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Abstract 

Background:  Pan-genome graphs are gaining importance in the field of bioinformat-
ics as data structures to represent and jointly analyze multiple genomes. Compacted 
de Bruijn graphs are inherently suited for this purpose, as their graph topology natu-
rally reveals similarity and divergence within the pan-genome. Most state-of-the-art 
pan-genome graphs are represented explicitly in terms of nodes and edges. Recently, 
an alternative, implicit graph representation was proposed that builds directly 
upon the unidirectional FM-index. As such, a memory-efficient graph data struc-
ture is obtained that inherits the FM-index’ backward search functionality. However, 
this representation suffers from a number of shortcomings in terms of functionality 
and algorithmic performance.

Results:  We present a data structure for a pan-genome, compacted de Bruijn graph 
that aims to address these shortcomings. It is built on the bidirectional FM-index, 
extending the ability of its unidirectional counterpart to navigate and search the graph 
in both directions. All basic graph navigation steps can be performed in constant 
time. Based on these features, we implement subgraph visualization as well as loss-
less approximate pattern matching to the graph using search schemes. We demon-
strate that we can retrieve all occurrences corresponding to a read within a certain 
edit distance in a very efficient manner. Through a case study, we show the potential 
of exploiting the information embedded in the graph’s topology through visualization 
and sequence alignment.

Conclusions:  We propose a memory-efficient representation of the pan-genome 
graph that supports subgraph visualization and lossless approximate pattern matching 
of reads against the graph using search schemes. The C++ source code of our software, 
called Nexus, is available at https://​github.​com/​bioin​tec/​nexus under AGPL-3.0 license.

Keywords:  Approximate pattern matching, Sequence-to-graph alignment, Search 
schemes, Lossless alignment, Pan-genome visualization

Background
Modern sequencing platforms enable the rapid sequencing of genomes. Whereas one 
consensus reference genome per species used to be the norm, it is now common to 
have thousands of genomes for a single species. New techniques must be developed to 
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efficiently store, manipulate, analyze and visualize large genomic collections (often rep-
resenting a species or clade). These collections, analyzed jointly or used as a reference, 
are referred to as pan-genomes [1, 2]. A key innovation in pan-genomics is the adoption 
of graphs as the primary form of representation, as graphs are inherently suited to sum-
marize multiple genomes into a single data structure by compacting shared regions into 
common nodes. As such, pan-genome graphs can robustly and intuitively encode natu-
ral variation, such as SNPs and structural variation [3].

Pan-genome graphs can be sequence-based, gene-based, or a combination. Sequence-
based pan-genome graphs consist of nodes representing sequences and edges denoting 
adjacencies between them. They are ideal for detailed analysis of highly similar input 
genomes, such as human individuals. On the other hand, gene-based approaches (dis-
tinguishing core genes, dispensable genes and strain-specific genes [4]) are more suitable 
for pan-genomes of distantly related organisms with less conserved sequence content. 
This paper focuses on sequence-based pan-genomes.

The emergence of pan-genome graphs has enabled various functionalities [2]. Exist-
ing bioinformatics analyses relying on a reference genome are often biased towards the 
specific choice of reference [5–9]. Since pan-genome graphs can mitigate this reference 
bias, the Computational Pan-Genomics Consortium proposes the following design 
goal: “Comparisons of short and long sequences (e.g. reads) with the pan-genome ide-
ally results in the corresponding location and the best matching individual genome(s)” [2]. 
Pan-genome graphs also facilitate knowledge extraction through topological analysis [3], 
revealing (the degree of ) similarity between the input genomes, the presence of (struc-
tural) variation, conserved regions, etc. Visualization of the graph enables the investiga-
tion of these features, which is why “all information within the data structure should be 
easily accessible for human eyes by visualization support on different scales” [2].

State‑of‑the‑art pan‑genome representations

The most straightforward approach for storing a pan-genome is creating a linear full-
text index of the concatenated genomes. This approach offers advantages such as effi-
cient storage and alignment using state-of-the-art linear aligners like BWA-MEM [10] 
and Bowtie 2 [11] (both based on the FM-index [12]), while preserving linkage disequi-
librium during alignment. However, downsides include the lack of insight into the pan-
genome’s characteristics and index growth proportional to the sequence-content in the 
pan-genome (although recent developments and implementations regarding the r-index 
[13] might alleviate this issue).

A second prominent form of pan-genome representation is a variation graph, obtained 
by augmenting a linear reference genome with known variation in the population. We 
distinguish acyclic variation graphs and general variation graphs. Some tools support 
only acyclic variation graphs [14–19], lacking representation of complex variations like 
copy number variations, inversions, and translocations. In contrast, the most popular 
sequence-to-graph aligners [20–23] handle general variation graphs. Variation graphs 
can space-efficiently incorporate variation across many individuals and enable the explo-
ration of the graph topology through visualization. However, they depend on the refer-
ence genome that serves as the backbone of the graph, sequence-to-graph alignment is 
complex [24], and chimeric alignments can occur when isolated variations are added to 
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the graph without preserving linkage disequilibrium. Giraffe [21] mitigates the latter by 
including haplotype information.

A third pan-genome representation is the de Bruijn graph (dBG), consisting of nodes 
representing each distinct k-mer in the pan-genome (i.e., the collection of all com-
plete genomes) and edges connecting corresponding nodes for each (k + 1)-mer. Lin-
ear chains of nodes are often merged to create a compacted dBG (cdBG) with a more 
interpretable topology, where nodes represent unitigs and edges indicate divergence [3, 
25]. Colored cdBGs (ccdBGs) assign colors to nodes and edges based on the underlying 
strains in which they occur [26]. Several tools construct assembly (cc)dBGs, and some 
can also perform (pseudo)alignment to them [27–35]. However, since assembly dBGs 
are created from a set of input reads, there is no functionality to maintain the connec-
tion between the graph (nodes) and (the coordinates of ) the underlying input sequences. 
Therefore, these data structures and algorithms are not suitable for our problem, and 
vice versa. Tools that align reads to pan-genome dBGs and can link graph nodes back to 
genome coordinates are relatively scarce. Examples include deBGA [36] for dBGs and 
PuffAligner [37] for ccdBGs (based on the Pufferfish index [38]). However, these tools 
only report coordinates without providing alignment information inside the graph (i.e., 
node paths), and lack support for visualizing regions of interest within the graph.

Beller and Ohlebusch [39] recently proposed a memory-efficient, implicit representa-
tion of a ccdBG, built upon the unidirectional FM-index of the underlying sequences. 
The graph edges are not explicitly stored; instead, the FM-index and a few additional 
arrays enable graph navigation. The FM-index also allows for pattern matching against 
the graph. However, the current implementation is limited to exact pattern matching, 
while approximate pattern matching (APM) is more relevant for bioinformatics applica-
tions due to sequencing errors and genetic variation. Also, only backward traversal of 
the graph is supported due to the underlying unidirectional FM-index, restricting visu-
alization to asymmetric subgraphs (i.e., only the upstream neighborhood of the node(s) 
of interest) [40]. Finally, identifying a node containing a specific k-mer is an O(n) opera-
tion (with n the size of the pan-genome), which can be slow in practice. This paper aims 
to address these limitations.

Contributions

Inspired by the work of Beller and Ohlebusch, we propose a memory-efficient, colored, 
compacted de Bruijn Graph (ccdBG) representation that is built upon the bidirectional 
FM-index [41]. Specifically, we make the following contributions: 

	(i)	 Leveraging the bidirectional FM-index, our graph representation supports bidirec-
tional (i.e., forward and backward) navigation of the graph in O(1) time per step. 
Implementing this functionality in implicit graph representations is non-trivial. 
Additionally, we present an algorithm for visualizing a region of interest with its 
complete neighborhood, generating symmetric subgraphs.

	(ii)	 Our graph representation is built upon the bidirectional FM-index in a modular 
manner, allowing seamless integration of advancements for the bidirectional FM-
index into our pan-genome graph. We demonstrate this by applying search schemes 
[42] to enable efficient lossless approximate pattern matching against our pan-
genome graph under the edit distance metric (allowing substitutions and indels). 
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Search schemes are a class of sequence alignment algorithms that, using a bidirec-
tional full-text index, prioritize quick elimination of unsuccessful search branches 
to minimize runtime. Their excellent performance has been demonstrated for lin-
ear reference genomes [42–45]. Unlike lossy heuristics (often relying on the seed-
and-extend paradigm), search schemes are lossless: they guarantee to retrieve all 
occurrences within a specified error distance. As pan-genome graphs can comprise 
hundreds of similar sequences (e.g., closely related bacterial strains), lossless algo-
rithms that efficiently report all occurrences appear particularly attractive. As out-
puts, we report occurrences both as walks in the graph and as coordinates within 
the underlying sequences.

	(iii)	 We introduce checkpoint k-mers to reduce the time complexity to identify the 
graph node corresponding to a given k-mer from O(n) to O(1) (with n the size of 
the pan-genome). In practice, this results in a significant speedup, with the node 
path identification step being up to 3 times faster. This improvement comes at a 
minimal additional memory cost.

This paper is organized as follows. We first describe the data structure with its sup-
port for graph navigation in constant-time, subgraph visualization, and efficient lossless 
approximate pattern matching using search schemes. In the results section, we demon-
strate the functionalities and performance of our tool. We show that the graph represen-
tation requires far less memory than the underlying bidirectional FM-index. We analyze 
the performance of our approximate pattern matching implementation, comparing it 
with other tools and exploring the impact of the checkpoint sparseness factor. We pre-
sent a case study on a Mycobacterium tuberculosis pan-genome to illustrate the extrac-
tion of information from the graph topology.

Methods
Preliminaries

Zero-based indexing is used for strings and arrays. Consider a text T of length n = |T | 
over alphabet � . In a pan-genome context, T is the concatenation of multiple DNA 
sequences, separated by ‘%’ characters. We denote the number of sequences in T by S. 
The sentinel character ‘$’, a unique character lexicographically smaller than any other 
character in � , is appended to T. Character ‘%’ is the lexicographically second smallest 
character in � . Characters ‘%’ and ‘$’ are referred to as separation characters. A substring 
of a string T is denoted by a half-open interval T[i, j[, with 0 ≤ i ≤ j ≤ n . The ith suffix 
of T, denoted as Ti , is the substring T[i, n[. Analogously, substring T[0, i[ is the ith prefix 
of T.

A de Bruijn graph (dBG) G(V, E) [46] is a directed graph where the nodes are all 
k-mers (i.e., k-length substrings) present in T. We omit k-mers that contain a separation 
character (‘%’,  ‘$’) in any but their last position. A directed edge connects two nodes u 
and v when a (k + 1)-mer exists in T for which the first k nucleotides coincide with u and 
the last k nucleotides coincide with v. If multiple such (k + 1)-mers exist in T, we draw 
the corresponding number of edges between nodes u and v. In other words, G(V, E) is 
a multigraph. Note that we do not create a bidirected genome graph, i.e., a k-mer and 
its reverse complement are not represented by the same node. A compacted de Bruijn 
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graph (cdBG) is obtained by maximally contracting all pairs of connected nodes u and v 
for which v is the sole successor of u and, vice versa, u is the sole predecessor of v. Nodes 
of a cdBG thus represent substrings of T of length ≥ k , referred to as unitigs. A colored 
compacted de Bruijn graph (ccdBG) retains the origin strain of each edge by assigning it 
a color.

Throughout this paper, we illustrate the data structures and algorithms using 
T  =  “CTA​TGT​C%ATA​TGT​TGGTC$” as a small example pan-genome with S = 2 
sequences. Figure 1 shows this example’s ccdBG ( k = 3).

Bidirectional graph data structure

Bidirectional FM‑index

Our implicit representation of the ccdBG G(V, E) is built upon the bidirectional FM-
index of T. Readers less familiar with the bidirectional FM-index are referred to the sup-
plementary material for a brief overview. Table 2 illustrates for our example text T, the 
corresponding suffix array SA [47], Burrows-Wheeler transform BWT [48], LF mapping 
and sorted suffixes. Similarly, Table 4 shows the reverse text Tr , its suffix array SAr , Bur-
rows-Wheeler transform BWTr , LF mapping and sorted suffixes. Note that all variables 
related to the reverse part of the bidirectional FM-index are denoted with a superscript r. 
Bit vectors B and Br will be explained later. Exact occurrences of a search pattern P in T 
are represented in the bidirectional FM-index by two intervals: an interval [b, e[ over SA 
and an interval [br , er[ over SAr , such that all suffixes TSA[i] for b ≤ i < e have P as their 
prefix while suffixes Tr

SAr[i]
 for br ≤ i < er are prefixed by Pr , the reverse of P. For exam-

ple, for search pattern P = “ATG”, SA[3, 5[ refers to the suffixes of T prefixed by P, while 
SAr

[9, 11[ refers to suffixes of Tr prefixed by Pr = “GTA”. Patterns are matched character 
by character: given a pattern P and its intervals [b, e[ and [br , er[ , the intervals [b′, e′[ and 
[br ′, er ′[ of the extended pattern cP (extendBackward) or Pc (extendForward) can 
be found in O(1) time [49]. In other words, the key functionality of a bidirectional FM-
index entails that a partial match can be extended with a character either to the left or to 
the right.

Collection of graph nodes

The data corresponding to the nodes of the ccdBG is stored in a vector G of length 
|V|, with |V| the number of nodes (see Table 1). Each node is assigned a unique iden-
tifier id ∈ {0, . . . , |V | − 1} . This way, the node with identifier id can be accessed at 
G[id] . Each node represents a substring ω of T. This substring is not explicitly stored 
in G. Every node has four attributes: len , mult , left_kmer , and right_kmerr . Here, 

3:CTA

2:ATA

1:TATGT

4:GTTGGT

0:GTC

5:TC$

6:TC%

Strain 1: CTATGTC
Strain 2: ATATGTTGGTC

Fig. 1  ccdBG ( k = 3 ) for T = “CTA​TGT​C%ATA​TGT​TGGTC$”
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len denotes the length of ω , while left_kmer is the left boundary of the SA interval 
that corresponds to ω . Consequently, ω can be deduced from the node attributes as 
T [SA[left_kmer], SA[left_kmer] + len[ . Due to the characteristics of a cdBG, left_kmer 
is also the left boundary of the suffix array interval that corresponds to the leftmost k-
mer of ω . The mult attribute corresponds to the multiplicity of the node, which is the 
number of times ω occurs in T. Hence, mult is also the size of ω ’s suffix array interval: 
SA[left_kmer, left_kmer +mult[ . Analogously, right_kmerr represents for the reverse 
of the rightmost k-mer of a node, the left boundary of its interval in the reverse suffix 
array. Consequently, the reverse suffix array interval of the reverse rightmost k-mer 
of the node can be found as SAr

[right_kmerr, right_kmerr +mult[ . For example, con-
sider the node with id = 4 in Table 1. Its leftmost k-mer, “GTT”, has its left boundary 

Table 1  Vector G for T = “CTA​TGT​C%ATA​TGT​TGGTC$”

Attribute ω is shown only for illustration purposes and is not stored in the G vector

id len mult left_kmer right_kmerr ω

0 3 2 9 6 GTC​

1 5 2 12 17 TATGT​

2 3 1 2 3 ATA​

3 3 1 7 4 CTA​

4 6 1 11 16 GTT​GGT​

5 3 1 14 15 TC$

6 3 1 15 12 TC%

Table 2  Search text T = “CTA​TGT​C%ATA​TGT​TGGTC$” with its suffix array SA, Burrows-Wheeler 
transform BWT, bit vector B (for k = 3 ), LF mapping and suffixes

The entries in parentheses will be detailed later

i T SA BWT B LF TSA[i]

0 C 19 C 1 5 $

1 T 7 C 1 6 %ATA​TGT​TGGTC$

2 A 8 % 1 1 ATA​TGT​TGGTC$

3 T 2 T 0 12 ATGTC%ATA​TGT​TGGTC$

4 G 10 T 0 13 ATG​TTG​GTC$

5 T 18 T 0 14 C$

6 C 6 T 0 15 C%ATA​TGT​TGGTC$

7 % 0 $ 1 0 CTA​TGT​C%ATA​TGT​TGGTC$

8 A 15 T 1 16 GGTC$

9 T 16 G 0 8 GTC$

10 A 4 T 1 17 GTC%ATA​TGT​TGGTC$

11 T 12 T 0 (1) 18 GTT​GGT​C$

12 G 1 C 0 7 TAT​GTC​%ATA​TGT​TGGTC$

13 T 9 A 0 (1) 2 TAT​GTT​GGTC$

14 T 17 G 0 9 TC$

15 G 5 G 0 10 TC%ATA​TGT​TGGTC$

16 G 14 T 0 (1) 19 TGGTC$

17 T 3 A 0 3 TGTC%ATA​TGT​TGGTC$

18 C 11 A 1 4 TGT​TGG​TC$

19 $ 13 G 0 11 TTG​GTC​$
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of the SA interval at index 11 (see Table 2). Similarly, the interval of the reverse right-
most k-mer “TGG” in SAr starts at index 16 (see Table 4).

The end nodes form an exception to the rules defined above: their rightmost k-mer is 
obtained from the (cyclic) extension of ω by the next k − 1 characters in T (e.g., “$CT” 
for node 5 and “%AT” for node 6 in Fig. 1). Additionally, each of the S sequences in T 
gets a distinct end node in vector G, even if they correspond to the same string ω . For 
more detailed information, the reader is referred to [39].

Table 3  IDmap corresponding to Table 2

First row: identifiers deduced from bit vector B, second row: node identifiers

idB 0 1 2 3 4 5 6

id 5 6 2 3 4 0 1

Table 4  Reverse search text T r = “$CTG​GTT​GTATA%CTG​TAT​C” with its suffix array SAr , Burrows-
Wheeler transform BWTr , bit vector Br (for k = 3 ), LF mapping and suffixes

i T r SAr BWTr Br LFr T r
SAr[i]

0 $ 0 C 1 5 $CTG​GTT​GTATA%CTG​TAT​C

1 C 12 A 1 2 %CTG​TAT​C

2 T 11 T 0 12 A%CTG​TAT​C

3 G 9 T 1 13 ATA%CTG​TAT​C

4 G 17 T 1 14 ATC​

5 T 19 T 0 15 C

6 T 1 $ 0 0 CTG​GTT​GTATA%CTG​TAT​C

7 G 13 % 1 1 CTG​TAT​C

8 T 3 T 0 16 GGT​TGT​ATA%CTG​TAT​C

9 A 7 T 0 17 GTATA%CTG​TAT​C

10 T 15 T 0 18 GTATC​

11 A 4 G 0 8 GTT​GTA​TA%CTG​TAT​C

12 % 10 A 0 3 TA%CTG​TAT​C

13 C 8 G 0 9 TATA%CTG​TAT​C

14 T 16 G 1 10 TATC​

15 G 18 A 0 4 TC

16 T 2 C 0 6 TGG​TTG​TATA%CTG​TAT​C

17 A 6 T 0 19 TGT​ATA​%CTG​TAT​C

18 T 14 C 0 7 TGT​ATC​

19 C 5 G 1 11 TTG​TAT​A%CTG​TAT​C

Table 5  IDmapr corresponding to Table 4

First row: identifiers deduced from bit vector Br , second row: node identifiers

idBr 0 1 2 3 4 5 6

id 5 6 2 3 0 1 4
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Auxiliary bit vectors and tables

The bidirectional FM-index (Tables 2 and 4) is supplemented with two auxiliary bit vec-
tors B and Br.
B[i] = 1 if the following two conditions apply: 

1	 k-mer T [SA[i], SA[i] + k[ is the rightmost k-mer of a node.
2	 Suffix TSA[i] is the lexicographically largest suffix of T that has k-mer 

T [SA[i], SA[i] + k[ as a prefix.

For example, “TGT” is the rightmost k-mer of node 1 and is indicated by a 1-bit in B at 
index 18 (Table 2). Again, for the end nodes, the rightmost k-mer is defined differently 
and each of the S distinct end nodes is indicated in B , even if they correspond to the 
same string ω . Hence, the S first bits in B are set to 1 for the end nodes.

Analogously, Br = 1 if the following two conditions apply: 

1	 k-mer Tr[SAr
[i], SAr

[i] + k[ is the reverse of the leftmost k-mer of a node.
2	 Suffix Tr

SAr[i]
 is the lexicographically largest suffix of Tr that has k-mer 

Tr[SAr
[i], SAr

[i] + k[ as a prefix.

For example, “TTG” is the reverse of the leftmost k-mer of node 4 and is indicated by a 
1-bit in Br at index 19 (Table 4).

Note that there are as many 1-bits in B and Br as there are nodes in the graph. We will 
use bit vectors B and Br to obtain node identifiers that correspond to a certain k-mer using 
rank operations. Because the 1-bits in B and Br are ordered differently, we store two node 
identifier mappings, IDmap and IDmapr (see Tables 3 and 5), which transform the rank 
extracted from B and Br respectively, to the effective node identifier. Note that the nodes 
in vector G can be ordered arbitrarily, as long as IDmap and IDmapr are adjusted accord-
ingly. Here, we choose to put the S end nodes at the end of vector G . This way, it can be 
easily assessed if a certain node identifier corresponds to an end node or not.

Building the data structure

The construction process of the underlying bidirectional FM-index is based on the 
implementation of Columba [45, 50]. The construction of components G and B is similar 
to the algorithms described in [39]. Finally, the construction of components Br , IDmap 
and IDmapr is a new contribution. A description of these algorithms would be quite 
lengthy and technical and is therefore omitted from this paper.

Elementary graph operations

To support more complex graph operations (e.g., subgraph visualization and approxi-
mate pattern matching), we need a set of building blocks that aid in navigating the graph. 
We introduce three elementary graph operations: 

1	 Determining the node identifier given the suffix array interval of an extreme k-mer 
(i.e., the left- or rightmost k-mer) of that node.
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2	 Computing the identifier of the predecessor (resp. successor) of a given node by pre-
pending (resp. appending) a character c to its substring ω.

3	 Obtaining the identifier of the predecessor of a node by following a specific edge, i.e., 
by extending a specific occurrence of ω in T.

Determining the node identifier for an extreme k‑mer

Determining a node’s identifier based on its rightmost k-mer is important in the follow-
ing scenario. If a partial match in the graph is extended with a character to the left and, 
as a consequence, a new node is visited, its rightmost k-mer is encountered first. For this 
partial match, the corresponding intervals [b, e[ and [br , er[ over SA and SAr respectively, 
are kept track of by the bidirectional FM-index. All suffixes in interval [b, e[ then start 
with the rightmost k-mer of the new node. This node identifier can then be retrieved 
using function findIDRight (see Algorithm 1). Value idB is obtained by a rank opera-
tion on bit vector B at index b that returns the total number of 1-bits in B[0, b[ (i.e., before 
index b). Next, array IDmap maps value idB to the actual node identifier id which can 
then be used to access vector G . Assuming constant-time rank support on bit vectors 
[51], function findIDRight runs in O(1) time. For example, (rightmost) k-mer “GTC” 
with interval SA[9, 11[ yields idB = 5 (Table 2). Node identifier id = 0 can be found at 
index 5 in IDmap (Table 3).

Analogously, Br plays an important role when matching in the forward direction, as 
it stores information about the leftmost k-mer of each node. When extending a partial 
match with a character to the right and a new node is visited as a consequence, its node 
identifier can be found using function findIDLeft in O(1) time. For example, (reverse 
leftmost) k-mer “TAT” with interval SAr

[13, 15[ yields idBr = 5 (Table 4). Node identifier 
id = 1 can be found at index 5 in IDmapr (Table 5).

Note that for functions findIDRight and findIDLeft, it is not mandatory that the 
input intervals contain all suffixes that are prefixed by the k-mer of interest. In fact, the 
rank operation on line 2 can be called using any index in SA (resp. SAr ), corresponding 
to the k-mer of interest.

Jumping to a neighbor with a character

Given a node identifier id and a character c, function getPredIDWithChar com-
putes the identifier of the predecessor node that is encountered by prepending c to 
substring ω of node id (see Algorithm  2). On line 3, the suffix array interval [b,  e[ 
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contains all suffixes of T whose k-length prefix equals the leftmost k-mer of node id , 
i.e., ω[0, k[ . On line 4, the suffix array interval [b′, e′[ is computed for the (k + 1)-mer 
cω[0, k[ using basic functionality offered by the bidirectional FM-index. If this inter-
val is non-empty (i.e., cω[0, k[ occurs in T), the identifier of the predecessor node is 
determined using function findIDRight (see Algorithm  1). Otherwise, the return 
value of −1 indicates that no such predecessor node exists. This routine can be called 
for all characters c ∈ � to identify all predecessor nodes. Analogously, function get-
SuccIDWithChar illustrates how to find the successor node identifier during for-
ward matching. Both functions execute in O(1) time.

Jumping to a predecessor through a specific edge

Recall that the ccdBG G(V, E) is a multigraph, i.e., there can be multiple edges 
between nodes u and v. With the exception of start and end nodes, each node has 
mult incoming and mult outgoing edges where mult corresponds to the number 
of times its substring ω occurs in T. Jumping to a predecessor through a specific 
edge is thus achieved by extending a specific occurrence of ω in T back to the pre-
decessor node. All occurrences of ω in T of a node are represented in the interval 
SA[left_kmer, left_kmer +mult[ . A specific occurrence of ω in T is indicated by a rela-
tive offset edgeOffset ∈ [0,mult[ in this interval.
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Algorithm 3 shows how the predecessor is found in this scenario. On line 2, value i 
is the SA index such that the specific occurrence of ω starts at T [SA[i]] . The LF opera-
tion provided by the (bidirectional) FM-index computes the SA index j such that 
SA[j] = SA[i] − 1 . Suffix TSA[j] thus has cω as a prefix and we know that the k-length 
prefix of that suffix is the rightmost k-mer of the predecessor node of interest. Its 
identifier is found using the findIDRight function from Algorithm  1. Assuming 
constant-time rank support on bit vectors, algorithm 3 runs in O(1) time.

In the context of this paper, only jumping to a predecessor through a specific edge is 
required. Therefore, we omit its bidirectional counterpart in this section.

Visualization

Using the elementary graph operations discussed before, the visualization of subgraphs 
of the pan-genome graph is achieved as follows. Given a set of seed nodes ( seedNodes ) of 
interest and a user-defined neighborhood size ( maxDepth ), Algorithm 4 generates a list 
of all nodes u for which distance(u, v) ≤ maxDepth for some node v ∈ seedNodes . Here, 
distance(u, v) is defined as the number of edges on the shortest path between u and v, 
irrespective of the orientation of edges. The time complexity of Algorithm 4 is O(Vs|�|) , 
with Vs the number of nodes in the subgraph. It relies on the functions described in 
Algorithm 2. Similarly, Algorithm 5 lists all edges that are part of the subgraph, using the 
functionality provided by Algorithm 3. The subgraph can be visualized in e.g. Cytoscape 
[52].
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The visualization methodology proposed here differs from that of Dede and Ohle-
busch [40] in that sense that their algorithms enable the visualization of only the 
upstream neighborhood of the region of interest, due to the fact that their use of 
the unidirectional FM-index supports only backward traversing of the graph. In con-
trast, our use of the bidirectional FM-index enables backward as well as forward tra-
versing of the graph. Secondly, we separate the processes of matching patterns to the 
graph (see further) and visualizing subgraphs. Therefore, we can offer a very effi-
cient pattern matching implementation, since we assume that users will mostly map 
great numbers of patterns to the graph, only few of which are interesting enough 
to be visualized. In Dede and Ohlebusch’s algorithms on the other hand, these pro-
cesses are connected.

Approximate pattern matching to the graph

In earlier work, Beller and Ohlebusch provided algorithms for exact pattern match-
ing against the ccdBG. In this paper, we extend this functionality to also support 
approximate pattern matching, i.e., the identification of all approximate occurrences 
of a search pattern, allowing for substitutions, insertions or deletions. Formally, 
given a search pattern P, our implementation exhaustively identifies all occurrences 
O of search pattern P in T such that the edit distance ED(O, P) ≤ K . We support val-
ues K = 0, 1, 2, 3 or 4 . Since the upper limit for the number of allowed errors is 4, our 
algorithms are most suited to identify occurrences of short, low-error (e.g., Illumina) 
reads or short seeds of long, higher-error (e.g., Pacific Biosciences, Oxford Nanop-
ore Technologies) reads. The bidirectional FM-index and search schemes can be used 
to support lossless approximate pattern matching.

Once the occurrences O of a search pattern P have been identified, they can be 
located in the graph. Each approximate occurrence O of P is an exact substring of T. 
If the length of the occurrence O is at least the k-mer size, i.e., |O| ≥ k , then O aligns 
to either a single node, or a unique sequence of connected nodes in the ccdBG. Oth-
erwise, if |O| < k , then O can occur at multiple positions in the graph when O is a 
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substring of multiple k-mers. For both cases, we provide algorithms in this section. 
Once a node path has been identified, a subgraph centered around this path can be 
extracted for visualization, using the functionality discussed earlier.

Search schemes

In lossless approximate pattern matching, all occurrences in search text T, within a 
certain Hamming or Levenshtein/edit distance of a query pattern P, are identified. 
In the context of this paper, the edit distance is used, allowing for up to K substitu-
tions, insertions or deletions (collectively called errors). Using the FM-index, lossless 
approximate pattern matching is performed by spelling, character by character, can-
didate occurrences of P in T. Using a naive backtracking algorithm, an excessive num-
ber of unsuccessful branches near the dense root of the search tree will be explored, 
rendering backtracking computationally impractical even for modest values of K [44].

Kucherov et  al. [42] proposed the concept of search schemes, which define how 
lossless approximate pattern matching should be conducted, such that the search 
space is strongly reduced. We adopt their notation. Pattern P is partitioned into p 
parts Pi , with i ∈ {0, ..., p− 1} . A search S = (π , L,U) is a triplet of arrays of size p 
where π is a permutation over {0, ..., p− 1} that defines the order in which the parts of 
P are processed. It must satisfy the connectivity property in that sense that a partial 
match can only be extended, either to the left or to the right, in a contiguous man-
ner. The arrays L and U define the lower and upper bound to the cumulative number 
of allowed errors after each part has been processed. The core idea is to only gradu-
ally increase the number of allowed errors when more parts of P are matched, sig-
nificantly reducing the search space near the dense root of the search tree. To cover 
all possible error distributions over the length of a pattern, multiple searches are 
required that collectively form a search scheme. Search schemes require bidirectional 
matching functionality, i.e., a partial match P can be extended to cP as well as Pc . This 
way, a pattern can be matched by starting with any part of P and then extending that 
partial match with adjacent parts, either to the left or to the right, in arbitrary order.

The simplest examples of search schemes are those based on the pigeonhole princi-
ple [41]. By partitioning search pattern P into p = K + 1 parts, with K the maximum 
allowed number of errors, it immediately follows that for each occurrence of P in T, at 
least one part must be error-free. All occurrences are identified using K + 1 searches 
Si . In search Si , exact matching of piece Pi is performed first, and subsequently 
extended with the remaining pieces to the left and right, allowing up to K errors. For 
example, for K = 2 errors, the search scheme based on the pigeonhole principle is 
given by S0 = (012, 000, 022) , S1 = (210, 000, 022) and S2 = (102, 000, 022) . Search S2 
for example, starts with the exact matching of the middle piece P1 . Next, the match 
is extended to the left, and finally to the right, each allowing up to K = 2 errors. This 
illustrates the need for a bidirectional index.

Kucherov et al. proposed more efficient search schemes. Again, for the case of K = 2 
errors, pattern P is partitioned into K + 1 parts and the search procedure consists of 
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three searches that are shown in Fig. 2. The key difference is that the search schemes 
by Kucherov et al. impose more stringent lower and upper bounds than those based 
on the pigeonhole principle, while still covering any distribution of errors over the 
different parts. In general, for larger values of K, search schemes can become quite 
complex to design and deviate significantly from the search schemes based on the 
pigeonhole principle. Kucherov et al. and Kianfar et al. [43] proposed search schemes 
for up to K = 4 errors. The implementation of search schemes in Columba serves as a 
foundation for the work in this paper.

Identifying an occurrence in the graph

Search schemes allow to efficiently identify all occurrences O of search pattern P in 
T such that the edit distance ED(O, P) ≤ K , with K the maximum number of allowed 
substitutions and indels. Each occurrence O is represented by its suffix array intervals 
[b, e[ and [br , er[ and its length l = |O| such that O = T [SA[b], SA[b] + l[ . Analogously, 
the reverse occurrence Or is found as Or = Tr[SAr

[br], SAr
[br] + l[ . In other words, 

each approximate occurrence O of P is an exact substring of T.
In this section, we provide algorithms to identify the location in the graph that cor-

responds to O. If |O| ≥ k , with k the k-mer size, O has a unique location in the ccdBG 
that can be represented by a sequence of connected nodes, along with a starting posi-
tion in the first node. We consider the case |O| < k later and assume for now that 
|O| ≥ k.

Fig. 2  Search scheme by Kucherov et al. that allows up to 2 errors. The search scheme consists of three 
searches: S0 = (012, 012, 022) , S1 = (210, 000, 012) and S2 = (102, 001, 012) . For each search, the processing 
order (from dark to light) and the lower and upper bounds for the cumulative number of errors after 
processing each part are indicated in the cells representing the parts. The arrows indicate the search direction 
(left-to-right or right-to-left). Search S2 for example, starts with the exact matching of the middle piece 
Pπ [0] = P1 . Second, the match is extended to the left ( Pπ [1] = P0 ), and third, to the right ( Pπ [2] = P2 ). After 
processing part P0 (and P1 ), 0 or 1 errors should have been encountered. Similarly, after processing part P2 
and P0 (and P1 ), 1 or 2 errors should have been encountered. In summary, search S2 covers the following error 
distributions: [0, 0, 1], [0, 0, 2], [1, 0, 0] and [1, 0, 1]. It can be verified that every possible distribution of 2 errors 
among the three parts is covered by at least one of the three searches
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The process involves two steps. First, we determine the node identifier for the left-
most k-mer of O. Next, we identify the node identifiers for the remaining part of O.

Step 1: Determining the First Node Identifier

In general terms, identifying the node that contains the k-mer involves shifting, 
character by character, a k-length window through the node until a k-mer is found 
that can be used to identify the node. Until now, only the extreme (i.e., left- or right-
most) k-mers of a node could be used to obtain the node identifier (cf. Algorithm 1). 
However, the required number of shift operations can grow very large for long nodes 
and can even be O(n) (with n = |T | ) for large values of k. Therefore, we adapt bit vec-
tor B and IDmap such that determining the node identifier for an arbitrary k-mer can 
be achieved in constant time. Specifically, B[i] = 1 if the following two conditions 
apply: 

1	 k-mer T [SA[i], SA[i] + k[ has offset (j · scp) (for j = 0, 1, 2, . . .) in a node or is the 
rightmost k-mer of a node.

2	 Suffix TSA[i] is the lexicographically largest suffix of T that has k-mer 
T [SA[i], SA[i] + k[ as a prefix.

In other words, besides the rightmost k-mer of each node, we also indicate every scp th 
k-mer of a node. We refer to these extra k-mers as ‘checkpoint k-mers’. Their density 
is controlled by the user-defined checkpoint sparseness factor scp . For the example in 
Fig. 1, and assuming a checkpoint sparseness factor of scp = 2 , k-mers “TAT” for node 
1 and “GTT” and “TGG” for node 4 serve as checkpoint k-mers. Hence, three extra 
1-bits in B need to be set at indexes 13, 11 and 16 (see Table 2, in parentheses).

For each checkpoint k-mer, and hence, each additional 1-bit in bit vector B , a cor-
responding entry that points to the node identifier must be added to IDmap . Note 
that due to the checkpoint k-mers, the relationship between the 1-bits in B and their 
corresponding nodes is now surjective, since multiple 1-bits are set in B for nodes 
with len > k . We also add an extra row ( offset ) to IDmap to identify the offset posi-
tion of a k-mer within a node. As a consequence, offset equals len− k when the entry 
corresponds to a rightmost k-mer (the end nodes must again be extended cyclically), 
or j · scp for each jth checkpoint k-mer. The extended IDmap table corresponding to 
the example from Table 2 is illustrated in Table 6. Note that these modifications to bit 
vector B and IDmap do not break the functionality of Algorithm 1.

Table 6  Extended IDmap corresponding to Table 2, with scp = 2

First row: rank of the 1-bits in bit vector B; second row: node identifiers; third row: offset position of the k-mer with respect 
to the beginning of its node. Bold entries indicate checkpoint k-mers

idB 0 1 2 3 4 5 6 7 8 9

id 5 6 2 3 4 0 4 1 4 1

offset 2 2 0 0 3 0 0 0 2 2
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Given a k-mer, we use the basic functionality of the bidirectional FM-index to find 
its interval SA[b, e[ and SAr

[br, er[ . We assume that the k-mer exists in T, i.e., these 
intervals are non-empty. Algorithm 6 shows how to retrieve the node identifier given 
the SA interval [b, e[ of the k-mer. On line 3, we consider the index i of the lexico-
graphically largest suffix that has the k-mer of interest as a prefix. On lines 4 to 6, we 
consider the adjacent k-mers within the node, by advance to the left, character by 
character. More precisely, the LF operation returns the lexicographically largest index 
of the suffix prefixed by such an adjacent k-mer. This process continues until an index 
is encountered that is indicated by a 1-bit in bit vector B. In that case, the identifier 
and offset are retrieved on lines 7 to 8 in a similar manner as in Algorithm 1. By keep-
ing track of the number of times the LF operation was used, the positional offset of 
the k-mer is easily computed on line 9.

For example, consider k-mer “TTG” with SA interval [19, 20[ (see Table 2). Assume 
scp = 2 . Because B[19] = 0 , “TTG” is not the rightmost or a checkpoint k-mer of its 
node. Using the LF operation, we shift the k-length window one character to the 
left: LF[19] yields index 11. Suffix TSA[11] is indeed prefixed by k-mer “GTT”. Because 
B[11] = 1 when scp = 2 (indeed, “GTT” is a checkpoint k-mer), we obtain id = 4 (see 
Table 6).

Note that the information on these checkpoint k-mers is only stored with respect 
to SA (not SAr ): both the SA range and the SAr range will always be available when 
we want to identify the node corresponding to an arbitrary k-mer (pattern matching 
to the bidirectional FM-index keeps track of both ranges in a synchronized manner).

In summary, at most scp − 1 LF operations are needed to find a k-mer that can be 
used to identify its node. Because the LF operation requires O(1) time, the time com-
plexity of Algorithm  6 is O(scp) . The user-defined parameter scp hence controls the 
time-space tradeoff.
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Step 2: Extending the Node Path

The sequence of nodes with which O aligns can now be easily identified as shown in 
Algorithm 7. In lines 2 to 5, the node identifier and start position of the leftmost k-mer 
O[0, k[ is found using the findID function. Next, the nodes to which O[k,  |O|[ aligns 
are identified in lines 6 to 9. Note that because we know that O is an exact substring of 
T, it is not necessary to match O character by character to the graph. Rather, for each 
visited node, one can immediately jump to the end of that node and use the getSuc-
cIDWithChar function from Algorithm 2 to find the next node, etc.

The computation of the suffix array interval [b, e[ of O[0, k[ on line 2 of Algorithm 7 
can be avoided. Recall that each occurrence O is generated character by character using 
search schemes. Therefore, it suffices to save the suffix array interval when the (partially 
generated) occurrence O reaches a length of k. Note that this interval does not necessar-
ily correspond to the leftmost k-mer of O, as O can still be extended to the left and the 
right during the search scheme procedure. Nevertheless, it is easy to adapt Algorithm 7 
such that one can start from any k-mer of O and then extend the path both to the left 
and right, using the bidirectional functionality offered by the data structure.

Finally, we consider the case |O| < k . This means that O could be found in multiple 
locations in the graph. In order to enumerate all locations, it suffices to enumerate, using 
the bidirectional FM-index, all possible k-length extensions of O that exist in T, and to 
identify the corresponding node for each such extension using the FindID function. 
This procedure can lead to redundant results, which can be filtered afterwards.

Results and discussion
We implemented the algorithms of this paper in Nexus, an open-source tool written 
in standard C++14. The source code is available at https://​github.​com/​bioin​tec/​nexus 
under AGPL-3.0 license.

Data and hardware

We built pan-genomes of up to ten human genome builds also used in [40]: (i) five dif-
ferent assemblies of the human reference genome (UCSC Genome Browser assem-
bly IDs: hg16, hg17, hg18, hg19, and hg38), (ii) the maternal and paternal haplotype of 

https://github.com/biointec/nexus
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individual NA12878 (Utah female) of the 1000 Genomes Project [53], and (iii) three long 
read (PacBio) assemblies (GenBank assembly accession numbers: GCA_000001405.27, 
GCA_000002125.2 and GCA_000306695.2). All occurrences of ‘N’ were replaced by a 
randomly chosen nucleotide (‘A’, ‘C’, ‘G’ or ‘T’) to limit the alphabet size. The chromo-
somes within each build are concatenated into one string.

For benchmarking, we consider 100  000 Illumina HiSeq 2000 reads (101  bp) ran-
domly sampled from a larger whole genome sequencing dataset (accession number 
ERR194147). All benchmark experiments were run on a Red Hat Enterprise Linux 8 sys-
tem, using a single core of two 18-core Intel® Xeon® Gold 6240 CPUs running at a base 
clock frequency of 2.60 GHz with 738 GiB of RAM. Reported runtimes include the time 
for the approximate pattern matching procedure, but exclude the time to read the FM-
index and graph data structures from disk.

We also conduct a case study on a pan-genome of 341 M. tuberculosis strains. Anal-
ogous to what was done in [54], we selected one reference strain of H37Rv (GenBank 
accession number CP003248.2), the assemblies of three historical isolates collected from 
KwaZulu-Natal [55, 56] (KZN4207, accession GCA_000669655.1; KZN1435, acces-
sion GCA_000669675.1; KZN605, accession GCA_000669635.1) and the assemblies 
of 337 clinical isolates, also collected from KwaZulu-Natal [54] (subset of BioProjects 
PRJNA183624 and PRJNA235618).

Memory usage

Storing and using the data structure

Recall that we build our implicit pan-genome graph representation directly on top of the 
bidirectional FM-index as implemented in Columba. This additional graph representa-
tion, along with navigation functionality, comes at only a limited supplementary memory 
cost. Table 7 details the memory usage of the components of the bidirectional implicit 
representation of the ccdBG for a pan-genome of 10 human genomes, with sSA = 16 , 
scp = 128 and k = 25 . The suffix array sparseness factor sSA is inversely proportional 
with the number of suffix array entries that are stored. This pan-genome consists of 
30 340 521 923 characters, 66 102 955 graph nodes and 4 166 716 509 graph edges (not 
explicitly stored). The complete representation comprises 95.46 GiB, or approximately 
27.03 bits per character.

Table 7  Overview of the components of Nexus’ data structure, with their respective memory usage

For each component, we indicate its number of entries and the number of bits per entry. The number of entries and 
memory usage of each component is illustrated for the pan-genome of 10 human genomes ( sSA = 16 , scp = 128 , k = 25)

Component Memory usage 
per entry [bits]

Number of entries Total for 10 
human genomes 
(GiB)General 10 human genomes

Bidirectional FM-index 19.75 + 64/sSA n ~ 30 billion bp 83.89

G

B

Br

IDmap

IDmapr

192
1.25
1.25
64
32

|V|
n
n
|V | + |V |cp
|V|

~ 66 million nodes
~ 30 billion bp
~ 30 billion bp
~ 137 million k-mers
~ 66 million nodes

1.48
4.42
4.42
1.02
252.16 MiB

Subtotal graph elements - - - 11.57

Total - - - 95.46
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The five components corresponding to the representation of the graph are stored 
as follows. Node vector G stores attributes len (32 bits), mult (32 bits), left_kmer (64 
bits), and right_kmerr (64 bits) for each node. Bit vectors B and Br support constant-
time rank operations using the rank9 algorithm [51], i.e., 1.25 bits per character (25% 
overhead). Mapping IDmap stores the node identifier (32 bits) and offset (32 bits) for all 
|V| rightmost k-mers and all |V |cp checkpoint k-mers. In the example pan-genome of 
10 human genomes ( scp = 128 and k = 25 ), 70 927 010 checkpoint k-mers are stored. 
Finally, IDmapr stores node identifiers (32 bits) for only the |V| leftmost k-mers. Note 
that unlike the bidirectional FM-index, these five components depend on the value of k.

In conclusion, the memory usage of the components corresponding to this pan-
genome graph comprises less than 15% of the underlying bidirectional FM-index. This 
overhead is limited given the functionality that is provided to navigate and visualize 
the pan-genome graph. By building upon the underlying (bidirectional) FM-index in a 
complementary and modular way, future developments on index structures can likely 
be incorporated easily. The application of search schemes to the graph demonstrates 
this principle. However, the drawback of the bidirectional FM-index is that its space 
usage increases linearly with the pan-genome’s sequence content, limiting our current 
data structure to a few dozen human genomes. To address this, we plan to investigate 
the bidirectional r-index [57] as an alternative. The bidirectional r-index offers the same 
functionality as the bidirectional FM-index, but with sublinear index growth (i.e., pro-
portional to the amount of new variation introduced by additional genomes incorpo-
rated into the pan-genome).

State of the Art Table 8 compares the memory usage of Nexus with that of other linear 
or graph pan-genome representations that can serve as a reference during read align-
ment. Both deBGA and Pufferfish represent the pan-genome as a (cc)dBG and use a 
k-mer hash table based data structure to index that (cc)dBG and label the unitigs with 
their corresponding occurrences in the input genomes. The memory usage of the index 
for deBGA and Nexus is quite similar, while Pufferfish is about 35% more space-efficient. 
However, note that unlike deBGA and Pufferfish, Nexus also provides other function-
alities (such as visualization) next to read alignment. In contrast to a k-mer hash table, 
both the A4 algorithm by Beller and Ohlebusch and Nexus are based on a full-text index 
of the concatenation of all input genomes. Algorithm A4 builds its index based on the 

Table 8  Comparison of Nexus ( sSA = 16 ) with other indexes that support read alignment either to a 
linear index (BWA, Bowtie 2), or to a graph which is used as a reference (Giraffe, deBGA, Pufferfish, A4)

We report index memory usage, and index construction time and peak RAM usage for a pan-genome of 10 human genomes

Tool Pan-genome representation Memory usage 
data structure 
(GiB)

Construction time Construction 
peak RAM 
usage (GiB)

deBGA dBG 90.50 10 hours and 9 minutes 312.13

Pufferfish ccdBG 62.29 17 hours and 27 minutes 139.24

A4 ccdBG 36.91 7 hours and 22 minutes 38.77

BWA Linear concatenation 49.45 13 hours and 47 minutes 42.40

Bowtie 2 Linear concatenation 54.14 26 hours 246.88

Giraffe Variation graph 180.04 21 hours and 3 minutes 638.93

Nexus ccdBG 95.46 15 hours and 44 minutes 269.32
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unidirectional FM-index, whereas Nexus utilizes the bidirectional FM-index, clarify-
ing the increase in memory usage. Note that Nexus’ memory use can be reduced using 
parameter sSA , see Additional file 1: Fig. S1. The indexes of BWA and Bowtie 2 are also 
based on the FM-index of the concatenation of all genomes in the pan-genome. In this 
regard, these linear indexes are conceptually highly similar to the underlying data struc-
ture of the graphs in A4 and Nexus. This similarity is also reflected in their reported 
memory usage. Finally, the Giraffe index comprises 2 to 5 times more memory than any 
other index discussed here.

Building the data structure

For the building process of the bidirectional implicit representation of the ccdBG, we 
prioritize limiting RAM usage over optimizing performance, as we believe the RAM 
usage to be the main bottleneck when building such large-scale graphs. The CPU and 
RAM usage of the building process depends on many factors:

•	 The more (diverse) input data, the more CPU time and RAM is needed.
•	 The smaller the suffix array sparseness factor sSA , the less CPU time and the more 

RAM is needed.
•	 The lower parameter k, the more CPU time is needed.

The checkpoint sparseness factor scp has a relatively small impact on the graph construc-
tion process.

We built the data structure for a pan-genome of 10 human genomes with sSA = 16 , 
scp = 128 and k = 25 . The complete process took 15 hours and 44 minutes, of which 
41% was required for building the underlying bidirectional FM-index and the remain-
ing time was used for constructing the implicit graph representation. Most of the for-
mer time period is spent building the regular and reverse suffix arrays. Most of the latter 
duration is used for building the longest common prefix (LCP) array (which is necessary 
to build the graph representation). The peak RAM usage is 269.32 GiB, which is reached 
during suffix array construction (the complete suffix array must be built before it can be 
stored in sparse form).

State of the Art Table 8 reports the CPU time and RAM required to build the index for 
Nexus and the other tools we compare with. We observe that the results for Nexus are 
in the same ballpark as those for deBGA, Pufferfish and Bowtie 2. A4 leverages a semi-
external building process in order to limit the peak RAM usage, and it appears that this 
algorithm is also more efficient in terms of CPU usage. Also the BWA indexing process 
is more efficient than Nexus in terms of RAM usage. Building the variation graph using 
Giraffe was computationally more intensive than any of the other indexing processes, 
mainly in terms of RAM usage.

Approximate pattern matching performance

Breakdown of Nexus’ performance

Due to the underlying bidirectional FM-index, Nexus provides a very efficient implemen-
tation of lossless approximate pattern matching against the ccdBG. That is, every occur-
rence that matches the pattern of interest within a specified maximum edit distance is 
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reported, along with its corresponding positions in the sequences of the pan-genome. 
In Table 9, we analyze the runtimes for performing exact pattern matching using A4 and 
Nexus ( K = 0 ), and approximate pattern matching using Nexus ( K = {1, 2, 3, 4} ). Note 
that A4 does not provide the option to match patterns approximately.

As can be observed in Table 9, Nexus performs pattern matching 4.8 times faster than 
A4. Moreover, whereas A4 reports only the node path in the graph for each occurrence, 
Nexus also reports the position(s) with respect to the original reference text. For Nexus, 
Table 9 provides a breakdown of total runtime as follows: approximate pattern matching 
against the underlying FM-index (i.e., finding the SA interval(s)), finding the node paths 
corresponding to each occurrence found in the former procedure, and performing post-
processing (i.e., finding all occurrences in the original reference text using suffix array 
accesses, extracting the corresponding pan-genome sequence identifier, and filtering 
these text occurrences). Note that a single search pattern can have multiple occurrences 
in the graph (in case of approximate pattern matching, i.e., K > 0 ) and that each individ-
ual occurrence in the graph can have multiple underlying text occurrences (in case it is 
repeated within or between strains). From this breakdown, we conclude that the fraction 
of time spent on finding node paths is limited. For approximate pattern matching to the 
graph, extracting the node path corresponding to the occurrences only requires about 
11% of the total runtime. In contrast, the post-processing step (which is only present in 
sequence-to-graph aligners that report coordinates with respect to the underlying refer-
ence sequences) requires a substantial amount of time (40 to 50%).

Alignment sensitivity analysis

In Table 10, we compare the alignment results of Nexus (for different values of K) with 
other tools that support read alignment to the pan-genome as a reference in some form. 

Table 9  Performance of A4 and Nexus for pattern matching against the graph for different 
maximum allowed edit distances: K = {0, 1, 2, 3, 4}

We aligned 100 000 Illumina reads (length 101 bp) and their reverse complement to the pan-genome graph of 10 human 
genomes ( k = 25 , scp = 128 and sSA = 16 – last two parameters only apply to Nexus). Runs were repeated 10 times. 
Performance (expressed in reads per second) is reported along with the 95% confidence intervals. Additionally, for Nexus, 
we provide a breakdown of the total runtime into the runtime for approximate pattern matching using the underlying 
FM-index, identifying the corresponding node path in the graph, and post-processing (identifying and filtering text 
occurrences)

Maximum edit 
distance

A4 performance [reads/s] Nexus performance [reads/s]

APM runtime [s] Node path finding 
runtime [s]

Post-
processing 
runtime [s]

K = 0 2 793 ± 278 13 324 ± 880

2.60 (34%) 2.03 (27%) 2.93 (39%)

K = 1 Not supported 3 274 ± 128

11.31 (37%) 3.80 (12%) 15.52 (51%)

K = 2 Not supported 1 145 ± 31

32.97 (38%) 9.36 (11%) 45.12 (51%)

K = 3 Not supported 472 ± 13

87.89 (41%) 23.17 (11%) 101.08 (48%)

K = 4 Not supported 199 ± 4

253.23 (51%) 52.27 (10%) 196.15 (39%)
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Note that unlike the other aligners, Nexus (and A4) is currently more of a proof-of-con-
cept implementation as it lacks support for certain features such as SAM output. Aligner 
deBGA is left out of the comparison for a few reasons. The authors state that deBGA is 
mainly focused on paired-end read alignment and may therefore not provide strong sup-
port for single-end read alignment. With a small alteration to deBGA’s code we got the 
single-end functionality running, but for reads with a large number of text occurrences, 
a segmentation fault occurs.

The first thing that stands out, is the difference in number of reported text occurrences 
between Nexus and any of the other tools, which highlights the difference in sensitivity 
between lossy and lossless aligners. The average number of text occurrences per read 
varies around 10 for all of the lossy aligners, with a maximum of 20.37 for BWA-MEM. 
This is unsurprising since the pan-genome consists of 10 genomes, and we expect some 
reads to appear at multiple positions due to duplications. From Nexus’ results however, 
we learn that these tools miss quite some alignments: even at K = 0 (i.e., exact align-
ment), Nexus identifies an average number of 28.38 text occurrences per read. This is 
because some reads have an extremely high number of text occurrences in the pan-
genome (up to 37 872 exact text occurrences). For such reads, only a limited subset of 
text occurrences (or none at all) is reported by the other tools. This trend continues for 
a higher number of allowed errors: the number of text occurrences increases exponen-
tially, due to the highly abundant reads (up to 227 347 text occurrences for some reads at 
edit distance 4).

The average number of graph occurrences (i.e., node paths) per read shows a simi-
lar increasing trend, but not as pronounced. This was to be expected, as one graph 

Table 10  Comparison of the alignment results of Nexus with other tools that support read 
alignment to the pan-genome in some form

For Nexus, we perform approximate pattern matching with different maximum allowed edit distances: K = {0, 1, 2, 3, 4} . 
We ran 10 experiments for aligning 100 000 Illumina reads of length 101 bp as well as their reverse complement to the pan-
genome of 10 human genomes. The pan-genome dBGs are built for k = 25 , Nexus’ additional parameters are scp = 128 
and sSA = 16 . In terms of alignment output, we report the average number of reported text occurrences (i.e., in the form 
of a coordinate with respect to one of the input sequences) per read, the average number of graph occurrences (i.e., in the 
form of a node path) per read, and the fraction of reads that has at least one occurrence. In terms of performance, we report 
the average number of reads aligned per second, the average number of text occurrences reported per second, and the 
peak RAM usage of the alignment process. For BWA-MEM and Giraffe, two sets of text occurrences are reported: one with 
clipped alignments included and one with clipped alignments filtered out. For Bowtie 2 and Giraffe, the maximum number 
of alignments per read is capped at 10

The best result in each column is indicated in bold

Tool Avg. nr. of text 
occurrences/
read

Avg. nr. of graph 
occurrences/
read

Fraction of 
aligned reads

Performance Peak RAM 
usage 
[GiB][reads/s] [text occs/s]

PuffAligner 11.79 Not reported 98.17% 7 216 85 724 62.44

A4 Not supported 0.90 89.39% 2 793 Not supp. 38.57
BWA-MEM 20.37/19.57 Not applicable 99.95/99.60% 1 430 29 113/27 975 49.80

Bowtie 2 9.92 Not applicable 99.56% 2 591 25 705 40.08

Giraffe 7.80/7.68 Not reported 98.36/96.95% 18 143/141 284.53

Nexus, K = 0 28.38 0.90 89.39% 13 324 378 198 90.71

Nexus, K = 1 94.01 2.14 95.11% 3 274 307 831 90.71

Nexus, K = 2 228.05 7.88 96.69% 1 145 261 124 98.08

Nexus, K = 3 450.76 23.17 97.47% 472 212 799 99.08

Nexus, K = 4 782.70 46.56 97.98% 199 156 133 100.59
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occurrence can correspond to many text occurrences. A4 and Nexus (at K = 0 ) produce 
identical results. None of the other tools report graph occurrences, which emphasizes a 
core difference with our approach: next to the text coordinates, Nexus reports the cor-
responding node paths that were identified in the graph, which can be used for visualiza-
tion and downstream analysis.

From the fraction of aligned reads, we learn that the state-of-the-art aligners are able 
to align slightly more reads than Nexus. This is a consequence of the hard limit of edit 
distance 4, which is imposed by Nexus as of now, while the other aligners are able to 
detect occurrences that have 5 (or more) errors. To address this limitation, Nexus can 
easily be extended to support search schemes for edit distance 5 (or higher). Moreover, 
we intend to develop an implementation for gapped alignment as well, to support the 
detection of longer indels.

In-Depth Pairwise Sensitivity Comparisons Upon performing an in-depth pairwise 
analysis of the aligned reads by Nexus ( K = 4 ) versus graph aligners PuffAligner or 
Giraffe (Additional file  1: Fig.  S2), two distinct subsets of reads were each time iden-
tified, which could only be aligned by one of the tools. These subsets characterize the 
different search spaces of the two aligners. In both cases, the reads that are exclusively 
aligned by Nexus often correspond to a high number of text occurrences (i.e., multimap-
ping reads). The reads exclusively aligned by PuffAligner or Giraffe tend to correspond 
to 10 or 8 text occurrences, respectively. These occurrences contain over 4 errors and are 
therefore missed by Nexus. Giraffe has an unexpected median of 8 text occurrences per 
read. Moreover, the distribution of Giraffe’s text occurrences across the 10 genomes in 
the pan-genome is uniform (Additional file 1: Fig. S3). These observations indicate that 
Giraffe is unsuitable for aligning reads to pan-genomes consisting of multiple complete 
genomes.

A pairwise comparison between Nexus and linear aligners BWA-MEM and Bowtie 2 
reveals that, in this case, there are (virtually) no reads exclusively aligned by Nexus (not 
shown). Upon further investigation however, we observe that although these linear 
aligners excel at identifying at least one occurrence for nearly all reads, they are more 
insensitive to detecting all (almost) equally good alternative alignments. Figure 3 shows 
a detailed comparison of the occurrences reported by Nexus and BWA-MEM. The left 
panel demonstrates that Nexus identifies 40 times more occurrences than BWA-MEM, 
98.30% of which are reported exclusively by Nexus. On the other hand, 32.05% of BWA-
MEM’s alignments are not found by Nexus. The middle panel of Fig. 3 shows that, apart 
from 118 exceptions, the reads exclusively aligned by BWA-MEM correspond to an edit 
distance larger than 4, which falls outside Nexus’ current limitations. These 118 excep-
tions are in fact also reported by Nexus, but at a slightly different coordinate in the ref-
erence genome. Furthermore, Nexus is guaranteed to report each alignment with its 
minimal edit distance (right panel of Fig. 3). Additional file 1: Figure S4 illustrates how 
Nexus accurately reports the minimal edit distance for an example read. The same anal-
ysis conducted with Bowtie 2 yields similar conclusions (see Additional file 1: Fig. S5; 
Table  S3). In summary, Nexus’ core strength is complete sensitivity within its defined 
limitations, whilst BWA-MEM for instance only finds 35.75% of all exact alignments and 
only 0.16% of all alignments within an edit distance of 4.
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Alignment performance analysis

Table 10 also reports three performance metrics. In terms of CPU time usage, PuffA-
ligner, BWA-MEM and Bowtie 2 are the most efficient fully functional aligners in our 
comparison. Based on the number of reads mapped per second, Nexus is almost two 
times faster than PuffAligner at K = 0 , and faster than BWA-MEM and Bowtie 2 even 
at K = 1 . For higher values of K on the other hand, Nexus appears to be slower. How-
ever, based on the number of reported text occurrences per second, Nexus is signifi-
cantly faster than any other aligner in our comparison. In other words, Nexus’ perceived 
lower performance per read is primarily due to it reporting a larger number of occur-
rences compared to other tools. In cases where the focus is solely on obtaining the opti-
mal alignment(s) instead of all possible alignments within a specific edit distance, we 
propose a multi-stratum design gradually increasing the value of K until the optimal 
alignment(s) for a read are found. As such, the same alignment fraction reported for 
K = 4 can be reached at a much higher speed. The results for peak RAM memory usage 
are similar to what was reported in Table 8. In conclusion, despite Nexus detecting all 
occurrences within a specified edit distance, it achieves similar or even better perfor-
mance levels compared to its competitors.

The effect of scp and k on Nexus’ memory usage and APM performance

The use of checkpoint k-mers reduces the time complexity to identify the node in the 
graph that corresponds to an arbitrary k-mer to constant time at the cost of higher 
memory requirements. In Fig.  4, we analyze this time-space tradeoff by performing 
APM on a pan-genome of 10 human genomes for different values of scp and k. We also 
benchmarked without using checkpoint k-mers ( scp = ∞ ). We observe that for k = 50 
and k = 75 , decreasing scp results in faster node path extraction (Fig. 4, left). For k = 25 , 
we see that scp has only a limited effect on runtime. This is because, in that case, the 

Fig. 3  Analysis of the read alignment results of BWA-MEM (without clipped alignments) and Nexus ( K = 4 ) 
for mapping 100 000 Illumina reads of length 101 bp as well as their reverse complement to the pan-genome 
graph of 10 human genomes. Left: upset plot that shows the average number of occurrences per read 
reported by both tools, or exclusively by one tool. Middle: distribution of the reported number of occurrences 
(on logarithmic scale) in function of the corresponding edit distance. We distinguish occurrences reported by 
both tools (plotted in function of the edit distance reported by Nexus), and those reported uniquely by only 
one of the tools. Right: scatter plot visualizing the common occurrences where the edit distance reported 
by Nexus does not match that of BWA-MEM. In total, 2 258 such occurrences are observed, 9 of which are 
reported at an edit distance of 23 and 3 by BWA-MEM and Nexus, respectively (not shown in the scatter plot). 
Additional file 1: Table S2 lists the same information
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median node length is short (28 characters), which means that even without intermedi-
ate checkpoint k-mers, only few LF-iterations are required to identify the node.

The total memory usage of component IDmap is similar for all three values of k (Fig. 4, 
right). This is because where the average number of checkpoint k-mers per node is lower 
for low values of k, the higher number of nodes in the graph cancels out this effect (and 
vice versa). Note that the memory usage at its highest point ( k = 75 , scp = 8 ) amounts to 
4.89 GiB. This is a significant increase with respect to component IDmapr (83.90 MiB), 
but still only about 5% of the total data structure (Table 7). For a good balance between 
better APM performance and limited additional memory usage, we recommend a 
checkpoint sparseness factor around 128 (default). Finding the node paths for k = 75 
using this default value of scp = 128 for example, is twice as fast than without checkpoint 
k-mers with only 228 MiB additional memory usage.

Case study on the bacterium M. Tuberculosis

In this case study, we demonstrate the potential of visualizing subgraphs and extract-
ing information from the pan-genome graph topology. Specifically, we want to study 
antibiotic resistance in bacteria, as it remains a medically relevant topic for monitor-
ing infectious diseases [54, 58–60]. Therefore, we built a pan-genome containing 340 M. 
tuberculosis strains from KwaZulu-Natal and one H37Rv reference strain, with k = 19 
(which was chosen after manual investigation), to visualize and investigate regions that 
are related to rifampicin resistance. Cohen et al. [54] listed 18 mutations from the RRDR 
region (the Rifampicin Resistance Determining Region, i.e., the 81 bp core region of gene 
rpoB), which is known to be related to rifampicin resistance [61]. From these mutations, 
we select the three that were reported to be observed in more than 50 strains of the 
dataset for closer investigation, as to limit the extent of this case study. Table 11 shows 
these three mutations, along with their coordinates with respect to the reference strain 
and the number of strains in the dataset that carry it.

Using the visualization algorithms discussed earlier, these mutations with their sur-
roundings can be visualized. As the visualization of the complete RRDR region is too 

Fig. 4  Left: average runtime over 10 runs for finding the node paths corresponding to the occurrences of 
100 000 Illumina reads of length 101 bp and their reverse complement to the pan-genome graph of 10 
human genomes, as a function of the checkpoint sparseness factor scp (8 to ∞ ). To find the occurrences, we 
performed approximate pattern matching with a maximum allowed number of errors of K = 4 , using the 
search scheme proposed by Kucherov et al. The pan-genome is built for k = 25 , k = 50 and k = 75 , and 
sSA = 16 . The 95% confidence intervals for the runtime are also indicated. Right: total memory usage of the 
IDmap component as a function of scp
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large to include in this paper, we show the subgraph that contains mutations S450L and 
L452P (i.e., the end of the RRDR region) in Fig. 5. Such visualizations are beneficial dur-
ing hands-on research, as they allow the end-user to manually investigate the regions of 
interest in depth. In this case, we can indeed confirm that the mutations observed in [54] 
are present in our dataset.

Compensatory mutations

Cohen et al. report, “While accumulation of drug-resistance mutations can confer a fit-
ness cost to bacteria, subsequent development of compensatory mutations can amelio-
rate these costs by restoring certain affected physiological functions while maintaining 
drug resistance” [54]. For rifampicin resistance, putative compensatory mutations in 
genes rpoA, rpoC and the non-RRDR regions of gene rpoB have already been discussed 
in previous literature [62–64]. Cohen et al. analyzed these reported compensatory muta-
tions and investigated the pan-genome for new ones. In total, they report 49 putative 
rifampicin compensatory mutations that meet their requirements (i.e., evolved after or 
concurrent to genotypic rifampicin resistance), 26 of which were newly identified. In this 
paper, we only consider putative compensatory mutations that are co-mutated with one 
of the three mutations in Table 11, and that occur at least twice. These limitations leave 
us with 15 putative compensatory mutations, which are reported in the second column 
of Table 12.

In this paper, we set up an independent search for putative compensatory mutations 
by leveraging the functionality of finding the neighboring nodes of a certain node path. 
Specifically, we find the neighboring nodes in the graph for genes rpoA, rpoC and the 
non-RRDR regions of gene rpoB in the H37Rv reference strain, using the visualization 
algorithms. If possible, we assign a coordinate to the neighboring nodes, by jumping 
back to predecessor nodes (Algorithm 3) until a node is encountered that can be unam-
biguously positioned with respect to reference H37Rv (details are omitted). We then 
consider a neighboring node to contain a candidate putative compensatory variation if 
the following conditions are met: 

1	 A coordinate was found within a limited number of steps back in the graph.
2	 The neighboring node contains only strains that carry one of the three mutations 

from Table 11. All strains must carry the same RRDR mutation.
3	 The neighboring node must have a multiplicity of at least two. In other words, the 

candidate putative compensatory variation must appear at least twice.

Table 11  Overview of the mutations in the RRDR region in the rpoB gene of M. tuberculosis reported 
in [54], that are observed more than 50 times

Coordinates are reported with respect to the H37Rv reference strain (zero-based indexing). We also show the number of 
strains in the 341-strain dataset that carry the mutations of interest

Polymorphism identifier Coordinate Number 
of 
strains

D435G 761112 51

S450L 761157 88

L452P 761163 69



Page 27 of 33Depuydt et al. BMC Bioinformatics          (2023) 24:400 	

Applying this workflow to our pan-genome, results in 14 candidate putative compensa-
tory mutation nodes, for which their coordinate (with respect to reference H37Rv), node 
identifier, corresponding RRDR mutation and multiplicity is shown in Table  12. Note 

Fig. 5  Visualization of a subgraph of the pan-genome ccdBG of 341 M. tuberculosis strains ( k = 19 ), 
corresponding to the end of the RRDR region of gene rpoB. The first k − 1 overlapping characters have been 
omitted from each node and numerical node identifiers were replaced by characters A, B, etc., for clarity. The 
original subgraph is shown in Additional file 1: Fig. S6. Parallel edges are collapsed into a single edge, shown 
with its multiplicity. Edge thickness also reflects multiplicity. The reference H37Rv strain follows the path of 
the dominating edges (i.e., node path ADEFGHIK). Except for the lateral inflow of 21 strains on the right (due 
to other mutations in upstream regions), we observe that there are three alternative paths from node A to 
node K: through node B, C or J. These alternative paths are present due to mutations in codons 450 and 452 
(“TCG” and “CTG” in the reference), which are shown in green and blue. Specifically, mutations S450L, S450W 
(not present in Table 11 as it is only observed in 6 strains), and L452P are underlined (codons “TTG”, “TGG”, and 
“CCG” in nodes B, C, and J, respectively)
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that most candidate compensatory genes correspond to the S450L RRDR mutation, as 
was also observed in [54]. We compare our results with the 15 putative compensatory 
mutations reported in [54] we selected previously. We can distinguish three categories in 
Table 12: 2 entries were only reported in [54], 1 entry was only reported by our pipeline, 
and 13 entries correspond to a matching polymorphism reported both in [54] and by our 
pipeline.

Two polymorphisms are missed by our pipeline due to the following reasons:

•	 E750D: the transition from glutamic acid to aspartic acid happens in two ways: from 
“GAG” to “GAC” (node 67460) and from “GAG” to “GAT” (node 108256). Hence, 
they are presented as two separate mutations with a multiplicity of one, which do not 
meet the third condition.

•	 V183G: this mutation can be found in node 61254, but one of the strains that passes 
through it is not genotypically rifampicin resistant (i.e., does not carry an RRDR 
mutation). Hence, this node does not meet the second condition.

In summary, our pipeline detects all putative compensatory mutations from [54] within 
the limits we imposed.

For the entry that is only reported by our pipeline, further research is required. 
First, we investigate the type of the variant: it could be a substitution (silent, missense 
or nonsense), or an insertion/deletion (possibly introducing frameshift). We do this 
manually, based on the visualization of the neighborhood of this variation (see Fig. 6) 
and the codon information of the reference genome on NCBI. As is detailed in Fig. 6, 

Table 12  Overview of the candidate putative compensatory mutations in rpoA, rpoC and the non-
RRDR regions rpoB 

We report the coordinate with respect to the reference H37Rv strain; the name of the mutation (if it is reported in 
[54]); the node identifier in the graph ( k = 19 ) of the candidate (if it is reported by our pipeline); the co-mutated RRDR 
polymorphism, i.e., the mutation from Table 11 which is also carried by all strains that pass through this candidate; and the 
number of strains in the dataset that correspond to this candidate

Coordinate Mutation name Node identifier RRDR mutation Nr. of strains

761246 I480V 97472 S450L 2

761549 V581M 55246 S450L 4

762199 111083 S450L 2

762279 R824L 105067 S450L 2

762287 R827C 109947 S450L 8

762733 Q975H 108299 S450L 5

762891 H1028R 82684 L452P 6

763125 I1106T 61206 L452P, D435G 50

764365 G332S 50267 S450L 2

764819 V483G 96203 S450L 2

765621 E750D S450L 2

766487 V1039A 56977 S450L 9

766489 P1040S 105810 S450L 18

766490 P1040R 92909 S450L 3

767125 V1252L 115316 S450L 5

3878138 V183G S450L 3
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node 111083 contains a silent mutation, which is currently not known to have compen-
satory effects. If a missense mutation had been found, additional research would have 
been required (e.g., verifying the presence of this candidate in multiple, distinct phylo-
genetic clades or verifying that this candidate evolved after or concurrent to genotypic 
rifampicin resistance).

Note that the pipeline discussed in this section is more of an ad hoc solution to the 
problem of finding candidate compensatory mutations corresponding to mutations in 
the RRDR region of rpoB, rather than a general pipeline to be readily applied to other 
problems. Moreover, the choice of parameter k has a big impact on the results of this 
pipeline. Nevertheless, the results from [54] can be reproduced within the limitations 
we impose, without the need for variant calling. Hence, this application clearly shows 
the potential of exploiting the information that is embedded in the pan-genome ccdBG, 
using the graph operations we propose in this paper.

Conclusions
In this paper we proposed Nexus, a memory-efficient representation of the colored 
compacted de Bruijn graph enabling subgraph visualization and lossless approximate 
pattern matching of reads to the graph, developed to store pan-genomes. This implicit 
graph representation is built on top of the bidirectional FM-index in a modular and 
complementary way, with a limited additional memory cost (around 15%). We dem-
onstrated that it allows for easy integration of recent developments for the bidirec-
tional FM-index, by applying search schemes to our pan-genome graph. Using search 
schemes, we provided a very efficient implementation of lossless approximate pat-
tern matching of reads to the graph, showing similar performance to state-of-the-art 
lossy read(-to-graph) aligners. We showed that Nexus’ strength is to identify all pos-
sible occurrences corresponding to a read, even if they are highly abundant. We also 

TGCTC...(+60)...CTGGT24491

CGGCAAGGTCACCCCGAAG71288 TGGCAAGGTCACCCCGAAG111083

GGTGA...(+51)...GGCCC 5413

339

339

2

2

Fig. 6  Visualization of the new candidate putative compensatory mutation at coordinate 762199 from 
Table 12, as a subgraph of the pan-genome ccdBG of the 341-strain M. tuberculosis dataset ( k = 19 ). The first 
k − 1 overlapping characters have been omitted from each node for clarity. Parallel edges are collapsed into 
a single edge, shown with its multiplicity. Edge thickness also reflects multiplicity. The reference H37Rv strain 
follows the path of the dominating edges (i.e., node path 24491-71288-5413). Node 111083 is reported by 
our pipeline to be a candidate putative compensatory variation. The mutation of interest happens in codon 
797, which is indicated in blue. Specifically, codon “GTC” is altered to codon “GTT”, which both translate to 
amino acid valine. Hence, this variation is a silent mutation
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established a use-case demonstrating the advantage of Nexus’ versatility, by combin-
ing both the approximate pattern matching and visualization functionalities to ana-
lyze antimicrobial resistance mutations and their possible compensatory mutations. 
Future work includes extending the implementation to a complete aligner (e.g., pro-
viding SAM output), integrating paired-end read alignment, building a multi-stratum 
search scheme design and extending the search schemes to allow for more than 4 
errors.
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