
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Sriwastava et al. BMC Bioinformatics (2023) 24:435
https://doi.org/10.1186/s12859-023-05534-3

BMC Bioinformatics

RUBic: rapid unsupervised biclustering
Brijesh K. Sriwastava1†, Anup Kumar Halder2,3†, Subhadip Basu4* and Tapabrata Chakraborti5* 

Abstract 

Biclustering of biologically meaningful binary information is essential in many appli-
cations related to drug discovery, like protein–protein interactions and gene expres-
sions. However, for robust performance in recently emerging large health datasets, it
is important for new biclustering algorithms to be scalable and fast. We present a rapid
unsupervised biclustering (RUBic) algorithm that achieves this objective with a novel
encoding and search strategy. RUBic significantly reduces the computational overhead
on both synthetic and experimental datasets shows significant computational benefits,
with respect to several state-of-the-art biclustering algorithms. In 100 synthetic binary
datasets, our method took ∼ 71.1 s to extract 494,872 biclusters. In the human PPI data-
base of size 4085× 4085 , our method generates 1840 biclusters in ∼ 48.6 s. On a cen-
tral nervous system embryonic tumor gene expression dataset of size 712,940, our
algorithm takes 101 min to produce 747,069 biclusters, while the recent competing
algorithms take significantly more time to produce the same result. RUBic is also evalu-
ated on five different gene expression datasets and shows significant speed-up
in execution time with respect to existing approaches to extract significant KEGG-
enriched bi-clustering. RUBic can operate on two modes, base and flex, where base
mode generates maximal biclusters and flex mode generates less number of clusters
and faster based on their biological significance with respect to KEGG pathways. The
code is available at (https://​github.​com/​CMATE​RJU-​BIOIN​FO/​RUBic) for academic use
only.

Keywords:  Data mining, Algorithm design and analysis, Biclustering algorithms,
Computational complexity

Introduction
Specialised gene clusters participate in specific cellular processes under a subset of con-
ditions. Automatic identification of such gene-clusters and condition-subsets is usually
known as biclustering and has immense value in such applications of bioinformatics
(proteomics and genomics) like studying protein–protein interactions, automated drug
discovery. The concept of biclustering algorithms was first introduced by Hartigan et al.
[1]. Cheng et al. [2] first applied biclustering of both genes and condition-subsets for
knowledge discovery from expression data. A node-deletion algorithm was presented by
Cheng et al. [2] to find bicluster in expression data that have low mean squared resi-
due scores. It found similarity based on a subset of attributes, clustering of genes and

†Brijesh K. Sriwastava and Anup
Kumar Halder contributed
equally to this work and are joint
first authors .

*Correspondence:
subhadip.
basu@jadavpuruniversity.in;
tchakraborty@turing.ac.uk

1 Computer Science
and Engineering Department,
Government College
of Engineering and Leather
Technology, Kolkata, India
2 Faculty of Mathematics
and Information Sciences,
Warsaw University of Technology,
Warsaw, Poland
3 CeNT, University of Warsaw,
Warsaw, Poland
4 Department of Computer
Science and Engineering,
Jadavpur University,
Kolkata 700032, India
5 The Alan Turing Institute
and University College London,
London, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05534-3&domain=pdf
https://github.com/CMATERJU-BIOINFO/RUBic

Page 2 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

conditions, and overlapped bicluster that provides a better representation for genes
with multiple functions or regulated by many factors. Their method allowed discovery
of similar genes based on a subset of attributes, i.e., simultaneous clustering of genes
and conditions. Subsequently, biclustering techniques have been widely applied in gene
expression data analysis. In contrast to biclustering algorithms, such as the recently
developed graph clustering algorithms [3–5], which can be applied to complex biological
datasets, they have constraints related to unannotated data and dataset size.

In the field of biclustering within the realm of bioinformatics, recent years have seen
the rise of numerous advanced computational methods. Many of these methods leverage
the capabilities of machine learning. These approaches can be broadly categorized into
two main groups: graph-based and non-graph-based biclustering techniques. Moreover,
it’s worth noting that within these categories, individual algorithms are further subdi-
vided based on their compatibility with different types of input data, with some designed
to operate on raw expression data and others tailored for binary data. Tanay et al. [6]
proposed a method that combines graph theory with statistical modeling and has poly-
nomial-time complexity. Yang et al. [7] presented a probabilistic algorithm called FLOC
for finding k possibly overlapping biclusters used graph theory to address the order-pre-
serving submatrix problem by identifying submatrices that preserve order relationships
among genes and conditions. Other graph based approaches are ISA [8, 9], Samba [6],
OPSM [10] , spectral biclustering [11], spectral biclustering [11] and xMotif [12] where
xMotif utilizes graph theory to identify conserved gene expression motifs by represent-
ing genes and conditions as nodes in a graph and finding significant subgraphs that cor-
respond to biclusters.

Some of the non-graph based biclustering methods introduced greedy heuristic idea
or machine learning. Cheng et al. [13] proposed a greedy version of an existing biclus-
tering algorithm. Santamaria et al. [14] developed BicOver-lapper for visualizing biclus-
ters from gene-expression matrices, whereas Uitert et al. [15] designed an algorithm to
extract biclusters from sparse, binary datasets. Madeira et al. [16] presented the ‘e-CCC-
Biclustering’ algorithm that mines coherent biclusters with approximate expression
patterns. The FABIA tool [17] uses a multiplicative model and Bayesian techniques,
whereas the DeBi algorithm [18] uses a frequent item set-based data mining approach to
determine homogeneous biclusters. Sill et al. [19] offered a sparse singular value decom-
position (SSVD) approach to control Type I error rates and discover stable biclusters.
Huang et al. [20] presented a biclustering method based on evolutionary learning and
applied it in a search space created by the conditions. Ayadi et al. [21] introduced a heu-
ristic algorithm, ‘BicFinder’, to estimate the coherence of a given bicluster. Huang et al.
[22] proposed biclustering for mining to find technical trading patterns that combine
indicators from historical financial data series. Prelic et al. [23] proposed a fast and exact
model biclustering algorithm called Bimax, considered a benchmark reference for most
biclustering methods. Bimax achieved similar scores as the best biclustering techniques
then and is still helpful in identifying potentially relevant ground-truth biclusters as a
pre-processing step. Later, these chosen biclusters can be used as input for more accu-
rate biclustering methods to speed up processing time and increase bicluster quality.

One common challenge faced by many of these biclustering algorithms is their ina-
bility to guarantee finding the global optima, potentially leading to the omission of

Page 3 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

some optimal biclusters. An algorithm known for its benchmark status in this regard
is Bimax, introduced by Prelic et al. [23]. Bimax, designed for binary data models,
has exhibited substantial performance improvements compared to other bicluster-
ing methods, including ISA [8, 9], Samba [6], OPSM [10], CC [2], and xMotif [12].
However, xMotif tend to identify large biclusters representing gene groups with stable
expression levels, potentially lacking interesting patterns such as co-regulation. ISA,
Samba, and OPSM have demonstrated comparable performance, with Samba excel-
ling in managing increased regulatory complexity but being more sensitive to noise
than ISA. Bimax serves as a valuable preprocessing step to identify potentially rel-
evant ground-truth biclusters, which can then be utilized as input for more accurate
biclustering methods to enhance processing speed and bicluster quality. Although ini-
tially designed for binary data, Bimax has been extended to handle real-valued data,
leading to the development of BiBit [24] and its successor, QUBIC [25], and QUBIC2
[26]. BiBit, an extension of Bimax, introduces a preprocessing step to transform data
into binary format. QUBIC2, in contrast, employs a probabilistic model to directly
handle real-valued data, showcasing superior accuracy and efficiency compared to
BiBit and other state-of-the-art biclustering algorithms on both synthetic and real
datasets. A more recent entrant, ARBic [27], outperforms QUBIC and QUBIC2 in
discovering high-quality biclusters with varying dimensions and shapes while claim-
ing increased robustness to noise and outliers. Both QUBIC2 and ARBIC algorithms
involve essentially a two-step procedure: initial seed point selection and subsequent
expansion to the biclustering, separated into 2 separate stages. The seed selection
process for QUBIC2 and ARBIC relies on additional graph creation from all data
points, leading to increased computational demands.

In this work, we present the Rapid Unsupervised Biclustering (RUBic) algorithm
which demonstrates significantly enhanced speed in comparison to recently devel-
oped approaches, while effectively extracting all original biclusters from both syn-
thetic and biological datasets. The aim of reducing computational overhead with
respect to state-of-the-art algorithms [24, 26, 27] was achieved by introducing a novel
encoding and search strategy. The methodology presented in this article necessitates
significantly fewer computational steps compared to BiBit [24], while producing the
same maximal biclusters within a notably reduced timeframe, denoted as the base
mode. Additionally, through the utilization of flex-mode tuning in RUBic, biologically
significant clusters were generated, surpassing those obtained by the most recently
developed ARBic [27] and QUBIC2 [26] algorithms, as confirmed by KEGG pathway
[28] annotations. Thus the contribution of this work is two-fold:

1	 A new biclustering algorithm (RUBic) that is significantly faster with reduced com-
putational load (shown both mathematically and experimentally) than the recent
competitors and hence establishing a new state-of-the-art that has great potential for
robust scalability in large healthcare datasets.

2	 Unlike existing methods, RUBic can operate in two modes, the default mode pro-
duces the maximal set of biclusters like its competitors but faster, and a flex mode
where conditional priors can be provided for biologically relevant subsets (validated

Page 4 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

with KEGG pathways) and hence has great potential in genomics/proteomics appli-
cations like automated drug discovery.

Methods
The developed RUBic method is designed to extract maximal biclusters from binary
datasets. It takes input parameters as the binary input matrix (A) as well as the mini-
mum number of rows (rmin) and columns (cmin) which are allowed in the final biclusters.
Let the input binary matrix be A = (R,C) , where R and C are two finite sets of rows
and columns, respectively. Let l : R× C → {0, 1} be a binary function for the matrix
A. Let the binary value l(r, c); r ∈ R, c ∈ C , be denoted by {brc} and the correspond-
ing decimal value be represented by [[drc]], drc ∈ D;D = {0, . . . , 15}.The binary matrix
A = (R,C) , can be decomposed into N sets of M bits, such that A = {r1, . . . , rN }, with
ri = {bi1, . . . , biM}, where bij ∈ {0, 1},N = |R| and M = |C|.

Let, B = {B1, . . . ,Bk} be the set of biclusters, such that Bi = {Ii, Ji} , is composed of the
pair of non-empty sets, where Ii ⊆ R and Ji ⊆ C . For any given bicluster Bi , a set of col-
umns Ji = {c1, . . . , cK } is called a template if for every ck ∈ Ji and for every pair of rows
(r, r

′

) ∈ Ii , we have {r, ck} {r′, ck} = 1 . The bicluster Bi = {Ii, Ji} is called a maximal
bicluster if and only if it is not entirely contained in any other bicluster. In another way,
the biclusters will be maximal sub-matrices created from a template obtained by the
application of the bit-wise AND operator (

∧
) to a pair of seed rows. Now, the problem

addressed by the developed biclustering algorithm can be formally defined as follows:
given a binary data matrix A, we want to identify a set of biclusters B = {B1, . . . ,Bk} ,
where, Bi = (Ii, Ji) such that each bicluster Bi satisfies some particular features of homo-
geneity. Note that, the exact characteristics of homogeneity that a bicluster follow may
differ from one approach to another approach. In our work, the homogeneity charac-
teristic is governed by: (1) encoding of the template from a pair of seed rows by bit-wise

Fig. 1  Basic workflow of RUBic. The unsupervised biclustering strategy works both in interaction data and
expression data. Initially, it converts the expressions into binary data using mixture of left truncated Gaussian
distribution model (LTMG) and find the biclusters using novel encoding and template searching strategy and
finally generates the biclusters in two modes base and flex. In base mode RUBic generates maximal biclusters
(green borders) and in flex mode results less and biological significant clusters (red bordered). Coloured cell
box within the clusters indicates the selected row and column positions

Page 5 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

AND operations, and (2) efficient searching of the remaining rows, having common
homogeneity characteristic, for possible inclusion in the bicluster. The overall working
principle of RUBic is depicted in Fig. 1.

Encoding strategy

Each row, ri = {bi1, . . . , biM} , is first transformed to decimal form by converting
every four-bit consecutive binary number to decimal number. So each row becomes
r̂i = {di1, . . . , diP},where ,P = M/4 and dij ∈ D;D = {0, . . . , 15}. Now we define
V = {Vi}, ∀i ∈ D, where V0 = {0} and Vi = {x|[[i

∧
x]] = x},∀i, x = 1, . . . , 15 (see Fig. 2a

for details). For example, in case of V5 = {1, 4, 5} , all binary equivalent of decimal num-
bers in D having 2nd and/or 4th bit (from right) as 0 are included in V5 . Note that, binary
equivalent of 5 is 0101 and bit-wise AND (

∧
) with all other binary combinations whose

2nd and/or 4th bits as 0 are 0001, 0100 and 0101, i.e., 1,4 and 5 in decimal number sys-
tem. So, from definition, Vi contains those non-zero decimal numbers (x) whose four-bit
binary numbers return same number x after bit-wise

∧
 operation with i.

Searching strategy

Let us assume that the seed row pair r̂i and r̂j creates a bicluster Bnew = {Inew , Jnew} ,
where, (r̂i, r̂j) ∈ Inew and (j > i) , as a result of applying the operator

∧
 . We can also

write, Bnew = {Inew , Jnew} = {{r̂i, r̂j}, {ρij}}, where ρ(ij) is new template having number of
nonzero terms greater than equals to rmin and ρij =

⋃P−1

k=0
[[dik

∧
djk]] ; where, P = M/4 .

Let ‖ρij‖ be the count of number of non-zero columns in ρij . Note that, we proceed only
if ρij is unique (new) and �ρij� ≥ cmin.

Now, for each of the remaining rows (r̂l ), in Inew = R− {r̂i, r̂j}, a decision is to be
taken on the homogeneity criterion on, whether or not to retain r̂l in Inew . This is an

Fig. 2  The underlying concepts of the encoding and the searching strategy of the RUBic algorithm are
illustrated with the help of an example; A the composition of the set V = {Vi}, ∀i ∈ D , and B the steps
involved in formation of a bicluster is illustrated with 6 rows, where r1 and r2 are the seed rows that form the
template ρ12 ; and the rationale behind exclusion of three rows and eventual inclusion of a row (r3) in the
new bicluster, is explained

Page 6 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

exhaustive checking, and usually requires bit-wise AND operations to compare every
row with the template. In our work, we have proposed a novel mechanism by which we
can column-wise search the content of every row in the set V, and decide whether or
not to retain the row under consideration. If any column of a row fails the inclusion-
condition, the complete row is excluded from the subsequent checking. More spe-
cifically, let dkl be the kth column decimal value of r̂l , then the row r̂l is excluded from
Inew if dkρ /∈ Vdkl (please refer to Fig. 2b for illustration). Finally, if all the columns of
any given row pass the inclusion-condition, then the row is included in Inew . We refer
it as new bicluster Bnew = {{Inew} ∪ {(r̂i, r̂j}, Jnew} = {{Inew} ∪ {(r̂i, r̂j}, ρij} if and only if
|Inew ∪ {r̂i, r̂j}| ≥ rmin . This procedure is continued for other all possible pair of seed rows
to generate all possible maximal biclusters. Please refer to the complete Algorithm 1 for
details.

Computational complexity

To assess the computational complexity of the newly developed RUBic algorithm, we have
observed that the computational overhead is maximum during the searching process. Once
we compute the template, we need to search the selected column(s) of every other row for
its possible inclusion in the bicluster. Let us assume that for the 1st column of the template,
N comparisons are required to select the row(s) and only K1 rows are not selected due to

Page 7 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

above mentioned constraint (see Fig. 2a, b and Algorithm 1). Consequently we can exclude
K1 rows in 1st column comparison, then only (N − K1) rows are selected for 2nd col-
umn comparison. Likewise, if K2 rows are excluded during 2nd column comparison, then
(N − K1 − K2) rows are to be processed during 3rd column comparison. This procedure is
continued up to the Mth column, where ( N − K1 − K2 − · · · − K(M−1)) comparisons are
required to select the row(s) in the last step. Therefore, total number of comparisons which
are required for the selection of rows for one bicluster can be formulated as:

where C = (K1 + K2 + · · · + K(M−1) ) is a large constant and M is number of columns
and N is number of rows. Now let us derive the best case complexity where in 1st col-
umn comparison, all the rows except one are excluded as per our designed criteria. So,
in first step, it takes N comparisons and in each remaining (M − 1) steps there is only
requirement of one comparison. So total number of comparison required in best case is:
Tbest = N + (M − 1). In the worst case scenario, every column of each row satisfies our
designed criteria. So it requires maximum Tworst = N ×M number of comparisons in
the worst case.

However, for the average case, the probability (Pi) of successful search for each decimal
number (0, . . . , 15) of any row in V is different. For (0, 15) this probability, P0 = P15 =

1
16

 ,
because they occur only once in their respective sets V0 and V15 . For the numbers 1, 2, 4 and
8, P1 = P2 = P4 = P8 =

8
16

 . Likewise, P3 = P5 = P6 = P9 = P10 = P12 =
4
16

 and finally,
P7 = P11 = P13 = P14 =

2
16

 . Therefore, the probability of successful search of any number
(0 . . . 15) of any row in V may be estimated as: 1

16

∑15
(i=0) Pi =

66
16×16

∼
= 1/4.

So, on average, in each column comparison, 25% of the rows are selected from analyses in
subsequent columns. Therefore, if N comparisons are required in the 1st column compari-
son, N

4
 comparisons are required in the 2nd column, N

42
 comparisons in the 3rd column and

so on. Therefore, total number of average case comparisons Taverage is estimated as follows:

where C ′ is a constant and k is sufficiently large. From the above formulation we can say
the average case complexity of the developed RUBic algorithm is O(N), i.e., linearly pro-
portional with the number of rows in the input vector.

(1)

Tgeneral =N + (N − K1)+ (N − K1 − K2)+ · · · + (N − K1 − K2 − KM−1)

=

M∑

i=1

N − (

M−1∑

i=1

K1 +

M−2∑

i=1

K2 + · · ·

2∑

i=1

KM−2 + KM−1)

=M × N − {K1 × (M − 1)+ K2 × (M − 2)+ · · · + 2KM−2 + KM−1}

=M × N −M × (K1 + K2 + · · · + KM−1)− (K1 + K2 + · · · + KM−1)c

=M × (N − (K1 + K2 + · · · + KM−1))− (K1 + K2 + · · · + KM−1)

=M × (N − C)− C

(2)

Taverage =N +

N

4
+

N

42
+ · · · +

N

4k
+ C

′

; {4
k
≤ N }

=N ×

1− 1

4k

1− 1
4

+ C
′

=N × lim
k→∞

1− 1

4k

1− 1
4

+ C
′

Page 8 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

Experimental results
To assess the performance of the developed RUBic algorithm, we have evaluated its
behaviour in terms of the execution time and quality of the biclusters generated on both
synthetic and experimental biological datasets. Our biclustering algorithm is able to
execute in two modes, base-mode and flex-mode depending on the two basic param-
eters and an additional filtering by symmetric clusters removal. At base-mode, we set the
rmin = 2 and cmin = 2 to extract optimal clustering which provides maximal biclusters.
We have executed our base-mode RUBic on the synthetic data and shows the perfor-
mance improvement with state-of-the-art. However, we have evaluated our algorithm
with two biological datasets in flex-mode on (a) protein–protein interaction dataset and
(b) real gene expression dataset.

Synthetic data analysis

In the current experiment, three sets of synthetic datasets were used to assess the per-
formance of the developed algorithm and compare it with the existing state-of-the-art
methods. We compared the performance of the base-mode RUBic with the existing
fast model BiBit, as both generate maximal clusters. However, we excluded the very
recent methods ARBic and QUBIC2 from this comparison as they are not designed for
maximal cluster generation. Moreover, ARBic and QUBIC2 are unable to execute with
rmin = 2 and cmin = 2 values, which causes inconsistency in clustering.

In the first experiment, synthetic binary matrices of size 200× 200 are used from
the BiBit data repository (Match_score_density_200×200_csv) [24], with varying den-
sity and overlapping characteristics. There are ten groups of 200× 200 matrices in
which each group contains 10 matrices with varying density of 1’s from 5 to 50% with
step wise increment of 5%. We have evaluated the average number of extracted biclus-
ters in these ten groups of matrices and also estimated the average time of execu-
tion in each ten groups. In our experimental setup, the RUBic algorithm took ∼ 71.1
s to process 100 synthetic matrices of this dataset, whereas BiBit [24] took ∼ 3.4 h
to complete the same task (see Table 1). It may be noted that the average time taken

Table 1  The performance of RUBic and BiBit was evaluated over the synthetic dataset with varying
density of different 1’s (MATCH_SCORE_DENSITY_200X200_CSV)

ET execution time (in ms)

Group number Density of 1s’ Avg. ET (ms) Avg. bicluster
number

Avg. match
score

Avg.ET/ bicluster
(ms)

RUBic BiBit RUBic BiBit RUBic BiBit RUBic BiBit

1 5 22 480 29 29 1 1 0.755172 16.55172

2 10 51 1609 83 83 1 1 0.613253 19.38916

3 15 97 4912 249 249 1 1 0.390361 19.72771

4 20 163 12,230 634.2 634.2 1 1 0.257332 19.28445

5 25 261 27,539 1429.3 1429.3 1 1 0.182327 19.26754

6 30 476 66,204 3294.1 3294.1 1 1 0.144592 20.09769

7 35 839 126,517 6070.4 6070.4 1 1 0.138162 20.84158

8 40 1206 219,214 9472.3 9472.3 1 1 0.127297 23.14266

9 45 1620 320,150 12,977.7 12,977.7 1 1 0.124814 24.66927

10 50 2376 446,627 15,248.2 15,248.2 1 1 0.155848 29.2905

Page 9 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

to extract a bicluster is decreasing with increasing density, in case of RUBic. RUBic
takes 0.29 ms on average over all the bicluster produced whereas BiBit [24] takes
21.23 ms for the same purpose. Altogether, RUBic generated exactly the same num-
ber of biclusters in comparison to the 494, 872 biclusters generated by BiBit [24]. We
have also evaluated the cluster quality by estimating the match scores [23] between
the biclusters generated by the two methods. The average of maximum match scores
of all biclusters generated by RUBic with respect to the BiBit [24] and vice-versa are
exactly the same. Overall, same biclusters are extracted by RUBic, in much lesser
time. Detailed results on this synthetic dataset are compiled in the Table 1.

In the second synthetic data setup, to examine the scalability of the developed algo-
rithm, we have worked over ten groups of matrices from size 50× 50 to 500× 500
with an increase of 50 rows and 50 columns in each group. Each group is having 10
matrices with the density of 1’s varying from 10 to 100% with an increment of 10% in
each step. This dataset is also taken from the BiBit data repository (Performance_test_
csv) [24] and the performance of the RUBic method over these ten groups of matrices
is shown in Fig. 3. Table 2 shows the detailed results on the average time of execution
over these ten groups of matrices. We can observe how the number of biclusters var-
ies over these ten groups as the dimensionality increases. We have also plotted the
average time of execution per bicluster over these groups to give an idea of the per-
formance variation of RUBic with respect to scalability.

In the third category of synthetic dataset (Match_score_csv) [24], 11 different matri-
ces of sizes 100× 100 to 110× 110 with varying degree of overlapping are implanted;
ground-truth biclusters of size 10× 10 to 20× 20 are used. We have used the aver-
age bicluster relevance which measures up to what level the mined biclusters repre-
sent ‘true’ biclusters which we have already introduced in the dataset. We have used
the average module recovery to know how far each of the true biclusters is recovered.
Both of the measures are normalized between (0, 1), where higher value reveals that
the set of generated biclusters is same as to true set of biclusters and 0 represents that
the sets are disjoint [23]. The objective of this experiment was to evaluate average

Table 2  The performance of RUBic was evaluated over the synthetic datasets with varying
dimensions (PERFORMANCE_TEST_CSV)

ET execution time (in ms)

Group number Matrix dimension Avg. ET (ms) Avg no. of biclusters Avg. ET/
bicluster
(ms)

1 50 × 50 49.9 925.5 0.053917

2 100 × 100 289.2 4026.3 0.071828

3 150 × 150 1101.6 9339.2 0.117954

4 200 × 200 2882.5 16,960.2 0.169957

5 250 × 250 6631.7 26,967.1 0.245918

6 300 × 300 12,670.4 39,366.9 0.321854

7 350 × 350 24,157.6 54,098.3 0.44655

8 400 × 400 43,243.3 71,116 0.608067

9 450 × 450 80,461.4 100,475.9 0.800803

10 500 × 500 93,831.5 111,868.9 0.838763

Page 10 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

bicluster relevance and module recovery of the two methods, RUBic and BiBit [24],
under consideration. Table 3 shows that both the methods extract the exactly the
same biclusters with similar bicluster relevance and module recovery scores.

Biological data analysis

We have also assessed the performance of the RUBic method on the latest biological
datasets, the Homo sapiens protein–protein interaction (PPI) dataset [29]. Initially it

Fig. 3  Experimental results of RUBic on 10 groups of matrices of dimension N × N. Each group contains
10 matrices with density of 1 s’ varying from 10 to 100 with step of 10%. a Average number of biclusters
extracted, b average time of execution, c average time per bicluster

Page 11 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

contained 6, 247 number of protein–protein interactions. We have removed self-inter-
actions from the dataset which reduces it to 5823 number of interactions only. However,
it only contains 4085 number of unique proteins and we mapped it into a binary matrix
of size 4085× 4085 where 1’s represent interaction and 0’s represent non-interaction
among the corresponding proteins. We have extracted the data for extracting biclus-
ters with minimum number of row as 2 and minimum number of column as 2. We have
observed that our method RUBic generates 1840 maximal biclusters in ∼ 48.6 s. Then
the same dataset is used for BiBit [24] and it generates the same 1, 840 number of biclus-
ters in ∼ 251.6 s. We have also worked over the central nervous system (CNS) embry-
onic tumor gene expression dataset [30] of size 7129× 40 were considered. We have also
executed both modes of RUBic (base and flex). In this biological dataset, RUBic-base
generates 747,069 maximal biclusters in ∼ 101 min, whereas, BiBit [24] produces the
same number of biclusters in ∼ 56 h (see Table 4).

Table 3  The performance of RUBic and BiBit was evaluated over implanted biclusters of varying
sizes (10 × 10 to 20 × 20) with different overlapping degrees on (MATCH_SCORE_CSV)

Group
number

Overlapping
degree (%)

Matrix size Avg. bicluster relevance Avg. module recovery

RUBic BiBit RUBic BiBit

1 0 100 × 100 1 1 1 1

2 1 101 × 101 1 1 1 1

3 2 102 × 102 0.586039 0.586039 1 1

4 3 103 × 103 0.612996 0.612996 1 1

5 4 104 × 104 0.63648 0.63648 1 1

6 5 105 × 105 0.657143 0.657143 1 1

7 6 106 × 106 0.675481 0.675481 1 1

8 7 107 × 107 0.691877 0.691877 1 1

9 8 108 × 108 0.702873 0.702873 0.989474 0.989474

10 9 109 × 109 0.716418 0.716418 0.99 0.99

11 10 110 × 110 0.728741 0.728741 0.990476 0.990476

Table 4  The performance of RUBic and BiBit was evaluated over a protein–protein interaction (PPI)
dataset of Homo sapiens and a Central Nervous System (CNS) embryonic tumor gene expression
dataset

Dataset Methods Execution time (ms) # of biclusters

Human PPI BiBit 251,652 1840

RUBic-base 48,588 1840

RUBic-flex 32,156 131

ARBic 1,055,457 204

QUBIC2 32,789 189

CNS BiBit 202,308,623 747,069

RUBic-base 6,066,520 747,069

RUBic-flex 9804 1069

ARBic 68,920 132

QUBIC2 68,137 1508

Page 12 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

Performance on expression datasets

To compare RUBic with other algorithms on real datasets with a large number of
columns ( > 500 ), we evaluated five datasets from E. coli, yeast, and human tissues.
To ensure consistency between the algorithms, we conducted experiments using
RUBic-flex algorithm with two parameter ( rmin , cmin ) values synchronized with both
ARBic and QUBIC2. We have executed all the algorithms using the optimal param-
eters specified in their respective publications on these five datasets [30]. First, all
the gene expression values are discretized into binary matrix using Mixture of Left
Truncated Gaussian Distributions model as described in [26]. On these binary pat-
ters, RUBic-flex is employed to extract the significant biclusters. It has been observed
that in all 5 datasets, RUBic-flex shown a significant performance improvement in
terms of total execution time speed-up (see Table 5) and average time per clusters
compared to ARBic and QUBIC2. However, in average time per cluster, RUBic also
surpass ARBic and QUBIC2 in all datasets with only exception of E. coli Colombos as
depicted in Fig. 4. In all these datasets, ARBic generates significantly less number of
clusters, where in E. coli Colombos and Yeast DREAM5 dataset, RUBic produces less
clusters compared to QUBIC2 and rest three datasets RUBic generates higher num-
ber of clusters with less execution time. The detailed statistics of generated clusters
and corresponding execution time (ET) are reported in Table 5.

Fig. 4  Average execution time ( −log10(AvgET/cl) ) per cluster on five real datasets

Table 5  Significance speed up of RUBic on five real datasets measured in terms of execution time
(s)

Cls number of clusters, ET execution time (in s)

Dataset Genes Conditions ARBic QUBIC2 RUBic

Cls ET Cls ET Cls ET

E. coli colombos 2093 2470 267 3215.451 2869 319.55 598 210.41

E. coli DREAM5 2442 805 137 2143.9128 2821 207.83 3163 145.337

Yeast GPL2529 3178 3025 415 12297.099 3555 1276.55 5668 752.15

Yeast DREAM5 3292 536 36 14524.4534 3311 1660.93 3163 740.66

Human SEEK GPL5175 4436 2308 296 13954.656 5044 1278.3 6215 1017.81

Page 13 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

As the true biclusters in real datasets are unknown, we evaluated each bicluster
identified by each algorithm by using KEGG [28] biological pathway-based analysis
on E. coli Colombos to demonstrate the efficacy of our proposed approach, RUBic.
To evaluate the significance of our algorithm, we incorporated all the pathways as
compared to ARBic. We found that the match score of each cluster with the KEGG
enriched pathway clusters was similar for all three approaches, ARBic, QUBIC2, and
RUBic. The heatmap representation of the match score per KEGG enriched cluster is
shown in Fig. 5A. In most of the pathways, based gene annotations are well-mapped

Fig. 5  Significant match comparison with respect to KEGG annotated clusters. A The heatmap columns
represents KEGG pathway annotations and row represents biclustering. Each cell represents average
matching scores of top 50 biclustering solutions with respect to KEGG enriched clusters. B Heatmap for
reference KEGG clusters with expression values. C Represents the heatmap for expression level correlation
matrix from resultant biclusters of RUBic-Flex, QUBIC2 and ARBic. CoH correlation hits, indicated number of
common genes between KEGG and other cluster solutions. Red boxed cells within the heatmap represents
KEGG(eceo2020) enriched gene that are present in the respective clusters. D Barplot representation of
enriched gene count in each clustering approach and total number of genes within clusters

Page 14 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

with the biclusters found in RUBic. Each cell represents average matching scores of
top 50 biclustering solutions with respect to KEGG enriched clusters (see Fig. 5A).

For example, in the ecoli_colombos dataset for the KEGG pathway‘Two-component
system’ eco02020 (see expression heatmap Fig. 5B), we found a significant number of
overlapping genes (34) with RUBic clusters where in QUBIC2 and ARBic extracts 18 and
29 enriched genes (correlation hits), respectively with a maximal matching cluster. Fig-
ure 5C represents the heatmap for the expression level correlation matrix from result-
ing biclusters of RUBic-Flex, QUBIC2 and ARBic. Red-boxed cells within the heatmap
represent KEGG(eco02020) enriched genes present in the respective clusters, whereas
Fig. 5D shows the enriched gene count in each clustering approach and the total number
of genes within those clusters.

Conclusion
In this work we propose a novel algorithm for fast extraction of biclusters from binary
datasets. We have evaluated its performance on both synthetic and biological datasets
and compared the results with the existing state-of-the-art. We also estimated the best
case, worst case, and average case complexity of the developed method and attempt to
show that the average case computational complexity is almost linearly proportional to
the increase in the size of the dataset. Our approach can operate in two modes: base-
mode and flex-mode, resulting in two types of clustering solutions - maximal biclusters
and biologically plausible biclusters.

The performance evaluation was carried out on three carefully selected benchmark
synthetic datasets using base-mode and flex-mode to assess the effects of varying den-
sity, degree of overlap, and dimensionality on the developed method. Two biological
datasets were also considered. The first one was the human PPI dataset of low density
of interactions in a large square matrix 4085× 4085 used to assess the performance of
the method. The second dataset was a large CNS gene expression data used to test the
performance of the method. In the case of the CNS gene expression dataset, RUBic gen-
erated a large number of biclusters in less than 2 h, which took ∼ 56 h by the BiBit algo-
rithm [24]. This observation highlights the robustness of our method with respect to the
scalability of the dataset.

The performance of RUBic was also evaluated on five gene expression datasets, two
from E. coli, two from yeast, and one from human tissues. Our RUBic-flex mode biclus-
tering showed a significant performance improvement in terms of total execution time
speed-up compared to the most recent and popular biclustering strategies ARBic and
QUBIC2. Finally, the extracted clusters were evaluated and validated with match scores
of resultant clusters with KEGG enriched pathway clusters for biological significance.

Thus, not only is our RUBic algorithm faster than its competitors, it also produces
an optimal set of biologically relevant biclusters, and established a new state of the art
in across several benchmark synthetic, PPI and gene expression datasets, and hence is
expected to have generalised applications across proteomic and genomic interactions,
including high impact tasks of automated drug repurposing and drug discovery.
Acknowledgements
The authors are grateful to Dr. Ben Macarthur and Dr. Chris Harbron of the Turing-Roche partnership for their valuable
advice throughout.

Page 15 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435 	

Author contributions
All the authors contributed to the conception and design of the study. BKS and AKH were responsible for data collection
and analysis and for writing the original draft. SB and TC were responsible for the verification, review and editing of the
manuscript. Supervision and project administration were done by SB and TC. All authors read and approved the final
manuscript.

Funding
This project did not receive any direct funding for the research work, however the publications charges are covered by
TC’s funder, the Turing-Roche strategic partnership.

Availability of data and materials
The different public datasets used in this work are referred to in their respective publications, as described in the "Biologi-
cal data analysis" Sect. .

Code availability
The code is available at (https://​github.​com/​CMATE​RJU-​BIOIN​FO/​RUBic) for academic use only.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interest
The authors declare that they have no competing interests.

Received: 17 July 2023 Accepted: 16 October 2023

References
	1.	 Hartigan JA. Direct clustering of a data matrix. J Am Stat Assoc. 1972;67(337):123–9.
	2.	 Cheng Y, Church GM. Biclustering of expression data In: Ismb. 2000;8:93–103.
	3.	 Hu L, Yang Y, Tang Z, He Y, Luo X. Fcan-mopso: an improved fuzzy-based graph clustering algorithm for complex

networks with multi-objective particle swarm optimization. IEEE Trans Fuzzy Syst (2023)
	4.	 He T, Chan KC. Misaga: an algorithm for mining interesting subgraphs in attributed graphs. IEEE Trans Cybern.

2017;48(5):1369–82.
	5.	 He T, Chan KC. Discovering fuzzy structural patterns for graph analytics. IEEE Trans Fuzzy Syst. 2018;26(5):2785–96.
	6.	 Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics.

2002;18(suppl-1):136–44.
	7.	 Yang J, Wang H, Wang W, Yu P. Enhanced biclustering on expression data. In: Third IEEE symposium on bioinformat-

ics and bioengineering, 2003. Proceedings., 2003. IEEE. pp. 321–327.
	8.	 Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N. Revealing modular organization in the yeast transcrip-

tional network. Nat Genet. 2002;31(4):370–7.
	9.	 Ihmels J, Bergmann S, Barkai N. Defining transcription modules using large-scale gene expression data. Bioinformat-

ics. 2004;20(13):1993–2003.
	10.	 Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene expression data: the order-preserving sub-

matrix problem. In: Proceedings of the sixth annual international conference on computational biology, pp 49–57
(2002)

	11.	 Liu B, Wan C, Wang L. An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans
Nanobiosci. 2006;5(2):110–4.

	12.	 Murali T, Kasif S. Extracting conserved gene expression motifs from gene expression data. In: Pacific symposium on
biocomputing. Pacific Symposium on Biocomputing, pp 77–88 (2003)

	13.	 Cheng K-O, Law N-F, Siu W-C, Liew AW-C. Identification of coherent patterns in gene expression data using an
efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinform. 2008;9(1):1–28.

	14.	 Santamaría R, Therón R, Quintales L. Bicoverlapper: a tool for bicluster visualization. Bioinformatics.
2008;24(9):1212–3.

	15.	 Uitert Mv, Meuleman W, Wessels L. Biclustering sparse binary genomic data. J Comput Biol. 2008;15(10):1329–45.
	16.	 Madeira SC, Oliveira AL. A polynomial time biclustering algorithm for finding approximate expression patterns in

gene expression time series. Algorithms Mol Biol. 2009;4(1):1–39.
	17.	 Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, Khamiakova T, Van Sanden S, Lin D, Talloen W,

et al. Fabia: factor analysis for bicluster acquisition. Bioinformatics. 2010;26(12):1520–7.
	18.	 Serin A, Vingron M. Debi: discovering differentially expressed biclusters using a frequent itemset approach. Algo-

rithms Mol Biol. 2011;6(1):1–12.
	19.	 Sill M, Kaiser S, Benner A, Kopp-Schneider A. Robust biclustering by sparse singular value decomposition incorporat-

ing stability selection. Bioinformatics. 2011;27(15):2089–97.
	20.	 Huang Q, Tao D, Li X, Liew A. Parallelized evolutionary learning for detection of biclusters in gene expression data.

IEEE/ACM Trans Comput Biol Bioinform. 2011;9(2):560–70.

https://github.com/CMATERJU-BIOINFO/RUBic

Page 16 of 16Sriwastava et al. BMC Bioinformatics (2023) 24:435

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	21.	 Ayadi W, Elloumi M, Hao J-K. Bicfinder: a biclustering algorithm for microarray data analysis. Knowl Inf Syst.
2012;30:341–58.

	22.	 Huang Q, Wang T, Tao D, Li X. Biclustering learning of trading rules. IEEE Trans Cybern. 2014;45(10):2287–98.
	23.	 Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E. A systematic com-

parison and evaluation of biclustering methods for gene expression data. Bioinformatics. 2006;22(9):1122–9.
	24.	 Rodriguez-Baena DS, Perez-Pulido AJ, Aguilar- Ruiz JS. A biclustering algorithm for extracting bit-patterns from

binary datasets. Bioinformatics. 2011;27(19):2738–45.
	25.	 Li G, Ma Q, Tang H, Paterson AH, Xu Y. QUBIC: a qualitative biclustering algorithm for analyses of gene expression

data. Nucleic Acids Res. 2009;37(15):101–101.
	26.	 Xie J, Ma A, Zhang Y, Liu B, Cao S, Wang C, Xu J, Zhang C, Ma Q. QUBIC2: a novel and robust biclustering algorithm

for analyses and interpretation of large-scale RNA-Seq data. Bioinformatics. 2020;36(4):1143–9.
	27.	 Liu X, Yu T, Zhao X, Long C, Han R, Su Z, Li G. ARBic: an all-round biclustering algorithm for analyzing gene expres-

sion data. NAR Genom Bioinform. 2023;5(1):009.
	28.	 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of path-

ways and genomes. Nucleic Acids Res. 2023;51(D1):587–92.
	29.	 Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update.

Nucleic Acids Res. 2004;32(suppl-1):449–51.
	30.	 Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module detection methods for gene expression

data. Nat Commun. 2018;9(1):1090.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	RUBic: rapid unsupervised biclustering
	Abstract
	Introduction
	Methods
	Encoding strategy
	Searching strategy
	Computational complexity

	Experimental results
	Synthetic data analysis
	Biological data analysis
	Performance on expression datasets

	Conclusion
	Acknowledgements
	References

