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of hierarchical models, has been proposed to detect gene transcripts differentially
expressed between paired samples. To the best of our knowledge, no model-based
gene clustering methods have the capacity to adjust for the effects of covariates yet. In
this article, we proposed a novel mixture of hierarchical models with covariate adjust-
ment in identifying differentially expressed transcripts using high-throughput whole-
genome data from paired design. Both simulation study and real data analysis show
the good performance of the proposed method.
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Introduction
Genome-wide differential gene expression analysis is widely used for the elucidation
of the molecular mechanisms of complex human diseases. One popular and powerful
approach to detect differentially expressed genes is the probe-wise linear regression
analysis combined with the control of multiple testing, such as limma [1]. That is, we
first perform linear regression for each probe and then adjust p-values for controlling
multiple testing. One advantage of this approach is its capacity to adjust for potential
confounding factors.

Another approach for detecting differentially expressed genes is the model-based clus-
tering via mixture of Bayesian hierarchical models (MBHM) [2-7], which can borrow

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05556-x&domain=pdf

Zhang et al. BMC Bioinformatics (2023) 24:423 Page 2 of 18

information across genes to cluster genes. Probe clustering based on MBHMs treats
gene transcripts as “samples” and samples as “variables” Therefore, transcript cluster-
ing based on MBHMs has large number of “samples” and relatively small number of
“variables’, hence does not have the curse-of dimensionality problem. In addition, unlike
transcript-specific tests that have several parameters per transcript, transcript cluster-
ing based on MBHMs has only a few hyperparameters per cluster to be estimated and
could borrow information across transcripts to estimate model hyperparameters. These
approaches generally assume that samples under two groups are obtained indepen-
dently. [8] proposed a constrained MBHM to identify genetic outcomes measured from
paired/matched designs.

Paired design is commonly used in study design for its homogeneous external environ-
ment for comparing measurements under different conditions. However, not all known
confounding factors can be controlled in a paired/match design. Hence, we might still
need to adjust the effects of confounding factors for data from a paired/matched design.

Mixture of regressions or mixture of experts model [9-11] have been proposed in lit-
erature to do clustering with capacity to adjust for covariates. To best of our knowledge,
this approach does not have constraints on positive, negative, and constant means and
has not been applied to detect differentially expressed genes.

In this article, we proposed a novel mixture of hierarchical models with covariate
adjustment in identifying differentially expressed transcripts using high-throughput
whole genome data from paired design.

Method

We assumed that gene transcripts can be roughly classified into 3 clusters based on their
expression levels in subjects after treatment (denoted as condition 1) relative to those
before treatment (denoted as condition 2):

1 Transcripts after treatment have higher expression levels than those before treat-
ment, i.e., over-expressed (OE) in condition 1;

2 Transcripts after treatment have lower expression levels than those before treatment,
i.e., under-expressed (UE) in condition 1;

3 Transcripts after treatment have same expression levels than those before treatment,
i.e., non-differentially expressed (NE) between condition 1 and matched condition 2.

We followed [8] to directly model the marginal distributions of gene transcripts in the
3 clusters. In [8], they proposed a mixture of three-component hierarchical distribu-
tions to characterize the within-pair difference of gene expression. We extended their
model by incorporating potential confounding factors (such as Age and Sex) in the mix-
ture of hierarchical models, which might affect the response of gene expression to drug
treatment.

Note that this extension is non-trivial, just like multiple linear regression is not just a
simple extension to simple linear regression.

We assumed that data have been processed so that the distributions of mRNA expres-
sion levels are close to normal distributions. For RNAseq data, we can apply VOOM
transformation [12] or countTransformers [13] before applying eLNNpairedCov.
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A mixture of hierarchical models

1" gub-

For the g gene transcript, let xg and yg denote the expression levels of the
ject under two different conditions, e.g., before and after treatment, g=1,...,G,
[ =1,...,n, where G is the number of transcripts and # is the number of subjects (i.e.,
the number of pairs). Let dy = log, (yg) — log, (xg) be the log2 difference for the g
gene transcript of /" subject. Denote d; = (dgl, cees dgn)T. We assumed that d, is con-
ditionally normally distributed given mean vector and covariance matrix. Let W be the
n x (p + 1) design matrix, where p is the number of covariates. The first column of W71
is the vector of ones, indicating intercept. Let 5 be the (p + 1) x 1 vector of coefficients
for the intercept and covariate effects. We assume following mixture of three-compo-
nent hierarchical models:

For gene transcripts over-expressed (OE) in post-treatment samples, we expect that
the mean log?2 differences are positive. Hence, we assume

del (g, 7¢) ~ N("g’ Tg_II”)
[Lg|1'g ~ N(exp[WTnl],klrg_II,,)
7g ~ (o, B1)

where k1 > 0,1 > 0 and B; > 0. ' (1, B1) denotes the Gamma distribution with shape
parameter o and rate parameter $;. That is, we assume that (1) the mean vectors R
g=1,..., G, given the variance rg_l follow a multivariate normal distribution with mean
vector exp [WTWJ and covariance matrix kj tg_II,,; and (2) the variances rg_l, g=1--
G, follow a Gamma distribution with shape parameter o1 and rate parameter ;.

Note that the exponential of the intercept exp(#n10) indicates the mean of log2 differ-
ence is positive.

For gene transcripts under-expressed (UE) in post-treatment samples, we expect that
the mean log2 differences are negative. Hence, we assume

-1
dgl(ﬂg: Tg) ~ N(”«g; Tg In)
[Lg|‘lfg ~ N(— exp[WTnZ], /<2tg_11n>
Tg ™~ F(“Zj /32)
where ky > 0,9 > 0, 82 > 0, and wT s the design matrix.
Note that the negative exponential of the intercept — exp(#20) indicates the mean of
log2 difference is negative.

For gene transcripts non-differentially expressed (NE) between pre- and post-treat-
ment samples, we expect the mean log2 differences are zero. Hence, we assume

dlrg ~ N (U0, 7,1,
Ogltg ~ N (13, kSTg_llp)
7y ~ [(as, B3)
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where k3 > 0,a3 > 0 and B3 > 0. U T is the design matrix without intercept column.
That is, the intercepts are zero. Note that the intercepts indicate mean log2 differences.
Hence, 53 is a p x 1vector of coefficients for the covariates.

Note that §, measure effects of confounding factors for NE genes. The true effect of
NE genes are zero (i.e., the intercept of U Ty ¢ is zero in the above model).

The hyperparameters o, and f are shape and rate parameters for the Gamma distri-
bution, respectively, c = 1,2, 3. As for ki, k» and k3, the variation of the mean vector Ry
should be smaller than that of the observations dg. So we expect0 < k. < 1,¢ =1,2,3.

Note that the marginal distribution for each component of the mixture is a multivari-
ate t distribution [14, Section 3.7.6]. However, to model differentially expressed genes,
the multivariate ¢ distributions derived from our models have special structure of mean
vector and covariance matrix.

For continuous covariates, we require that they are standardized so that they
have mean zero and variance one. Standardizing continuous covariates would make
exp (W7n,)and exp (W7y,) be numerically finite.

Ideally, we should require p, > 0 (py < 0) for all transcripts in cluster 1 (clus-
ter 2). To do so, we can assume a log normal prior distribution for p, in cluster 1, for
instance. However, a log normal distribution could not be a conjugate prior for the
mean of a normal distribution. It would increase the computational burden if non-con-
jugate priors were used. Other alternative models can also be used, such as assuming
[Lg|7710 = exp(n10) + WTn1 and 7119 follows a normal distribution. However, these mod-
els do not have closed-form marginal densities. Hence, they would substantially increase
computational burden. Besides, the empirical distribution of the mean log2 difference d,
of the differentially expressed gene probes has shown a right-skewed pattern, while that
of non-differentially expressed genes demonstrates an approximate bell shape (see in
Additional file 1: Figures A2-A4). Hence, we require the mean E(pg) > 0 (E(ny) < 0)
for cluster 1 (cluster 2) by assuming E(u,) for cluster 1 (cluster 2) to be exp[WTn;]
(— exp[WT,)).

The proposed mixture models have meaningful biological interpretations for mean
structures. In particular, for the OE cluster, the intercept exp(n19) can be interpreted
as the expected average log2 difference of gene transcripts when the value of all the p
covariates are zero; the coefficient n1; of covariate i can be interpreted as there exists
exp(n1;) fold-change associated with the one unit increase in covariate i while the values
of the remaining (p — 1) covariates are fixed; for the UE cluster, the intercept — exp(#20)
can be interpreted as the expected average log2 difference of gene transcripts when the
value of all the p covariates are zero; the coefficient ny; of covariate i can be interpreted
as there exists exp(ny;) fold-change associated with the one unit increase in covariate
i while the values of the remaining (p — 1) covariates are fixed; while for the NE clus-
ter, the coefficient n3; of covariate i can be interpreted as n3; unit increase of expected
log2 difference of gene transcripts associated with the one unit increase in covariate i
while the values of the remaining (» — 1) covariates are fixed. They also are convenient to
get closed-form marginal densities so that we can use Expectation-Maximization (EM)
algorithm to estimate hyperparameters, instead of using computational-intensive algo-
rithms, such as Markov chain Monte Carlo (MCMC).
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Marginal density functions

Let fi(dgl¥), fo(dgl¥), f3(dgl¥r) be the marginal densities of the 3 hierarchi-
cal models, and & = (71, w9, w3) be the vector of cluster mixture proportions, where
Y= (al, B1, k1, an, o9, B2, ka, 172T, o3, B3, ks, ng) T. Then the marginal density of dg is:

fdg|¥) = mifi(dg|¥) + mafo(dg|¥) + mafa(dg V).

Determining transcript cluster membership
The transcript-cluster membership is determined based on the posterior probabilities,
Coc= Pr(g" gene transcript in cluster ¢ |dg). We can get

efe(dg )
c = =1,2,3.
= A + mafa@g V) + mafa gl W

We determine a transcript’s cluster membership as follows: If the maximum value
among &g, i = 1,2, 3 is {g, then the transcript g belongs to cluster c.
The true values of 7y, 9, 73, and ¥ are unknown. We use estimated values to deter-

mine transcripts’ cluster membership.

Parameter estimation via EM algorithm
We used expectation-maximization (EM) algorithm [15] to estimate the model param-
eters T = (71, 712, 7'[3)T and .

Let z; = (241,242, Zg3) to be the indicator vector indicating if gene transcript g belongs
to a cluster or not. To stablize the estimate of ¥ when 7, is very small, we assume that the
cluster mixture proportlons m follows a symmetric Dirichlet D(b) distribution,

ie,f(x) = 11:[(Zf FI(ZC) H 1nc <=1, Therefore, the likelihood function for the complete

data(d, z,m)is

Lyl z,m) =f(d,z, 7 |y)
=/ (d,z|m, ¥)f (x|¥)
=f(d, z|m, ¥)f (x)

G

11/ e 21w, m) | Dir(b)

&=l

G
H(T[lfl (dg|¥))7 (afo(dgly)) 2 (mafs (dg [¥))

g=1

F(Zc 1 C) b.— 1
Hc_ ['(be) - H

Then the log complete-data likelihood function is:
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G
(W1 z,m) = > (21 log fi (gl W) + 22 log fo(dg 1)) + zg3 log f3(dg 1))

g=1
G
+ Z(zg1 log 1 + zgo log 72 + 243 log 73)
g=1
3 3
+ log (W) + Z(Zoc — 1) log 7.
[T,.—: T |

The EM algorithm is used to estimate parameters & and V. Since z is unknown ran-
dom vector, we integrate it out from the log complete-data likelhood function. Here,

zg = (2¢1, Zg2, Z¢3)-

le1 = E(Zg1|dgr 7T, Y)
ZPT(Zgl = 1|dg17rrl//)

a mfi(dgly)

T A V) + mafa(dg ) + mafs(dg¥) o)
= mafa(dg V)
7 MAgY) + mafa(dgl¥) + mafs(dg V)
(o = mafs(dg|¥)

mifi(dg|¥) + mafa(dg V) + 7af3(dg )

E-step. Denote Q) (n, vid,z®, (t)) as the expected log complete-data likelihood func-
tion at ¢-th iteration of the EM algorithm, we have

QY =E, [l(t//|d, z,m)|d,z, n(”]

G
= > (g7 10g fi(dgl¥) + ¢55 log fo(dg|¥)) + 45 log f3(dgl¥))
g=1

G
+ > (¢ logmi + ¢33 log ma + ¢,5 log 73)
g=1

r<23=1hc>> 2
+lo —= | + E (b, — 1) log 7,
£ (Hfzmbc) §

c=1

where

G = E(ZgC|dg» z®, W(t))

_ 7L (dgly @) —1o3 (3)
T Of (g1 ®) + 7 f(dg | ©) + 7 f3(dg [y )

M-step. Maximize Q) (Jt, v|d, z®, n(t)) to find the optimal values of « and ¥, and use
these optimal values as estimates for the parameters x and .

To maximize Q¥ (m,y|d,z®, "), we use the “L-BFGS-B” method developed by
Byrd et al. (1995) [16], which utilizes the first partial derivatives of Q) (, ¥/|d, 2, ®)
and allows box constraints, that is each variable can be given a lower and/or upper
bound.
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Simulated annealing modification

EM algorithm may be trapped in a local maximum since it is strictly ascending. As intro-
duced by Celeux and Govaert (1992) [17], simulated annealing (SA) is widely used to
help EM algorithm escape from local maximum by adding randomness with a stochas-
tic step. Specifically, the conditional expectation in (2) is modified in a SA algorithm as
follows

1/m(t)

7 he(dgly )]
D ERVACRIZR

~(t
0 = D €= 1,23, (4)

where m is the temperature used to control the randomness. Usually, the temperature m
starts with a relatively high value since larger m leads to larger randomness. At iteration
t, the temperature is updated by m“*1 = r x m® with the cooling rate r controls the
speed of reduction. As suggested in [18, 19], we use m© = 2 and r = 0.9.

We denoted eLNNpairedCov as the proposed method using the traditional EM algo-
rithm to obtain parameter estimates and denoted eLNNpairedCov.SEM as the proposed
method using the EM with SA-modification to obtain parameter estimates.

We stop the expectation-maximization iterations based on a proportional change, i.e.
if the maximum of the absolute value of the differences of model parameter estimates
between current iteration and previous iteration over the absolute value of the previous
iteration estimates is smaller than a small constant (e.g. 1.0 x 1073).

More details about the EM algorithm are shown in Supplementary Document [see
Additional file 1].

A real data study

We used the dataset GSE24742 [20], which can be downloaded from the Gene Expres-
sion Omnibus [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24742], to
evaluate the performance of the proposed model-based clustering methods (denoted as
eLNNpairedCov and eLNNpairedCov.SEM ).

The dataset is from a study that investigated the gene expression before and after
administrating rituximab, a drug for treating anti-TNF resistant rheumatoid arthritis
(RA). There are 12 subjects, each having 2 samples (one sample is before treatment and
the other is after treatment). Age and sex are also available. Expression levels of 54,675
gene probes were measured for each of the 24 samples by using Affymetrix HUman
Genome U133 Plus 2.0 array. The dataset has been preprocessed by the dataset contrib-
utor. We further kept only 43,505 gene probes in the autosomal chromosomes (i.e., chro-
mosomes 1 to 22). We then performed log2 transformation for gene expression levels.
We next obtained the within-subject difference of the log2 transformed expression levels
(log2 expression after-treatment minus log2 expression before-treatment). By examining
the histogram (Figure Al) [see Additional file 1] of the estimated standard deviations of
log2 differences of within-subject gene expression for the 43,505 gene probes, we found
a bimodal distribution. Based on Figure A1l [see Additional file 1], where the histogram
of estimated standard deviations exhibits two modes, we choose to exclude gene probes
with standard deviation < 1 corresponding to the first mode. It is a common practice to
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remove genes with low variation [21-23]. Finally, 23,948 gene probes kept in the down-

stream analysis.

A simulation study

We performed a simulation study to compare the performance of the proposed meth-
ods eLNNpairedCov, eLNNpairedCov.SEM with transcript-wise test limma and Li et al’s
[8] method (denoted as eLNNpaired). eLNNpairedCov, eLNNpairedCov.SEM and limma
adjust covariate effects, while eLNNpaired does not. For eLNNpaired, we first regress
out covariates effect for each gene to make a fair comparison between eLNNpaired and
other methods.

The limma approach first performs an empirical-Bayes-based linear regression for
each transcript. In this linear regression, the within-subject log2 difference of transcript
expression is the outcome and intercept indicating if the transcript is over-expressed
(intercept>0), under-expressed (intercept<0), or non-differentially expressed (intercept
= 0), adjusting for potential confounding factors. A transcript is claimed as OE if its
intercept estimate is positive and corresponding FDR-adjusted p-value < 0.05, where
FDR stands for false discovery rate. A transcript is claimed as UE if its intercept esti-
mate is negative and corresponding FDR-adjusted p-value < 0.05. Other transcripts are
claimed as NE.

The parameter values (&, ¥, and proportion of women) in the simulation study are
based on the estimates via eLNNpairedCov.SEM from the analysis of the pre-processed
real dataset GSE24742 described in Subsection “A real data study’.

In this simulation study, we considered two sets with different covariate coefficients
for differentially expressed genes clusters. In the first set (Set 1), parameter values are
the estimates of parameters based on the eLNNpairedCov.SEM method from real data-
set. That is, m; = 0.00246, 7 = 0.01470, 73 = 0.98284, o1 = 3.53, B1 = 3.45, k1 = 0.26,
n1o = 0.18, 111 = 0.00, 113 = —1.05, ay =3.53, P =345, ky =0.26, 19 = 0.18,
21 = 0.00, 722 = —1.05, a3 = 2.86, B3 = 2.20, k3 = 0.72, 31 = —0.01, 35 = 0.00. In the
second set (Set 2), we set 710=120=0.08 instead of 0.18. For each set, we considered two
scenarios. In the first scenario (Scenariol), the number of subjects is equal to 30. In the
second scenario (Scenario2), the number of subjects is equal to 100.

For each scenario, we generated 100 datasets. Each simulated dataset contains
G = 20,000 gene transcripts. There are two covariates: standardized age (denoted as
Age.s) and Sex. Age.s follows normal distribution with mean 0 and standard deviation 1.
Seventy five percent (75%) of subjects are women.

Evaluation criteria

Two agreement indices and two error rates are used to compare the predicted cluster
membership and true cluster membership of all genes. The two agreement indices are
accuracy (i.e., proportion of predicted cluster membership equal to the true cluster
membership) and Jaccard index [24]. For perfect agreement, these indices have a value
of one. If an index takes a value close to zero, then the agreement between the true tran-
script cluster membership and the estimated transcript cluster membership is likely due
to chance. The two error rates are false positive rate (FPR) and false negative rate (FNR).
FPR is the percentage of detected DE transcripts among truly NE transcripts. FNR is the
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Table 1 Parameter estimates of OF, UE and NE clusters from el NNpairedCov and el NNpairedCov.SEM

OE UE NE

B 3445543 8 3445543 83 3445543
k 0264565 k) 0264565 ks 0264565
o 0.176007 20 0.176007

i —0.000609 1 —0.000609 31 —0.013796
2 —1.051257 2 1051257 132 —0.000017

percentage of detected NE transcripts among truly DE transcripts. We also examined
the user time and number of EM iterations for running each simulated dataset.

Results

Results of the real data analysis

For the real dataset, we adjusted standardized age and sex for eLNNpairedCov,
eLNNpairedCov.SEM, and limma. We standardized age so that it has mean zero and
variance one. For each transcript, we also scaled its expression across subjects so that its
variance is equal one. For eLNNpaired, we first regressed out the effect of standardized
age and sex for each transcript.

The estimates of parameters in our model are listed in Table 1. Note that the proposed
eLNNpairedCov and eLNNpairedCov.SEM have the same estimates for the parameters
in these three clusters, except for the proportions of three clusters. The proportions of
OE and UE estimated by eLNNpairedCov method are 0.0376% and 0.346%, respectively.
The proportions of OE and UE estimated by eLNNpairedCov.SEM method are 0.246%
and 1.47%, respectively.

For the OE cluster, exp(n10) = exp(0.176007) = 1.192 can be interpreted as the
expected log2 difference for a male subject (sex = 0) whose age is equal to mean age
(age = 0 is the mean-centered age); n1;1 = —0.000609 indicates that one-unit increase
in age leads to exp(—0.000609) = 0.999 fold-changes in expected log2 difference, while
n12 = —1.051257 indicates that there is exp(—1.051257) = 0.349 fold-changes between
male subjects and female subjects in expected log2 difference if they are at the same age.
For the UE cluster, 590 = 0.176007 can be interpreted as the expected log2 difference for
a male subject (sex = 0) whose age is equal to mean age (age = 0 is the mean-centered
age) is — exp(0.176007) = —1.192; 121 = —0.000609 indicates that one-unit increase in
age leads to exp(—0.000609) = 0.999 fold-changes in expected log2 difference, while
122 = —1.051257 indicates that there is exp(—1.051257) = 0.349 fold-changes between
male subjects and female subjects in expected log2 difference if they are at the same
age. For the NE cluster, 731 = —0.013796 indicates that one-unit increase in age leads to
0.01379 decreases in expected log2 difference, and 132 = —0.000017 indicates that there
is 0.000017 decrease from female subjects to male subjects in the expected log2 differ-
ence if they are at the same age.

The number of differentially expressed genes detected by each method is listed in
Table 2.

The limma method detected 6 under-expressed gene transcripts (Figure 1 and
Table S1), while eLNNpaired did not find any positive signals (i.e., 73 = 1). The
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UE (limma)

-2

log2(after)-log2(before)

-4

207306_at TCF15

202067_s_at LDLR

219249_s_at FKBP10

222419_x_at UBE2H

224507_s_at MGC12916

1560920_s_at LOC102725382

Fig. 1 Parallel boxplots of log2 within-subject difference of gene expression for 6 UE transcripts detected by
limma for pre-processed GSE24742 dataset. Red horizontal line indicates log2 difference equal to zero

proposed methods eLNNpairedCov and eLNNpairedCov.SEM detected 55 OE tran-
scripts (Table S2) and 59 OE transcripts (Table S3), respectively (Upper two panels of
Fig. 2) and 355 UE transcripts (Table S4) and 352 UE transcripts (Table S5), respectively
(Lower two panels of Figure 2). The 6 UE transcripts detected by limma is also selected
as UE transcripts by eLNNpairedCov and eLNNpairedCov.SEM. Note that the 55 OE
genes detected by eLNNpairedCov are also detected by eLNNpariedCov.SEM. The 352
UE genes detected by eLNNpairedCov.SEM are also detected by eLNNpariedCov.

It is assuring that several genes corresponding to the DE transcripts identified by
eLNNpairedCov and eLNNpairedCov.SEM have been associated to rheumatoid arthritis
(RA) in literature. For example, Humby et al. (2019) [25] reported that genes ZNF365
(OE), IL36RN (OE), MRVII-AS1 (OE), WFDC6 (UE), UBE2H (UE), are associated with
RA.

We performed pathway enrichment analysis through the use of IPA (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) for 352
UE and 55 OE genes identified by eLNNpairedCov.SEM. The top enriched canonical
pathways are shown in Tables 3 and 4. Evidence in literature shows that these pathways
are relevant to RA. S100 protein family plays an important role in rheumatoid arthritis
( [26]). Literature shows consistent crucial role of the PD-1/PD-L pathway in the patho-
genesis of rheumatic diseases ( [27, 28]). It has been shown that RA can lead to lung
tissue damage, resulting in pulmonary fibrosis ( [29]). Macrophage is a key player in the
pathogenesis of autoimmune diseases, such as RA ( [30]). RA and osteoarthritis (OA)
are two common arthritis with different pathogenesis ( [31]). It is interesting to see Oste-
oarthritis pathway is a significantly enriched pathway for UE genes. It is consistent with
literature that similar focal and systemic alterations exist in RA and OA [32].
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OE (eLNNpairedCov) OE (eLNNpairedCov.SEM)

UE (eLNNpairedCov)

—-log2(before)

Y w‘w I \" \Mm '!! I “u“m‘uw“%m wu“” T

b

I
ol H{M. [1

log2(after)-log2(before)

log2(after)

Fig. 2 Parallel boxplots of log2 within-subject difference of gene expression for differentially expressed
transcripts detected by eL NNpairedCov and eLNNpairedCov.SEM for pre-processed GSE24742 dataset. Upper
two panels: 55 OE transcripts and 59 OE transcripts, respectively; Lower two panels: 355 UE transcripts and
352 UE transcripts, respectively. Red horizontal lines indicate log2 difference equal to zero

Table 2 Number of Differentially expressed genes detected by limma, eLNNpaired, eLNNpairedCov
and el NNpairedCov.SEM in GSE24742

limma eLNNpaired eLNNpairedCov eLNNpairedCov.
SEM
OE 0 0 55 59
UE 6 0 355 352

Table 3 Top canonical pathways for 352 UE genes by eLNNpairedCov.SEM

Name p-value

S100 Family Signaling Pathway 297E — 06
PD-1, PD-L1 cancer immunotherapy pathway 7.54F — 05
Pulmonary Fibrosis Idiopathic Signaling pathway 345F — 04
Phagosome Formation 7.56E — 04

Osteoarthritis Pathway 1.04E — 03
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Table 4 Top canonical pathways for 55 OE genes by el NNpairedCov.SEM

Name p-value

Ribonucleotide Reductase Signaling Pathway 5.34F — 03
Leukocyte Extravasation Signaling 7.57E — 03
Cell Cycle: G1/S Checkpoint Regulation 8.85E — 03
Tetrahydrofolate Salvage from 5,10- methenyltetrahydrofolate 1.04£ — 02
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 1.19E — 02

Ribonucleotide Reductase (RNR) is the enzyme providing the precursors needed for
both synthesis and repair of DNA, which could be a potential drug for RA ( [33, 34]).
Leukocyte extravasation through the endothelial barrier is important in the pathogene-
sis of RA ( [35]). It has been shown that the limb bud and heart development (LBH) gene
is a key dysregulated gene in RA and other autoimmune diseases and there are some
evidence showing LBH could modulate the cell cycle [36]. Osteoblasts, osteoclasts and
chondrocytes play importan roles in Rheumatoid Arthritis ( [37-39]). We did not find
literature linking Tetrahydrofolate Salvage from 5,10- methenyltetrahydrofolate to RA
yet, indicating this enrichment might be novel.

Results of the simulation study

For Scenario 1 (n = 30), the jittered scatter plots of the performance indices versus
methods are shown in Fig. 3 (Set 1) and Fig. 5 (Set 2) and the jittered scatter plots of the
difference of the performance indices versus methods are shown in Fig. 4 (Set 1) and
Figure 6 (Set 2).

The differences of performance indices are between eLNNpairedCov.SEM and the
other three methods (limma, eLNNpaired and eLNNpairedCov). A positive differ-
ence indicates that the performance indices of the other method is larger than that of
eLNNpairedCov.SEM. A negative difference indicates that the performance indices of
the other method is smaller than that of eLNNpairedCov.SEM.

The upper panel of Figs. 3, 4, 5 and 6 show that both the eLNNpairedCov and
eLNNpairedCov.SEM have higher agreement indices (Jaccard and accuracy) than limma,
which in turn have higher agreement indices than eLNNpaired.

The middle panel of Figures 3-6 show that the proposed eLNNpairedCov and
eLNNpairedCov.SEM methods have similar performance, They have lower FPR than
limma, while eLNNpaired has an exceedingly low FPR (close to 0). The middle panel also
show that eLNNpairedCov, eLNNpairedCov.SEM have smaller FNR than limma, while
eLNNpaired has an exceedingly high FNR (close to 1). The extreme values in FPR and
ENR of eLNNpaired can be attributed to the fact that it did not detect any differentially
expressed genes in this case.

Additionally, Figs. 3, 4, 5 and 6 also show that compared with the performances of
these methods in Set 1 (7107 = 1720 = 0.18), those in Set 2 (1710; = 120 = 0.08) have lower
agreement indices and higher error rates except for eLNNpaired, which fails to detect
any differentially expressed genes in both Set 1 and Set 2.

The bottom panel of Figs. 3 and 5 show that limma runs very fast, while eLNNpaired,
eLNNpairedCov and eLNNpairedCov.SEM run in reasonable time (i.e., less than 30 s
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(a) Plot of accuracy by method
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(b) Plot of Jaccard index by method
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Fig. 3 Jittered scatter plots of performance indices versus method for Set 1, Scenario 1 (number of
pairs= 30). Red solid horizontal lines indicate the median performance indices of el NNpairedCov.SEM

per dataset that has G = 20,000 genes and n = 30 subjects). On average eLNNpaired-
Cov and eLNNpairedCov.SEM spend a little more time than eLNNpaired. The bottom
panel of Fig. 3 and 5 also show that eLNNpaired uses less than 5 EM iterations, while
eLNNpairedCov and eLNNpairedCov.SEM tend to use more EM iterations. In particular,
eLNNpairedCov.SEM uses 10 EM iterations, which is the maximum number of itera-
tions we set to save computing time. Note that the EM iteration number for limma is set
to be one, which does not use EM algorithm to obtain parameter estimates.

The simulation results for Scenario 2 (n = 100) are shown in Figures A5-A8 [see Addi-
tional file 1], which have similar patterns to those for Scenario 1 (n = 30), except that
both eLNNpairedCov and eLNNpairedCov.SEM have smaller FPR which are close to 0.
Note that eLNNpairedCov,eLNNpairedCov.SEM and limma have small FNR (close to 0),
while eLNNpaired still has huge FNR (close to 1).

Discussion and conclusion

In this article, we proposed a novel model-based clustering approach to detect differ-
ential expressed transcripts between samples before treatment and samples after treat-
ment, with the capacity to adjust for potential confounding factors. This is novel in that
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Fig. 4 Jittered scatter plots of difference of performance indices versus method for Set 1, Scenario 1 (number
of pairs= 30). Red solid horizontal lines indicate y-axis equal to zero

to the best of our knowledge, all existing model-based gene clustering methods do not
yet have the capacity to adjust for covariates.

The proposed approach is different from transcript-wise test followed by multiplicity
adjustment in that it does not involve hypothesis testing. Hence, no multiplicity adjust-
ment is needed. The simulation study showed that if the difference of gene expression
between samples before treatment and samples after treatment follows the mixture
of hierarchical models in Subsection “A mixture of hierarchical models’, then the pro-
posed method can outperform limma, which is a fast and powerful transcript-wise test
method. The real data analysis also showed the proposed method eLNNpairedCov can
detect more differentially expressed gene transcripts, which include the transcripts
detected by limma.

Although we classify genes to three distinct clusters, the transitions between these
clusters could be smooth. This would be reflected by a gene’s posterior probability that
might be large in two of three clusters, e.g., 0.49 for cluster 1, 0.01 for cluster 2, and 0.5
for cluster 3. On the other hand, expression changes could be split up into more than 3
clusters, e.g., groups behaving differently. In this article, we are only interested in iden-
tifying three clusters of genes: over-expressed in condition 1, under-expressed in condi-
tion 1, and non-differentially expressed.

There are other model-based clustering methods in literature, such as [40]. However,
they were not designed to detect differentially expressed genes. For example, we can set
the number K of clusters as 3 for their model. However, there is no constraints that the
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Fig. 5 Jittered scatter plots of performance indices versus method for Set 2, Scenario 1 (number of
pairs= 30). Red solid horizontal lines indicate the median performance indices of el NNpairedCov.SEM

intercepts for the three clusters have to be positive, negative, and zero. That is, the three
clusters identified might not correspond to over-expressed, under-expressed, and non-
differentially expressed genes.

It is well-known in literature that EM algorithm might stuck at local optimal solu-
tion. In this article, we used EM with SA-modification to help escape from local optimal
solutions. In future, we plan to try the hybrid algorithm of the DPSO (Discrete Particle
Swarm Optimization) and the EM approach to improve the global search performance
[41].

In our models, the three gene groups allow to have different coefficients of covariates.
In future, we could test if these coefficients are same or not. If no significant difference,
we could use a model assuming equal coefficients.

RNAseq and single-cell RNAseq data are cutting-edge tools to investigate molecular
mechanisms of complex human diseases. However, it is quite challenging to analyze
these count data with inflated zero counts. In future, we will evaluate if eLNNpaired-
Cov can be used to analyze single-cell RNAseq data by first transforming counts to
continuous scale (e.g., via VOOM [12] or countTransformers [13]) and then to apply
eLNNpairedCov to the transformed data.

Page 150f 18



Zhang et al. BMC Bioinformatics

(2023) 24:423

(a) Plot of difference of accuracy from eLNNpairedCovSEM by method (b) Plot of difference of Jaccard index from eLNNpairedCovSEM by method

-0.005

-0.010

Difference of accuracy
Difference of Jaccard index

A o
4 A “‘“
.ﬂ{-ﬁ‘ Lx
o015 et o A
& & s & & s
« g\‘ @j‘ « @“"; @j‘
& S >

S &
&

(c) Plot of difference of FPR from eLNNpairedCovSEM by method (d) Plot of difference of FNR from eLNNpairedCovSEM by method

S0t . 075 BAT @
o - 4 .
g g
& g
= 5 050
8 3
g g
& &
£ £025 -
a o -
"y
& & s & & o
& o p 3 « o &
S o S o
° & ° &

(f) Plot of difference of iteration number from eLNNpairedCovSEM by method

JUPPON

Difference of user time (second)
Difference of iteration number

& & o & & o
« E v\éb\ vﬁ\@s « \;T\v” é,\@“
& @v\s & @v\s

Fig. 6 Jittered scatter plots of difference of performance indices versus method for Set 2, Scenario 1 (number
of pairs= 30). Red solid horizontal lines indicate y-axis equal to zero

We implemented the proposed methods to an R package eLNNpairedCov, which will
be freely available to researchers.
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