
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Sriwastava et al. BMC Bioinformatics          (2023) 24:435  
https://doi.org/10.1186/s12859-023-05534-3

BMC Bioinformatics

RUBic: rapid unsupervised biclustering
Brijesh K. Sriwastava1†, Anup Kumar Halder2,3†, Subhadip Basu4* and Tapabrata Chakraborti5* 

Abstract 

Biclustering of biologically meaningful binary information is essential in many appli-
cations related to drug discovery, like protein–protein interactions and gene expres-
sions. However, for robust performance in recently emerging large health datasets, it 
is important for new biclustering algorithms to be scalable and fast. We present a rapid 
unsupervised biclustering (RUBic) algorithm that achieves this objective with a novel 
encoding and search strategy. RUBic significantly reduces the computational overhead 
on both synthetic and experimental datasets shows significant computational benefits, 
with respect to several state-of-the-art biclustering algorithms. In 100 synthetic binary 
datasets, our method took ∼ 71.1 s to extract 494,872 biclusters. In the human PPI data-
base of size 4085× 4085 , our method generates 1840 biclusters in ∼ 48.6 s. On a cen-
tral nervous system embryonic tumor gene expression dataset of size 712,940, our 
algorithm takes   101 min to produce 747,069 biclusters, while the recent competing 
algorithms take significantly more time to produce the same result. RUBic is also evalu-
ated on five different gene expression datasets and shows significant speed-up 
in execution time with respect to existing approaches to extract significant KEGG-
enriched bi-clustering. RUBic can operate on two modes, base and flex, where base 
mode generates maximal biclusters and flex mode generates less number of clusters 
and faster based on their biological significance with respect to KEGG pathways. The 
code is available at (https://​github.​com/​CMATE​RJU-​BIOIN​FO/​RUBic) for academic use 
only.

Keywords:  Data mining, Algorithm design and analysis, Biclustering algorithms, 
Computational complexity

Introduction
Specialised gene clusters participate in specific cellular processes under a subset of con-
ditions. Automatic identification of such gene-clusters and condition-subsets is usually 
known as biclustering and has immense value in such applications of bioinformatics 
(proteomics and genomics) like studying protein–protein interactions, automated drug 
discovery. The concept of biclustering algorithms was first introduced by Hartigan et al. 
[1]. Cheng et  al. [2] first applied biclustering of both genes and condition-subsets for 
knowledge discovery from expression data. A node-deletion algorithm was presented by 
Cheng et  al. [2] to find bicluster in expression data that have low mean squared resi-
due scores. It found similarity based on a subset of attributes, clustering of genes and 
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conditions, and overlapped bicluster that provides a better representation for genes 
with multiple functions or regulated by many factors. Their method allowed discovery 
of similar genes based on a subset of attributes, i.e., simultaneous clustering of genes 
and conditions. Subsequently, biclustering techniques have been widely applied in gene 
expression data analysis. In contrast to biclustering algorithms, such as the recently 
developed graph clustering algorithms [3–5], which can be applied to complex biological 
datasets, they have constraints related to unannotated data and dataset size.

In the field of biclustering within the realm of bioinformatics, recent years have seen 
the rise of numerous advanced computational methods. Many of these methods leverage 
the capabilities of machine learning. These approaches can be broadly categorized into 
two main groups: graph-based and non-graph-based biclustering techniques. Moreover, 
it’s worth noting that within these categories, individual algorithms are further subdi-
vided based on their compatibility with different types of input data, with some designed 
to operate on raw expression data and others tailored for binary data. Tanay et al. [6] 
proposed a method that combines graph theory with statistical modeling and has poly-
nomial-time complexity. Yang et al. [7] presented a probabilistic algorithm called FLOC 
for finding k possibly overlapping biclusters used graph theory to address the order-pre-
serving submatrix problem by identifying submatrices that preserve order relationships 
among genes and conditions. Other graph based approaches are ISA [8, 9], Samba [6], 
OPSM [10] , spectral biclustering [11], spectral biclustering [11] and xMotif [12] where 
xMotif utilizes graph theory to identify conserved gene expression motifs by represent-
ing genes and conditions as nodes in a graph and finding significant subgraphs that cor-
respond to biclusters.

Some of the non-graph based biclustering methods introduced greedy heuristic idea 
or machine learning. Cheng et al. [13] proposed a greedy version of an existing biclus-
tering algorithm. Santamaria et al. [14] developed BicOver-lapper for visualizing biclus-
ters from gene-expression matrices, whereas Uitert et al. [15] designed an algorithm to 
extract biclusters from sparse, binary datasets. Madeira et al. [16] presented the ‘e-CCC-
Biclustering’ algorithm that mines coherent biclusters with approximate expression 
patterns. The FABIA tool [17] uses a multiplicative model and Bayesian techniques, 
whereas the DeBi algorithm [18] uses a frequent item set-based data mining approach to 
determine homogeneous biclusters. Sill et al. [19] offered a sparse singular value decom-
position (SSVD) approach to control Type I error rates and discover stable biclusters. 
Huang et al. [20] presented a biclustering method based on evolutionary learning and 
applied it in a search space created by the conditions. Ayadi et al. [21] introduced a heu-
ristic algorithm, ‘BicFinder’, to estimate the coherence of a given bicluster. Huang et al. 
[22] proposed biclustering for mining to find technical trading patterns that combine 
indicators from historical financial data series. Prelic et al. [23] proposed a fast and exact 
model biclustering algorithm called Bimax, considered a benchmark reference for most 
biclustering methods. Bimax achieved similar scores as the best biclustering techniques 
then and is still helpful in identifying potentially relevant ground-truth biclusters as a 
pre-processing step. Later, these chosen biclusters can be used as input for more accu-
rate biclustering methods to speed up processing time and increase bicluster quality.

One common challenge faced by many of these biclustering algorithms is their ina-
bility to guarantee finding the global optima, potentially leading to the omission of 
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some optimal biclusters. An algorithm known for its benchmark status in this regard 
is Bimax, introduced by Prelic et  al. [23]. Bimax, designed for binary data models, 
has exhibited substantial performance improvements compared to other bicluster-
ing methods, including ISA [8, 9], Samba [6], OPSM [10], CC [2], and xMotif [12]. 
However, xMotif tend to identify large biclusters representing gene groups with stable 
expression levels, potentially lacking interesting patterns such as co-regulation. ISA, 
Samba, and OPSM have demonstrated comparable performance, with Samba excel-
ling in managing increased regulatory complexity but being more sensitive to noise 
than ISA. Bimax serves as a valuable preprocessing step to identify potentially rel-
evant ground-truth biclusters, which can then be utilized as input for more accurate 
biclustering methods to enhance processing speed and bicluster quality. Although ini-
tially designed for binary data, Bimax has been extended to handle real-valued data, 
leading to the development of BiBit [24] and its successor, QUBIC [25], and QUBIC2 
[26]. BiBit, an extension of Bimax, introduces a preprocessing step to transform data 
into binary format. QUBIC2, in contrast, employs a probabilistic model to directly 
handle real-valued data, showcasing superior accuracy and efficiency compared to 
BiBit and other state-of-the-art biclustering algorithms on both synthetic and real 
datasets. A more recent entrant, ARBic [27], outperforms QUBIC and QUBIC2 in 
discovering high-quality biclusters with varying dimensions and shapes while claim-
ing increased robustness to noise and outliers. Both QUBIC2 and ARBIC algorithms 
involve essentially a two-step procedure: initial seed point selection and subsequent 
expansion to the biclustering, separated into 2 separate stages. The seed selection 
process for QUBIC2 and ARBIC relies on additional graph creation from all data 
points, leading to increased computational demands.

In this work, we present the Rapid Unsupervised Biclustering (RUBic) algorithm 
which demonstrates significantly enhanced speed in comparison to recently devel-
oped approaches, while effectively extracting all original biclusters from both syn-
thetic and biological datasets. The aim of reducing computational overhead with 
respect to state-of-the-art algorithms [24, 26, 27] was achieved by introducing a novel 
encoding and search strategy. The methodology presented in this article necessitates 
significantly fewer computational steps compared to BiBit [24], while producing the 
same maximal biclusters within a notably reduced timeframe, denoted as the base 
mode. Additionally, through the utilization of flex-mode tuning in RUBic, biologically 
significant clusters were generated, surpassing those obtained by the most recently 
developed ARBic [27] and QUBIC2 [26] algorithms, as confirmed by KEGG pathway 
[28] annotations. Thus the contribution of this work is two-fold: 

1	 A new biclustering algorithm (RUBic) that is significantly faster with reduced com-
putational load (shown both mathematically and experimentally) than the recent 
competitors and hence establishing a new state-of-the-art that has great potential for 
robust scalability in large healthcare datasets.

2	 Unlike existing methods, RUBic can operate in two modes, the default mode pro-
duces the maximal set of biclusters like its competitors but faster, and a flex mode 
where conditional priors can be provided for biologically relevant subsets (validated 
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with KEGG pathways) and hence has great potential in genomics/proteomics appli-
cations like automated drug discovery.

Methods
The developed RUBic method is designed to extract maximal biclusters from binary 
datasets. It takes input parameters as the binary input matrix (A) as well as the mini-
mum number of rows (rmin) and columns (cmin) which are allowed in the final biclusters. 
Let the input binary matrix be A = (R,C) , where R and C are two finite sets of rows 
and columns, respectively. Let l : R× C → {0, 1} be a binary function for the matrix 
A. Let the binary value l(r, c); r ∈ R, c ∈ C , be denoted by {brc} and the correspond-
ing decimal value be represented by [[drc]], drc ∈ D;D = {0, . . . , 15}.The binary matrix 
A = (R,C) , can be decomposed into N sets of M bits, such that A = {r1, . . . , rN }, with 
ri = {bi1, . . . , biM}, where bij ∈ {0, 1},N = |R| and M = |C|.

Let, B = {B1, . . . ,Bk} be the set of biclusters, such that Bi = {Ii, Ji} , is composed of the 
pair of non-empty sets, where Ii ⊆ R and Ji ⊆ C . For any given bicluster Bi , a set of col-
umns Ji = {c1, . . . , cK } is called a template if for every ck ∈ Ji and for every pair of rows 
(r, r

′

) ∈ Ii , we have {r, ck} {r′, ck} = 1 . The bicluster Bi = {Ii, Ji} is called a maximal 
bicluster if and only if it is not entirely contained in any other bicluster. In another way, 
the biclusters will be maximal sub-matrices created from a template obtained by the 
application of the bit-wise AND operator (

∧
) to a pair of seed rows. Now, the problem 

addressed by the developed biclustering algorithm can be formally defined as follows: 
given a binary data matrix A, we want to identify a set of biclusters B = {B1, . . . ,Bk} , 
where, Bi = (Ii, Ji) such that each bicluster Bi satisfies some particular features of homo-
geneity. Note that, the exact characteristics of homogeneity that a bicluster follow may 
differ from one approach to another approach. In our work, the homogeneity charac-
teristic is governed by: (1) encoding of the template from a pair of seed rows by bit-wise 

Fig. 1  Basic workflow of RUBic. The unsupervised biclustering strategy works both in interaction data and 
expression data. Initially, it converts the expressions into binary data using mixture of left truncated Gaussian 
distribution model (LTMG) and find the biclusters using novel encoding and template searching strategy and 
finally generates the biclusters in two modes base and flex. In base mode RUBic generates maximal biclusters 
(green borders) and in flex mode results less and biological significant clusters (red bordered). Coloured cell 
box within the clusters indicates the selected row and column positions
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AND operations, and (2) efficient searching of the remaining rows, having common 
homogeneity characteristic, for possible inclusion in the bicluster. The overall working 
principle of RUBic is depicted in Fig. 1.

Encoding strategy

Each row, ri = {bi1, . . . , biM} , is first transformed to decimal form by converting 
every four-bit consecutive binary number to decimal number. So each row becomes 
r̂i = {di1, . . . , diP},where ,P = M/4 and dij ∈ D;D = {0, . . . , 15}. Now we define 
V = {Vi}, ∀i ∈ D, where V0 = {0} and Vi = {x|[[i

∧
x]] = x},∀i, x = 1, . . . , 15 (see Fig. 2a 

for details). For example, in case of V5 = {1, 4, 5} , all binary equivalent of decimal num-
bers in D having 2nd and/or 4th bit (from right) as 0 are included in V5 . Note that, binary 
equivalent of 5 is 0101 and bit-wise AND (

∧
) with all other binary combinations whose 

2nd and/or 4th bits as 0 are 0001, 0100 and 0101, i.e., 1,4 and 5 in decimal number sys-
tem. So, from definition, Vi contains those non-zero decimal numbers (x) whose four-bit 
binary numbers return same number x after bit-wise 

∧
 operation with i.

Searching strategy

Let us assume that the seed row pair r̂i and r̂j creates a bicluster Bnew = {Inew , Jnew} , 
where, (r̂i, r̂j) ∈ Inew and (j > i) , as a result of applying the operator 

∧
 . We can also 

write, Bnew = {Inew , Jnew} = {{r̂i, r̂j}, {ρij}}, where ρ(ij) is new template having number of 
nonzero terms greater than equals to rmin and ρij =

⋃P−1

k=0
[[dik

∧
djk ]] ; where, P = M/4 . 

Let ‖ρij‖ be the count of number of non-zero columns in ρij . Note that, we proceed only 
if ρij is unique (new) and �ρij� ≥ cmin.

Now, for each of the remaining rows (r̂l ), in Inew = R− {r̂i, r̂j}, a decision is to be 
taken on the homogeneity criterion on, whether or not to retain r̂l in Inew . This is an 

Fig. 2  The underlying concepts of the encoding and the searching strategy of the RUBic algorithm are 
illustrated with the help of an example; A the composition of the set V = {Vi}, ∀i ∈ D , and B the steps 
involved in formation of a bicluster is illustrated with 6 rows, where r1 and r2 are the seed rows that form the 
template ρ12 ; and the rationale behind exclusion of three rows and eventual inclusion of a row (r3) in the 
new bicluster, is explained
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exhaustive checking, and usually requires bit-wise AND operations to compare every 
row with the template. In our work, we have proposed a novel mechanism by which we 
can column-wise search the content of every row in the set V, and decide whether or 
not to retain the row under consideration. If any column of a row fails the inclusion-
condition, the complete row is excluded from the subsequent checking. More spe-
cifically, let dkl be the kth column decimal value of r̂l , then the row r̂l is excluded from 
Inew if dkρ /∈ Vdkl (please refer to Fig.  2b for illustration). Finally, if all the columns of 
any given row pass the inclusion-condition, then the row is included in Inew . We refer 
it as new bicluster Bnew = {{Inew} ∪ {(r̂i, r̂j}, Jnew} = {{Inew} ∪ {(r̂i, r̂j}, ρij} if and only if 
|Inew ∪ {r̂i, r̂j}| ≥ rmin . This procedure is continued for other all possible pair of seed rows 
to generate all possible maximal biclusters. Please refer to the complete Algorithm 1 for 
details.

Computational complexity

To assess the computational complexity of the newly developed RUBic algorithm, we have 
observed that the computational overhead is maximum during the searching process. Once 
we compute the template, we need to search the selected column(s) of every other row for 
its possible inclusion in the bicluster. Let us assume that for the 1st column of the template, 
N comparisons are required to select the row(s) and only K1 rows are not selected due to 



Page 7 of 16Sriwastava et al. BMC Bioinformatics          (2023) 24:435 	

above mentioned constraint (see Fig. 2a, b and Algorithm 1). Consequently we can exclude 
K1 rows in 1st column comparison, then only (N − K1) rows are selected for 2nd col-
umn comparison. Likewise, if K2 rows are excluded during 2nd column comparison, then 
(N − K1 − K2) rows are to be processed during 3rd column comparison. This procedure is 
continued up to the Mth column, where ( N − K1 − K2 − · · · − K(M−1) ) comparisons are 
required to select the row(s) in the last step. Therefore, total number of comparisons which 
are required for the selection of rows for one bicluster can be formulated as:

where C = (K1 + K2 + · · · + K(M−1) ) is a large constant and M is number of columns 
and N is number of rows. Now let us derive the best case complexity where in 1st col-
umn comparison, all the rows except one are excluded as per our designed criteria. So, 
in first step, it takes N comparisons and in each remaining (M − 1) steps there is only 
requirement of one comparison. So total number of comparison required in best case is: 
Tbest = N + (M − 1). In the worst case scenario, every column of each row satisfies our 
designed criteria. So it requires maximum Tworst = N ×M number of comparisons in 
the worst case.

However, for the average case, the probability (Pi) of successful search for each decimal 
number (0, . . . , 15) of any row in V is different. For (0, 15) this probability, P0 = P15 =

1
16

 , 
because they occur only once in their respective sets V0 and V15 . For the numbers 1, 2, 4 and 
8, P1 = P2 = P4 = P8 =

8
16

 . Likewise, P3 = P5 = P6 = P9 = P10 = P12 =
4
16

 and finally, 
P7 = P11 = P13 = P14 =

2
16

 . Therefore, the probability of successful search of any number 
(0 . . . 15) of any row in V may be estimated as: 1

16

∑15
(i=0) Pi =

66
16×16

∼
= 1/4.

So, on average, in each column comparison, 25% of the rows are selected from analyses in 
subsequent columns. Therefore, if N comparisons are required in the 1st column compari-
son, N

4
 comparisons are required in the 2nd column, N

42
 comparisons in the 3rd column and 

so on. Therefore, total number of average case comparisons Taverage is estimated as follows:

where C ′ is a constant and k is sufficiently large. From the above formulation we can say 
the average case complexity of the developed RUBic algorithm is O(N), i.e., linearly pro-
portional with the number of rows in the input vector.

(1)

Tgeneral =N + (N − K1)+ (N − K1 − K2)+ · · · + (N − K1 − K2 − KM−1)

=

M∑

i=1

N − (

M−1∑

i=1

K1 +

M−2∑

i=1

K2 + · · ·

2∑

i=1

KM−2 + KM−1)

=M × N − {K1 × (M − 1)+ K2 × (M − 2)+ · · · + 2KM−2 + KM−1}

=M × N −M × (K1 + K2 + · · · + KM−1)− (K1 + K2 + · · · + KM−1)c

=M × (N − (K1 + K2 + · · · + KM−1))− (K1 + K2 + · · · + KM−1)

=M × (N − C)− C

(2)

Taverage =N +

N

4
+

N

42
+ · · · +

N

4k
+ C

′

; {4
k
≤ N }

=N ×

1− 1

4k

1− 1
4

+ C
′

=N × lim
k→∞

1− 1

4k

1− 1
4

+ C
′
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Experimental results
To assess the performance of the developed RUBic algorithm, we have evaluated its 
behaviour in terms of the execution time and quality of the biclusters generated on both 
synthetic and experimental biological datasets. Our biclustering algorithm is able to 
execute in two modes, base-mode and flex-mode depending on the two basic param-
eters and an additional filtering by symmetric clusters removal. At base-mode, we set the 
rmin = 2 and cmin = 2 to extract optimal clustering which provides maximal biclusters. 
We have executed our base-mode RUBic on the synthetic data and shows the perfor-
mance improvement with state-of-the-art. However, we have evaluated our algorithm 
with two biological datasets in flex-mode on (a) protein–protein interaction dataset and 
(b) real gene expression dataset.

Synthetic data analysis

In the current experiment, three sets of synthetic datasets were used to assess the per-
formance of the developed algorithm and compare it with the existing state-of-the-art 
methods. We compared the performance of the base-mode RUBic with the existing 
fast model BiBit, as both generate maximal clusters. However, we excluded the very 
recent methods ARBic and QUBIC2 from this comparison as they are not designed for 
maximal cluster generation. Moreover, ARBic and QUBIC2 are unable to execute with 
rmin = 2 and cmin = 2 values, which causes inconsistency in clustering.

In the first experiment, synthetic binary matrices of size 200× 200 are used from 
the BiBit data repository (Match_score_density_200×200_csv) [24], with varying den-
sity and overlapping characteristics. There are ten groups of 200× 200 matrices in 
which each group contains 10 matrices with varying density of 1’s from 5 to 50% with 
step wise increment of 5%. We have evaluated the average number of extracted biclus-
ters in these ten groups of matrices and also estimated the average time of execu-
tion in each ten groups. In our experimental setup, the RUBic algorithm took ∼ 71.1 
s to process 100 synthetic matrices of this dataset, whereas BiBit [24] took ∼ 3.4 h 
to complete the same task (see Table 1). It may be noted that the average time taken 

Table 1  The performance of RUBic and BiBit was evaluated over the synthetic dataset with varying 
density of different 1’s (MATCH_SCORE_DENSITY_200X200_CSV)

ET execution time (in ms)

Group number Density of 1s’ Avg. ET (ms) Avg. bicluster 
number

Avg. match 
score

Avg.ET/ bicluster 
(ms)

RUBic BiBit RUBic BiBit RUBic BiBit RUBic BiBit

1 5 22 480 29 29 1 1 0.755172 16.55172

2 10 51 1609 83 83 1 1 0.613253 19.38916

3 15 97 4912 249 249 1 1 0.390361 19.72771

4 20 163 12,230 634.2 634.2 1 1 0.257332 19.28445

5 25 261 27,539 1429.3 1429.3 1 1 0.182327 19.26754

6 30 476 66,204 3294.1 3294.1 1 1 0.144592 20.09769

7 35 839 126,517 6070.4 6070.4 1 1 0.138162 20.84158

8 40 1206 219,214 9472.3 9472.3 1 1 0.127297 23.14266

9 45 1620 320,150 12,977.7 12,977.7 1 1 0.124814 24.66927

10 50 2376 446,627 15,248.2 15,248.2 1 1 0.155848 29.2905
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to extract a bicluster is decreasing with increasing density, in case of RUBic. RUBic 
takes 0.29  ms on average over all the bicluster produced whereas BiBit [24] takes 
21.23 ms for the same purpose. Altogether, RUBic generated exactly the same num-
ber of biclusters in comparison to the 494, 872 biclusters generated by BiBit [24]. We 
have also evaluated the cluster quality by estimating the match scores [23] between 
the biclusters generated by the two methods. The average of maximum match scores 
of all biclusters generated by RUBic with respect to the BiBit [24] and vice-versa are 
exactly the same. Overall, same biclusters are extracted by RUBic, in much lesser 
time. Detailed results on this synthetic dataset are compiled in the Table 1.

In the second synthetic data setup, to examine the scalability of the developed algo-
rithm, we have worked over ten groups of matrices from size 50× 50 to 500× 500 
with an increase of 50 rows and 50 columns in each group. Each group is having 10 
matrices with the density of 1’s varying from 10 to 100% with an increment of 10% in 
each step. This dataset is also taken from the BiBit data repository (Performance_test_
csv) [24] and the performance of the RUBic method over these ten groups of matrices 
is shown in Fig. 3. Table 2 shows the detailed results on the average time of execution 
over these ten groups of matrices. We can observe how the number of biclusters var-
ies over these ten groups as the dimensionality increases. We have also plotted the 
average time of execution per bicluster over these groups to give an idea of the per-
formance variation of RUBic with respect to scalability.

In the third category of synthetic dataset (Match_score_csv) [24], 11 different matri-
ces of sizes 100× 100 to 110× 110 with varying degree of overlapping are implanted; 
ground-truth biclusters of size 10× 10 to 20× 20 are used. We have used the aver-
age bicluster relevance which measures up to what level the mined biclusters repre-
sent ‘true’ biclusters which we have already introduced in the dataset. We have used 
the average module recovery to know how far each of the true biclusters is recovered. 
Both of the measures are normalized between (0, 1), where higher value reveals that 
the set of generated biclusters is same as to true set of biclusters and 0 represents that 
the sets are disjoint [23]. The objective of this experiment was to evaluate average 

Table 2  The performance of RUBic was evaluated over the synthetic datasets with varying 
dimensions (PERFORMANCE_TEST_CSV)

ET execution time (in ms)

Group number Matrix dimension Avg. ET (ms) Avg no. of biclusters Avg. ET/
bicluster 
(ms)

1 50 × 50 49.9 925.5 0.053917

2 100 × 100 289.2 4026.3 0.071828

3 150 × 150 1101.6 9339.2 0.117954

4 200 × 200 2882.5 16,960.2 0.169957

5 250 × 250 6631.7 26,967.1 0.245918

6 300 × 300 12,670.4 39,366.9 0.321854

7 350 × 350 24,157.6 54,098.3 0.44655

8 400 × 400 43,243.3 71,116 0.608067

9 450 × 450 80,461.4 100,475.9 0.800803

10 500 × 500 93,831.5 111,868.9 0.838763
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bicluster relevance and module recovery of the two methods, RUBic and BiBit [24], 
under consideration. Table  3 shows that both the methods extract the exactly the 
same biclusters with similar bicluster relevance and module recovery scores.

Biological data analysis

We have also assessed the performance of the RUBic method on the latest biological 
datasets, the Homo sapiens protein–protein interaction (PPI) dataset [29]. Initially it 

Fig. 3  Experimental results of RUBic on 10 groups of matrices of dimension N × N. Each group contains 
10 matrices with density of 1 s’ varying from 10 to 100 with step of 10%. a Average number of biclusters 
extracted, b average time of execution, c average time per bicluster
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contained 6, 247 number of protein–protein interactions. We have removed self-inter-
actions from the dataset which reduces it to 5823 number of interactions only. However, 
it only contains 4085 number of unique proteins and we mapped it into a binary matrix 
of size 4085× 4085 where 1’s represent interaction and 0’s represent non-interaction 
among the corresponding proteins. We have extracted the data for extracting biclus-
ters with minimum number of row as 2 and minimum number of column as 2. We have 
observed that our method RUBic generates 1840 maximal biclusters in ∼ 48.6  s. Then 
the same dataset is used for BiBit [24] and it generates the same 1, 840 number of biclus-
ters in ∼ 251.6 s. We have also worked over the central nervous system (CNS) embry-
onic tumor gene expression dataset [30] of size 7129× 40 were considered. We have also 
executed both modes of RUBic (base and flex). In this biological dataset, RUBic-base 
generates 747,069 maximal biclusters in ∼ 101  min, whereas, BiBit [24] produces the 
same number of biclusters in ∼ 56 h (see Table 4).

Table 3  The performance of RUBic and BiBit was evaluated over implanted biclusters of varying 
sizes (10 × 10 to 20 × 20) with different overlapping degrees on (MATCH_SCORE_CSV)

Group 
number

Overlapping 
degree (%)

Matrix size Avg. bicluster relevance Avg. module recovery

RUBic BiBit RUBic BiBit

1 0 100 × 100 1 1 1 1

2 1 101 × 101 1 1 1 1

3 2 102 × 102 0.586039 0.586039 1 1

4 3 103 × 103 0.612996 0.612996 1 1

5 4 104 × 104 0.63648 0.63648 1 1

6 5 105 × 105 0.657143 0.657143 1 1

7 6 106 × 106 0.675481 0.675481 1 1

8 7 107 × 107 0.691877 0.691877 1 1

9 8 108 × 108 0.702873 0.702873 0.989474 0.989474

10 9 109 × 109 0.716418 0.716418 0.99 0.99

11 10 110 × 110 0.728741 0.728741 0.990476 0.990476

Table 4  The performance of RUBic and BiBit was evaluated over a protein–protein interaction (PPI) 
dataset of Homo sapiens and a Central Nervous System (CNS) embryonic tumor gene expression 
dataset

Dataset Methods Execution time (ms) # of biclusters

Human PPI BiBit 251,652 1840

RUBic-base 48,588 1840

RUBic-flex 32,156 131

ARBic 1,055,457 204

QUBIC2 32,789 189

CNS BiBit 202,308,623 747,069

RUBic-base 6,066,520 747,069

RUBic-flex 9804 1069

ARBic 68,920 132

QUBIC2 68,137 1508
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Performance on expression datasets

To compare RUBic with other algorithms on real datasets with a large number of 
columns ( > 500 ), we evaluated five datasets from E.  coli, yeast, and human tissues. 
To ensure consistency between the algorithms, we conducted experiments using 
RUBic-flex algorithm with two parameter ( rmin , cmin ) values synchronized with both 
ARBic and QUBIC2. We have executed all the algorithms using the optimal param-
eters specified in their respective publications on these five datasets [30]. First, all 
the gene expression values are discretized into binary matrix using Mixture of Left 
Truncated Gaussian Distributions model as described in [26]. On these binary pat-
ters, RUBic-flex is employed to extract the significant biclusters. It has been observed 
that in all 5 datasets, RUBic-flex shown a significant performance improvement in 
terms of total execution time speed-up (see Table  5) and average time per clusters 
compared to ARBic and QUBIC2. However, in average time per cluster, RUBic also 
surpass ARBic and QUBIC2 in all datasets with only exception of E. coli Colombos as 
depicted in Fig. 4. In all these datasets, ARBic generates significantly less number of 
clusters, where in E. coli Colombos and Yeast DREAM5 dataset, RUBic produces less 
clusters compared to QUBIC2 and rest three datasets RUBic generates higher num-
ber of clusters with less execution time. The detailed statistics of generated clusters 
and corresponding execution time (ET) are reported in Table 5.

Fig. 4  Average execution time ( −log10(AvgET/cl) ) per cluster on five real datasets

Table 5  Significance speed up of RUBic on five real datasets measured in terms of execution time 
(s)

Cls number of clusters, ET execution time (in s)

Dataset Genes Conditions ARBic QUBIC2 RUBic

Cls ET Cls ET Cls ET

E. coli colombos 2093 2470 267 3215.451 2869 319.55 598 210.41

E. coli DREAM5 2442 805 137 2143.9128 2821 207.83 3163 145.337

Yeast GPL2529 3178 3025 415 12297.099 3555 1276.55 5668 752.15

Yeast DREAM5 3292 536 36 14524.4534 3311 1660.93 3163 740.66

Human SEEK GPL5175 4436 2308 296 13954.656 5044 1278.3 6215 1017.81
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As the true biclusters in real datasets are unknown, we evaluated each bicluster 
identified by each algorithm by using KEGG [28] biological pathway-based analysis 
on E. coli Colombos to demonstrate the efficacy of our proposed approach, RUBic. 
To evaluate the significance of our algorithm, we incorporated all the pathways as 
compared to ARBic. We found that the match score of each cluster with the KEGG 
enriched pathway clusters was similar for all three approaches, ARBic, QUBIC2, and 
RUBic. The heatmap representation of the match score per KEGG enriched cluster is 
shown in Fig. 5A. In most of the pathways, based gene annotations are well-mapped 

Fig. 5  Significant match comparison with respect to KEGG annotated clusters. A The heatmap columns 
represents KEGG pathway annotations and row represents biclustering. Each cell represents average 
matching scores of top 50 biclustering solutions with respect to KEGG enriched clusters. B Heatmap for 
reference KEGG clusters with expression values. C Represents the heatmap for expression level correlation 
matrix from resultant biclusters of RUBic-Flex, QUBIC2 and ARBic. CoH correlation hits, indicated number of 
common genes between KEGG and other cluster solutions. Red boxed cells within the heatmap represents 
KEGG(eceo2020) enriched gene that are present in the respective clusters. D Barplot representation of 
enriched gene count in each clustering approach and total number of genes within clusters



Page 14 of 16Sriwastava et al. BMC Bioinformatics          (2023) 24:435 

with the biclusters found in RUBic. Each cell represents average matching scores of 
top 50 biclustering solutions with respect to KEGG enriched clusters (see Fig. 5A).

For example, in the ecoli_colombos dataset for the KEGG pathway‘Two-component 
system’ eco02020 (see expression heatmap Fig.  5B), we found a significant number of 
overlapping genes (34) with RUBic clusters where in QUBIC2 and ARBic extracts 18 and 
29 enriched genes (correlation hits), respectively with a maximal matching cluster. Fig-
ure 5C represents the heatmap for the expression level correlation matrix from result-
ing biclusters of RUBic-Flex, QUBIC2 and ARBic. Red-boxed cells within the heatmap 
represent KEGG(eco02020) enriched genes present in the respective clusters, whereas 
Fig. 5D shows the enriched gene count in each clustering approach and the total number 
of genes within those clusters.

Conclusion
In this work we propose a novel algorithm for fast extraction of biclusters from binary 
datasets. We have evaluated its performance on both synthetic and biological datasets 
and compared the results with the existing state-of-the-art. We also estimated the best 
case, worst case, and average case complexity of the developed method and attempt to 
show that the average case computational complexity is almost linearly proportional to 
the increase in the size of the dataset. Our approach can operate in two modes: base-
mode and flex-mode, resulting in two types of clustering solutions - maximal biclusters 
and biologically plausible biclusters.

The performance evaluation was carried out on three carefully selected benchmark 
synthetic datasets using base-mode and flex-mode to assess the effects of varying den-
sity, degree of overlap, and dimensionality on the developed method. Two biological 
datasets were also considered. The first one was the human PPI dataset of low density 
of interactions in a large square matrix 4085× 4085 used to assess the performance of 
the method. The second dataset was a large CNS gene expression data used to test the 
performance of the method. In the case of the CNS gene expression dataset, RUBic gen-
erated a large number of biclusters in less than 2 h, which took ∼ 56 h by the BiBit algo-
rithm [24]. This observation highlights the robustness of our method with respect to the 
scalability of the dataset.

The performance of RUBic was also evaluated on five gene expression datasets, two 
from E. coli, two from yeast, and one from human tissues. Our RUBic-flex mode biclus-
tering showed a significant performance improvement in terms of total execution time 
speed-up compared to the most recent and popular biclustering strategies ARBic and 
QUBIC2. Finally, the extracted clusters were evaluated and validated with match scores 
of resultant clusters with KEGG enriched pathway clusters for biological significance.

Thus, not only is our RUBic algorithm faster than its competitors, it also produces 
an optimal set of biologically relevant biclusters, and established a new state of the art 
in across several benchmark synthetic, PPI and gene expression datasets, and hence is 
expected to have generalised applications across proteomic and genomic interactions, 
including high impact tasks of automated drug repurposing and drug discovery.
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