Given n samples, O is the 
actual response value, and Y  is the predicted response value. The actual response 
walue of ith sample is oi , and ith sample’s predicted response value is yi . RMSE is cal-
culated as follows:

The PCCs of oi and yi is defined as follows:

where σO and σY  are the standard deviations of ground-truth O and predicted value Y  , 
respectively.
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