
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Depuydt et al. BMC Bioinformatics (2023) 24:400
https://doi.org/10.1186/s12859-023-05531-6

BMC Bioinformatics

Pan‑genome de Bruijn graph using
the bidirectional FM‑index
Lore Depuydt1*, Luca Renders1, Thomas Abeel2,3 and Jan Fostier1* 

Abstract 

Background:  Pan-genome graphs are gaining importance in the field of bioinformat-
ics as data structures to represent and jointly analyze multiple genomes. Compacted
de Bruijn graphs are inherently suited for this purpose, as their graph topology natu-
rally reveals similarity and divergence within the pan-genome. Most state-of-the-art
pan-genome graphs are represented explicitly in terms of nodes and edges. Recently,
an alternative, implicit graph representation was proposed that builds directly
upon the unidirectional FM-index. As such, a memory-efficient graph data struc-
ture is obtained that inherits the FM-index’ backward search functionality. However,
this representation suffers from a number of shortcomings in terms of functionality
and algorithmic performance.

Results:  We present a data structure for a pan-genome, compacted de Bruijn graph
that aims to address these shortcomings. It is built on the bidirectional FM-index,
extending the ability of its unidirectional counterpart to navigate and search the graph
in both directions. All basic graph navigation steps can be performed in constant
time. Based on these features, we implement subgraph visualization as well as loss-
less approximate pattern matching to the graph using search schemes. We demon-
strate that we can retrieve all occurrences corresponding to a read within a certain
edit distance in a very efficient manner. Through a case study, we show the potential
of exploiting the information embedded in the graph’s topology through visualization
and sequence alignment.

Conclusions:  We propose a memory-efficient representation of the pan-genome
graph that supports subgraph visualization and lossless approximate pattern matching
of reads against the graph using search schemes. The C++ source code of our software,
called Nexus, is available at https://​github.​com/​bioin​tec/​nexus under AGPL-3.0 license.

Keywords:  Approximate pattern matching, Sequence-to-graph alignment, Search
schemes, Lossless alignment, Pan-genome visualization

Background
Modern sequencing platforms enable the rapid sequencing of genomes. Whereas one
consensus reference genome per species used to be the norm, it is now common to
have thousands of genomes for a single species. New techniques must be developed to

*Correspondence:
Lore.Depuydt@UGent.be; Jan.
Fostier@UGent.be

1 Department of Information
Technology ‑ IDLab,
Ghent University - imec,
Technologiepark 126,
9052 Ghent, Belgium
2 Delft Bioinformatics Lab, Delft
University of Technology, 2628
XE Delft, The Netherlands
3 Infectious Disease
and Microbiome Program, Broad
Institute of MIT and Harvard,
Cambridge, MA 02142, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05531-6&domain=pdf
https://github.com/biointec/nexus

Page 2 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

efficiently store, manipulate, analyze and visualize large genomic collections (often rep-
resenting a species or clade). These collections, analyzed jointly or used as a reference,
are referred to as pan-genomes [1, 2]. A key innovation in pan-genomics is the adoption
of graphs as the primary form of representation, as graphs are inherently suited to sum-
marize multiple genomes into a single data structure by compacting shared regions into
common nodes. As such, pan-genome graphs can robustly and intuitively encode natu-
ral variation, such as SNPs and structural variation [3].

Pan-genome graphs can be sequence-based, gene-based, or a combination. Sequence-
based pan-genome graphs consist of nodes representing sequences and edges denoting
adjacencies between them. They are ideal for detailed analysis of highly similar input
genomes, such as human individuals. On the other hand, gene-based approaches (dis-
tinguishing core genes, dispensable genes and strain-specific genes [4]) are more suitable
for pan-genomes of distantly related organisms with less conserved sequence content.
This paper focuses on sequence-based pan-genomes.

The emergence of pan-genome graphs has enabled various functionalities [2]. Exist-
ing bioinformatics analyses relying on a reference genome are often biased towards the
specific choice of reference [5–9]. Since pan-genome graphs can mitigate this reference
bias, the Computational Pan-Genomics Consortium proposes the following design
goal: “Comparisons of short and long sequences (e.g. reads) with the pan-genome ide-
ally results in the corresponding location and the best matching individual genome(s)” [2].
Pan-genome graphs also facilitate knowledge extraction through topological analysis [3],
revealing (the degree of) similarity between the input genomes, the presence of (struc-
tural) variation, conserved regions, etc. Visualization of the graph enables the investiga-
tion of these features, which is why “all information within the data structure should be
easily accessible for human eyes by visualization support on different scales” [2].

State‑of‑the‑art pan‑genome representations

The most straightforward approach for storing a pan-genome is creating a linear full-
text index of the concatenated genomes. This approach offers advantages such as effi-
cient storage and alignment using state-of-the-art linear aligners like BWA-MEM [10]
and Bowtie 2 [11] (both based on the FM-index [12]), while preserving linkage disequi-
librium during alignment. However, downsides include the lack of insight into the pan-
genome’s characteristics and index growth proportional to the sequence-content in the
pan-genome (although recent developments and implementations regarding the r-index
[13] might alleviate this issue).

A second prominent form of pan-genome representation is a variation graph, obtained
by augmenting a linear reference genome with known variation in the population. We
distinguish acyclic variation graphs and general variation graphs. Some tools support
only acyclic variation graphs [14–19], lacking representation of complex variations like
copy number variations, inversions, and translocations. In contrast, the most popular
sequence-to-graph aligners [20–23] handle general variation graphs. Variation graphs
can space-efficiently incorporate variation across many individuals and enable the explo-
ration of the graph topology through visualization. However, they depend on the refer-
ence genome that serves as the backbone of the graph, sequence-to-graph alignment is
complex [24], and chimeric alignments can occur when isolated variations are added to

Page 3 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

the graph without preserving linkage disequilibrium. Giraffe [21] mitigates the latter by
including haplotype information.

A third pan-genome representation is the de Bruijn graph (dBG), consisting of nodes
representing each distinct k-mer in the pan-genome (i.e., the collection of all com-
plete genomes) and edges connecting corresponding nodes for each (k + 1)-mer. Lin-
ear chains of nodes are often merged to create a compacted dBG (cdBG) with a more
interpretable topology, where nodes represent unitigs and edges indicate divergence [3,
25]. Colored cdBGs (ccdBGs) assign colors to nodes and edges based on the underlying
strains in which they occur [26]. Several tools construct assembly (cc)dBGs, and some
can also perform (pseudo)alignment to them [27–35]. However, since assembly dBGs
are created from a set of input reads, there is no functionality to maintain the connec-
tion between the graph (nodes) and (the coordinates of) the underlying input sequences.
Therefore, these data structures and algorithms are not suitable for our problem, and
vice versa. Tools that align reads to pan-genome dBGs and can link graph nodes back to
genome coordinates are relatively scarce. Examples include deBGA [36] for dBGs and
PuffAligner [37] for ccdBGs (based on the Pufferfish index [38]). However, these tools
only report coordinates without providing alignment information inside the graph (i.e.,
node paths), and lack support for visualizing regions of interest within the graph.

Beller and Ohlebusch [39] recently proposed a memory-efficient, implicit representa-
tion of a ccdBG, built upon the unidirectional FM-index of the underlying sequences.
The graph edges are not explicitly stored; instead, the FM-index and a few additional
arrays enable graph navigation. The FM-index also allows for pattern matching against
the graph. However, the current implementation is limited to exact pattern matching,
while approximate pattern matching (APM) is more relevant for bioinformatics applica-
tions due to sequencing errors and genetic variation. Also, only backward traversal of
the graph is supported due to the underlying unidirectional FM-index, restricting visu-
alization to asymmetric subgraphs (i.e., only the upstream neighborhood of the node(s)
of interest) [40]. Finally, identifying a node containing a specific k-mer is an O(n) opera-
tion (with n the size of the pan-genome), which can be slow in practice. This paper aims
to address these limitations.

Contributions

Inspired by the work of Beller and Ohlebusch, we propose a memory-efficient, colored,
compacted de Bruijn Graph (ccdBG) representation that is built upon the bidirectional
FM-index [41]. Specifically, we make the following contributions:

	(i)	 Leveraging the bidirectional FM-index, our graph representation supports bidirec-
tional (i.e., forward and backward) navigation of the graph in O(1) time per step.
Implementing this functionality in implicit graph representations is non-trivial.
Additionally, we present an algorithm for visualizing a region of interest with its
complete neighborhood, generating symmetric subgraphs.

	(ii)	 Our graph representation is built upon the bidirectional FM-index in a modular
manner, allowing seamless integration of advancements for the bidirectional FM-
index into our pan-genome graph. We demonstrate this by applying search schemes
[42] to enable efficient lossless approximate pattern matching against our pan-
genome graph under the edit distance metric (allowing substitutions and indels).

Page 4 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

Search schemes are a class of sequence alignment algorithms that, using a bidirec-
tional full-text index, prioritize quick elimination of unsuccessful search branches
to minimize runtime. Their excellent performance has been demonstrated for lin-
ear reference genomes [42–45]. Unlike lossy heuristics (often relying on the seed-
and-extend paradigm), search schemes are lossless: they guarantee to retrieve all
occurrences within a specified error distance. As pan-genome graphs can comprise
hundreds of similar sequences (e.g., closely related bacterial strains), lossless algo-
rithms that efficiently report all occurrences appear particularly attractive. As out-
puts, we report occurrences both as walks in the graph and as coordinates within
the underlying sequences.

	(iii)	 We introduce checkpoint k-mers to reduce the time complexity to identify the
graph node corresponding to a given k-mer from O(n) to O(1) (with n the size of
the pan-genome). In practice, this results in a significant speedup, with the node
path identification step being up to 3 times faster. This improvement comes at a
minimal additional memory cost.

This paper is organized as follows. We first describe the data structure with its sup-
port for graph navigation in constant-time, subgraph visualization, and efficient lossless
approximate pattern matching using search schemes. In the results section, we demon-
strate the functionalities and performance of our tool. We show that the graph represen-
tation requires far less memory than the underlying bidirectional FM-index. We analyze
the performance of our approximate pattern matching implementation, comparing it
with other tools and exploring the impact of the checkpoint sparseness factor. We pre-
sent a case study on a Mycobacterium tuberculosis pan-genome to illustrate the extrac-
tion of information from the graph topology.

Methods
Preliminaries

Zero-based indexing is used for strings and arrays. Consider a text T of length n = |T |
over alphabet � . In a pan-genome context, T is the concatenation of multiple DNA
sequences, separated by ‘%’ characters. We denote the number of sequences in T by S.
The sentinel character ‘$’, a unique character lexicographically smaller than any other
character in � , is appended to T. Character ‘%’ is the lexicographically second smallest
character in � . Characters ‘%’ and ‘$’ are referred to as separation characters. A substring
of a string T is denoted by a half-open interval T[i, j[, with 0 ≤ i ≤ j ≤ n . The ith suffix
of T, denoted as Ti , is the substring T[i, n[. Analogously, substring T[0, i[is the ith prefix
of T.

A de Bruijn graph (dBG) G(V, E) [46] is a directed graph where the nodes are all
k-mers (i.e., k-length substrings) present in T. We omit k-mers that contain a separation
character (‘%’, ‘$’) in any but their last position. A directed edge connects two nodes u
and v when a (k + 1)-mer exists in T for which the first k nucleotides coincide with u and
the last k nucleotides coincide with v. If multiple such (k + 1)-mers exist in T, we draw
the corresponding number of edges between nodes u and v. In other words, G(V, E) is
a multigraph. Note that we do not create a bidirected genome graph, i.e., a k-mer and
its reverse complement are not represented by the same node. A compacted de Bruijn

Page 5 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

graph (cdBG) is obtained by maximally contracting all pairs of connected nodes u and v
for which v is the sole successor of u and, vice versa, u is the sole predecessor of v. Nodes
of a cdBG thus represent substrings of T of length ≥ k , referred to as unitigs. A colored
compacted de Bruijn graph (ccdBG) retains the origin strain of each edge by assigning it
a color.

Throughout this paper, we illustrate the data structures and algorithms using
T = “CTA​TGT​C%ATA​TGT​TGGTC$” as a small example pan-genome with S = 2
sequences. Figure 1 shows this example’s ccdBG ( k = 3).

Bidirectional graph data structure

Bidirectional FM‑index

Our implicit representation of the ccdBG G(V, E) is built upon the bidirectional FM-
index of T. Readers less familiar with the bidirectional FM-index are referred to the sup-
plementary material for a brief overview. Table 2 illustrates for our example text T, the
corresponding suffix array SA [47], Burrows-Wheeler transform BWT [48], LF mapping
and sorted suffixes. Similarly, Table 4 shows the reverse text Tr , its suffix array SAr , Bur-
rows-Wheeler transform BWTr , LF mapping and sorted suffixes. Note that all variables
related to the reverse part of the bidirectional FM-index are denoted with a superscript r.
Bit vectors B and Br will be explained later. Exact occurrences of a search pattern P in T
are represented in the bidirectional FM-index by two intervals: an interval [b, e[over SA
and an interval [br , er[over SAr , such that all suffixes TSA[i] for b ≤ i < e have P as their
prefix while suffixes Tr

SAr[i]
 for br ≤ i < er are prefixed by Pr , the reverse of P. For exam-

ple, for search pattern P = “ATG”, SA[3, 5[refers to the suffixes of T prefixed by P, while
SAr

[9, 11[refers to suffixes of Tr prefixed by Pr = “GTA”. Patterns are matched character
by character: given a pattern P and its intervals [b, e[and [br , er[ , the intervals [b′, e′[and
[br ′, er ′[of the extended pattern cP (extendBackward) or Pc (extendForward) can
be found in O(1) time [49]. In other words, the key functionality of a bidirectional FM-
index entails that a partial match can be extended with a character either to the left or to
the right.

Collection of graph nodes

The data corresponding to the nodes of the ccdBG is stored in a vector G of length
|V|, with |V| the number of nodes (see Table 1). Each node is assigned a unique iden-
tifier id ∈ {0, . . . , |V | − 1} . This way, the node with identifier id can be accessed at
G[id] . Each node represents a substring ω of T. This substring is not explicitly stored
in G. Every node has four attributes: len , mult , left_kmer , and right_kmerr . Here,

3:CTA

2:ATA

1:TATGT

4:GTTGGT

0:GTC

5:TC$

6:TC%

Strain 1: CTATGTC
Strain 2: ATATGTTGGTC

Fig. 1  ccdBG ( k = 3 ) for T = “CTA​TGT​C%ATA​TGT​TGGTC$”

Page 6 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

len denotes the length of ω , while left_kmer is the left boundary of the SA interval
that corresponds to ω . Consequently, ω can be deduced from the node attributes as
T [SA[left_kmer], SA[left_kmer] + len[ . Due to the characteristics of a cdBG, left_kmer
is also the left boundary of the suffix array interval that corresponds to the leftmost k-
mer of ω . The mult attribute corresponds to the multiplicity of the node, which is the
number of times ω occurs in T. Hence, mult is also the size of ω ’s suffix array interval:
SA[left_kmer, left_kmer +mult[ . Analogously, right_kmerr represents for the reverse
of the rightmost k-mer of a node, the left boundary of its interval in the reverse suffix
array. Consequently, the reverse suffix array interval of the reverse rightmost k-mer
of the node can be found as SAr

[right_kmerr, right_kmerr +mult[ . For example, con-
sider the node with id = 4 in Table 1. Its leftmost k-mer, “GTT”, has its left boundary

Table 1  Vector G for T = “CTA​TGT​C%ATA​TGT​TGGTC$”

Attribute ω is shown only for illustration purposes and is not stored in the G vector

id len mult left_kmer right_kmerr ω

0 3 2 9 6 GTC​

1 5 2 12 17 TATGT​

2 3 1 2 3 ATA​

3 3 1 7 4 CTA​

4 6 1 11 16 GTT​GGT​

5 3 1 14 15 TC$

6 3 1 15 12 TC%

Table 2  Search text T = “CTA​TGT​C%ATA​TGT​TGGTC$” with its suffix array SA, Burrows-Wheeler
transform BWT, bit vector B (for k = 3 ), LF mapping and suffixes

The entries in parentheses will be detailed later

i T SA BWT B LF TSA[i]

0 C 19 C 1 5 $

1 T 7 C 1 6 %ATA​TGT​TGGTC$

2 A 8 % 1 1 ATA​TGT​TGGTC$

3 T 2 T 0 12 ATGTC%ATA​TGT​TGGTC$

4 G 10 T 0 13 ATG​TTG​GTC$

5 T 18 T 0 14 C$

6 C 6 T 0 15 C%ATA​TGT​TGGTC$

7 % 0 $ 1 0 CTA​TGT​C%ATA​TGT​TGGTC$

8 A 15 T 1 16 GGTC$

9 T 16 G 0 8 GTC$

10 A 4 T 1 17 GTC%ATA​TGT​TGGTC$

11 T 12 T 0 (1) 18 GTT​GGT​C$

12 G 1 C 0 7 TAT​GTC​%ATA​TGT​TGGTC$

13 T 9 A 0 (1) 2 TAT​GTT​GGTC$

14 T 17 G 0 9 TC$

15 G 5 G 0 10 TC%ATA​TGT​TGGTC$

16 G 14 T 0 (1) 19 TGGTC$

17 T 3 A 0 3 TGTC%ATA​TGT​TGGTC$

18 C 11 A 1 4 TGT​TGG​TC$

19 $ 13 G 0 11 TTG​GTC​$

Page 7 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

of the SA interval at index 11 (see Table 2). Similarly, the interval of the reverse right-
most k-mer “TGG” in SAr starts at index 16 (see Table 4).

The end nodes form an exception to the rules defined above: their rightmost k-mer is
obtained from the (cyclic) extension of ω by the next k − 1 characters in T (e.g., “$CT”
for node 5 and “%AT” for node 6 in Fig. 1). Additionally, each of the S sequences in T
gets a distinct end node in vector G, even if they correspond to the same string ω . For
more detailed information, the reader is referred to [39].

Table 3  IDmap corresponding to Table 2

First row: identifiers deduced from bit vector B, second row: node identifiers

idB 0 1 2 3 4 5 6

id 5 6 2 3 4 0 1

Table 4  Reverse search text T r = “$CTG​GTT​GTATA%CTG​TAT​C” with its suffix array SAr , Burrows-
Wheeler transform BWTr , bit vector Br (for k = 3 ), LF mapping and suffixes

i T r SAr BWTr Br LFr T r
SAr[i]

0 $ 0 C 1 5 $CTG​GTT​GTATA%CTG​TAT​C

1 C 12 A 1 2 %CTG​TAT​C

2 T 11 T 0 12 A%CTG​TAT​C

3 G 9 T 1 13 ATA%CTG​TAT​C

4 G 17 T 1 14 ATC​

5 T 19 T 0 15 C

6 T 1 $ 0 0 CTG​GTT​GTATA%CTG​TAT​C

7 G 13 % 1 1 CTG​TAT​C

8 T 3 T 0 16 GGT​TGT​ATA%CTG​TAT​C

9 A 7 T 0 17 GTATA%CTG​TAT​C

10 T 15 T 0 18 GTATC​

11 A 4 G 0 8 GTT​GTA​TA%CTG​TAT​C

12 % 10 A 0 3 TA%CTG​TAT​C

13 C 8 G 0 9 TATA%CTG​TAT​C

14 T 16 G 1 10 TATC​

15 G 18 A 0 4 TC

16 T 2 C 0 6 TGG​TTG​TATA%CTG​TAT​C

17 A 6 T 0 19 TGT​ATA​%CTG​TAT​C

18 T 14 C 0 7 TGT​ATC​

19 C 5 G 1 11 TTG​TAT​A%CTG​TAT​C

Table 5  IDmapr corresponding to Table 4

First row: identifiers deduced from bit vector Br , second row: node identifiers

idBr 0 1 2 3 4 5 6

id 5 6 2 3 0 1 4

Page 8 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

Auxiliary bit vectors and tables

The bidirectional FM-index (Tables 2 and 4) is supplemented with two auxiliary bit vec-
tors B and Br.
B[i] = 1 if the following two conditions apply:

1	 k-mer T [SA[i], SA[i] + k[is the rightmost k-mer of a node.
2	 Suffix TSA[i] is the lexicographically largest suffix of T that has k-mer

T [SA[i], SA[i] + k[as a prefix.

For example, “TGT” is the rightmost k-mer of node 1 and is indicated by a 1-bit in B at
index 18 (Table 2). Again, for the end nodes, the rightmost k-mer is defined differently
and each of the S distinct end nodes is indicated in B , even if they correspond to the
same string ω . Hence, the S first bits in B are set to 1 for the end nodes.

Analogously, Br = 1 if the following two conditions apply:

1	 k-mer Tr[SAr
[i], SAr

[i] + k[is the reverse of the leftmost k-mer of a node.
2	 Suffix Tr

SAr[i]
 is the lexicographically largest suffix of Tr that has k-mer

Tr[SAr
[i], SAr

[i] + k[as a prefix.

For example, “TTG” is the reverse of the leftmost k-mer of node 4 and is indicated by a
1-bit in Br at index 19 (Table 4).

Note that there are as many 1-bits in B and Br as there are nodes in the graph. We will
use bit vectors B and Br to obtain node identifiers that correspond to a certain k-mer using
rank operations. Because the 1-bits in B and Br are ordered differently, we store two node
identifier mappings, IDmap and IDmapr (see Tables 3 and 5), which transform the rank
extracted from B and Br respectively, to the effective node identifier. Note that the nodes
in vector G can be ordered arbitrarily, as long as IDmap and IDmapr are adjusted accord-
ingly. Here, we choose to put the S end nodes at the end of vector G . This way, it can be
easily assessed if a certain node identifier corresponds to an end node or not.

Building the data structure

The construction process of the underlying bidirectional FM-index is based on the
implementation of Columba [45, 50]. The construction of components G and B is similar
to the algorithms described in [39]. Finally, the construction of components Br , IDmap
and IDmapr is a new contribution. A description of these algorithms would be quite
lengthy and technical and is therefore omitted from this paper.

Elementary graph operations

To support more complex graph operations (e.g., subgraph visualization and approxi-
mate pattern matching), we need a set of building blocks that aid in navigating the graph.
We introduce three elementary graph operations:

1	 Determining the node identifier given the suffix array interval of an extreme k-mer
(i.e., the left- or rightmost k-mer) of that node.

Page 9 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

2	 Computing the identifier of the predecessor (resp. successor) of a given node by pre-
pending (resp. appending) a character c to its substring ω.

3	 Obtaining the identifier of the predecessor of a node by following a specific edge, i.e.,
by extending a specific occurrence of ω in T.

Determining the node identifier for an extreme k‑mer

Determining a node’s identifier based on its rightmost k-mer is important in the follow-
ing scenario. If a partial match in the graph is extended with a character to the left and,
as a consequence, a new node is visited, its rightmost k-mer is encountered first. For this
partial match, the corresponding intervals [b, e[and [br , er[over SA and SAr respectively,
are kept track of by the bidirectional FM-index. All suffixes in interval [b, e[then start
with the rightmost k-mer of the new node. This node identifier can then be retrieved
using function findIDRight (see Algorithm 1). Value idB is obtained by a rank opera-
tion on bit vector B at index b that returns the total number of 1-bits in B[0, b[(i.e., before
index b). Next, array IDmap maps value idB to the actual node identifier id which can
then be used to access vector G . Assuming constant-time rank support on bit vectors
[51], function findIDRight runs in O(1) time. For example, (rightmost) k-mer “GTC”
with interval SA[9, 11[yields idB = 5 (Table 2). Node identifier id = 0 can be found at
index 5 in IDmap (Table 3).

Analogously, Br plays an important role when matching in the forward direction, as
it stores information about the leftmost k-mer of each node. When extending a partial
match with a character to the right and a new node is visited as a consequence, its node
identifier can be found using function findIDLeft in O(1) time. For example, (reverse
leftmost) k-mer “TAT” with interval SAr

[13, 15[yields idBr = 5 (Table 4). Node identifier
id = 1 can be found at index 5 in IDmapr (Table 5).

Note that for functions findIDRight and findIDLeft, it is not mandatory that the
input intervals contain all suffixes that are prefixed by the k-mer of interest. In fact, the
rank operation on line 2 can be called using any index in SA (resp. SAr ), corresponding
to the k-mer of interest.

Jumping to a neighbor with a character

Given a node identifier id and a character c, function getPredIDWithChar com-
putes the identifier of the predecessor node that is encountered by prepending c to
substring ω of node id (see Algorithm 2). On line 3, the suffix array interval [b, e[

Page 10 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

contains all suffixes of T whose k-length prefix equals the leftmost k-mer of node id ,
i.e., ω[0, k[ . On line 4, the suffix array interval [b′, e′[is computed for the (k + 1)-mer
cω[0, k[using basic functionality offered by the bidirectional FM-index. If this inter-
val is non-empty (i.e., cω[0, k[occurs in T), the identifier of the predecessor node is
determined using function findIDRight (see Algorithm 1). Otherwise, the return
value of −1 indicates that no such predecessor node exists. This routine can be called
for all characters c ∈ � to identify all predecessor nodes. Analogously, function get-
SuccIDWithChar illustrates how to find the successor node identifier during for-
ward matching. Both functions execute in O(1) time.

Jumping to a predecessor through a specific edge

Recall that the ccdBG G(V, E) is a multigraph, i.e., there can be multiple edges
between nodes u and v. With the exception of start and end nodes, each node has
mult incoming and mult outgoing edges where mult corresponds to the number
of times its substring ω occurs in T. Jumping to a predecessor through a specific
edge is thus achieved by extending a specific occurrence of ω in T back to the pre-
decessor node. All occurrences of ω in T of a node are represented in the interval
SA[left_kmer, left_kmer +mult[ . A specific occurrence of ω in T is indicated by a rela-
tive offset edgeOffset ∈ [0,mult[in this interval.

Page 11 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

Algorithm 3 shows how the predecessor is found in this scenario. On line 2, value i
is the SA index such that the specific occurrence of ω starts at T [SA[i]] . The LF opera-
tion provided by the (bidirectional) FM-index computes the SA index j such that
SA[j] = SA[i] − 1 . Suffix TSA[j] thus has cω as a prefix and we know that the k-length
prefix of that suffix is the rightmost k-mer of the predecessor node of interest. Its
identifier is found using the findIDRight function from Algorithm 1. Assuming
constant-time rank support on bit vectors, algorithm 3 runs in O(1) time.

In the context of this paper, only jumping to a predecessor through a specific edge is
required. Therefore, we omit its bidirectional counterpart in this section.

Visualization

Using the elementary graph operations discussed before, the visualization of subgraphs
of the pan-genome graph is achieved as follows. Given a set of seed nodes ( seedNodes ) of
interest and a user-defined neighborhood size ( maxDepth ), Algorithm 4 generates a list
of all nodes u for which distance(u, v) ≤ maxDepth for some node v ∈ seedNodes . Here,
distance(u, v) is defined as the number of edges on the shortest path between u and v,
irrespective of the orientation of edges. The time complexity of Algorithm 4 is O(Vs|�|) ,
with Vs the number of nodes in the subgraph. It relies on the functions described in
Algorithm 2. Similarly, Algorithm 5 lists all edges that are part of the subgraph, using the
functionality provided by Algorithm 3. The subgraph can be visualized in e.g. Cytoscape
[52].

Page 12 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

The visualization methodology proposed here differs from that of Dede and Ohle-
busch [40] in that sense that their algorithms enable the visualization of only the
upstream neighborhood of the region of interest, due to the fact that their use of
the unidirectional FM-index supports only backward traversing of the graph. In con-
trast, our use of the bidirectional FM-index enables backward as well as forward tra-
versing of the graph. Secondly, we separate the processes of matching patterns to the
graph (see further) and visualizing subgraphs. Therefore, we can offer a very effi-
cient pattern matching implementation, since we assume that users will mostly map
great numbers of patterns to the graph, only few of which are interesting enough
to be visualized. In Dede and Ohlebusch’s algorithms on the other hand, these pro-
cesses are connected.

Approximate pattern matching to the graph

In earlier work, Beller and Ohlebusch provided algorithms for exact pattern match-
ing against the ccdBG. In this paper, we extend this functionality to also support
approximate pattern matching, i.e., the identification of all approximate occurrences
of a search pattern, allowing for substitutions, insertions or deletions. Formally,
given a search pattern P, our implementation exhaustively identifies all occurrences
O of search pattern P in T such that the edit distance ED(O, P) ≤ K . We support val-
ues K = 0, 1, 2, 3 or 4 . Since the upper limit for the number of allowed errors is 4, our
algorithms are most suited to identify occurrences of short, low-error (e.g., Illumina)
reads or short seeds of long, higher-error (e.g., Pacific Biosciences, Oxford Nanop-
ore Technologies) reads. The bidirectional FM-index and search schemes can be used
to support lossless approximate pattern matching.

Once the occurrences O of a search pattern P have been identified, they can be
located in the graph. Each approximate occurrence O of P is an exact substring of T.
If the length of the occurrence O is at least the k-mer size, i.e., |O| ≥ k , then O aligns
to either a single node, or a unique sequence of connected nodes in the ccdBG. Oth-
erwise, if |O| < k , then O can occur at multiple positions in the graph when O is a

Page 13 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

substring of multiple k-mers. For both cases, we provide algorithms in this section.
Once a node path has been identified, a subgraph centered around this path can be
extracted for visualization, using the functionality discussed earlier.

Search schemes

In lossless approximate pattern matching, all occurrences in search text T, within a
certain Hamming or Levenshtein/edit distance of a query pattern P, are identified.
In the context of this paper, the edit distance is used, allowing for up to K substitu-
tions, insertions or deletions (collectively called errors). Using the FM-index, lossless
approximate pattern matching is performed by spelling, character by character, can-
didate occurrences of P in T. Using a naive backtracking algorithm, an excessive num-
ber of unsuccessful branches near the dense root of the search tree will be explored,
rendering backtracking computationally impractical even for modest values of K [44].

Kucherov et al. [42] proposed the concept of search schemes, which define how
lossless approximate pattern matching should be conducted, such that the search
space is strongly reduced. We adopt their notation. Pattern P is partitioned into p
parts Pi , with i ∈ {0, ..., p− 1} . A search S = (π , L,U) is a triplet of arrays of size p
where π is a permutation over {0, ..., p− 1} that defines the order in which the parts of
P are processed. It must satisfy the connectivity property in that sense that a partial
match can only be extended, either to the left or to the right, in a contiguous man-
ner. The arrays L and U define the lower and upper bound to the cumulative number
of allowed errors after each part has been processed. The core idea is to only gradu-
ally increase the number of allowed errors when more parts of P are matched, sig-
nificantly reducing the search space near the dense root of the search tree. To cover
all possible error distributions over the length of a pattern, multiple searches are
required that collectively form a search scheme. Search schemes require bidirectional
matching functionality, i.e., a partial match P can be extended to cP as well as Pc . This
way, a pattern can be matched by starting with any part of P and then extending that
partial match with adjacent parts, either to the left or to the right, in arbitrary order.

The simplest examples of search schemes are those based on the pigeonhole princi-
ple [41]. By partitioning search pattern P into p = K + 1 parts, with K the maximum
allowed number of errors, it immediately follows that for each occurrence of P in T, at
least one part must be error-free. All occurrences are identified using K + 1 searches
Si . In search Si , exact matching of piece Pi is performed first, and subsequently
extended with the remaining pieces to the left and right, allowing up to K errors. For
example, for K = 2 errors, the search scheme based on the pigeonhole principle is
given by S0 = (012, 000, 022) , S1 = (210, 000, 022) and S2 = (102, 000, 022) . Search S2
for example, starts with the exact matching of the middle piece P1 . Next, the match
is extended to the left, and finally to the right, each allowing up to K = 2 errors. This
illustrates the need for a bidirectional index.

Kucherov et al. proposed more efficient search schemes. Again, for the case of K = 2
errors, pattern P is partitioned into K + 1 parts and the search procedure consists of

Page 14 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

three searches that are shown in Fig. 2. The key difference is that the search schemes
by Kucherov et al. impose more stringent lower and upper bounds than those based
on the pigeonhole principle, while still covering any distribution of errors over the
different parts. In general, for larger values of K, search schemes can become quite
complex to design and deviate significantly from the search schemes based on the
pigeonhole principle. Kucherov et al. and Kianfar et al. [43] proposed search schemes
for up to K = 4 errors. The implementation of search schemes in Columba serves as a
foundation for the work in this paper.

Identifying an occurrence in the graph

Search schemes allow to efficiently identify all occurrences O of search pattern P in
T such that the edit distance ED(O, P) ≤ K , with K the maximum number of allowed
substitutions and indels. Each occurrence O is represented by its suffix array intervals
[b, e[and [br , er[and its length l = |O| such that O = T [SA[b], SA[b] + l[ . Analogously,
the reverse occurrence Or is found as Or = Tr[SAr

[br], SAr
[br] + l[ . In other words,

each approximate occurrence O of P is an exact substring of T.
In this section, we provide algorithms to identify the location in the graph that cor-

responds to O. If |O| ≥ k , with k the k-mer size, O has a unique location in the ccdBG
that can be represented by a sequence of connected nodes, along with a starting posi-
tion in the first node. We consider the case |O| < k later and assume for now that
|O| ≥ k.

Fig. 2  Search scheme by Kucherov et al. that allows up to 2 errors. The search scheme consists of three
searches: S0 = (012, 012, 022) , S1 = (210, 000, 012) and S2 = (102, 001, 012) . For each search, the processing
order (from dark to light) and the lower and upper bounds for the cumulative number of errors after
processing each part are indicated in the cells representing the parts. The arrows indicate the search direction
(left-to-right or right-to-left). Search S2 for example, starts with the exact matching of the middle piece
Pπ [0] = P1 . Second, the match is extended to the left ( Pπ [1] = P0 ), and third, to the right ( Pπ [2] = P2 ). After
processing part P0 (and P1 ), 0 or 1 errors should have been encountered. Similarly, after processing part P2
and P0 (and P1 ), 1 or 2 errors should have been encountered. In summary, search S2 covers the following error
distributions: [0, 0, 1], [0, 0, 2], [1, 0, 0] and [1, 0, 1]. It can be verified that every possible distribution of 2 errors
among the three parts is covered by at least one of the three searches

Page 15 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

The process involves two steps. First, we determine the node identifier for the left-
most k-mer of O. Next, we identify the node identifiers for the remaining part of O.

Step 1: Determining the First Node Identifier

In general terms, identifying the node that contains the k-mer involves shifting,
character by character, a k-length window through the node until a k-mer is found
that can be used to identify the node. Until now, only the extreme (i.e., left- or right-
most) k-mers of a node could be used to obtain the node identifier (cf. Algorithm 1).
However, the required number of shift operations can grow very large for long nodes
and can even be O(n) (with n = |T | ) for large values of k. Therefore, we adapt bit vec-
tor B and IDmap such that determining the node identifier for an arbitrary k-mer can
be achieved in constant time. Specifically, B[i] = 1 if the following two conditions
apply:

1	 k-mer T [SA[i], SA[i] + k[has offset (j · scp) (for j = 0, 1, 2, . . .) in a node or is the
rightmost k-mer of a node.

2	 Suffix TSA[i] is the lexicographically largest suffix of T that has k-mer
T [SA[i], SA[i] + k[as a prefix.

In other words, besides the rightmost k-mer of each node, we also indicate every scp th
k-mer of a node. We refer to these extra k-mers as ‘checkpoint k-mers’. Their density
is controlled by the user-defined checkpoint sparseness factor scp . For the example in
Fig. 1, and assuming a checkpoint sparseness factor of scp = 2 , k-mers “TAT” for node
1 and “GTT” and “TGG” for node 4 serve as checkpoint k-mers. Hence, three extra
1-bits in B need to be set at indexes 13, 11 and 16 (see Table 2, in parentheses).

For each checkpoint k-mer, and hence, each additional 1-bit in bit vector B , a cor-
responding entry that points to the node identifier must be added to IDmap . Note
that due to the checkpoint k-mers, the relationship between the 1-bits in B and their
corresponding nodes is now surjective, since multiple 1-bits are set in B for nodes
with len > k . We also add an extra row ( offset ) to IDmap to identify the offset posi-
tion of a k-mer within a node. As a consequence, offset equals len− k when the entry
corresponds to a rightmost k-mer (the end nodes must again be extended cyclically),
or j · scp for each jth checkpoint k-mer. The extended IDmap table corresponding to
the example from Table 2 is illustrated in Table 6. Note that these modifications to bit
vector B and IDmap do not break the functionality of Algorithm 1.

Table 6  Extended IDmap corresponding to Table 2, with scp = 2

First row: rank of the 1-bits in bit vector B; second row: node identifiers; third row: offset position of the k-mer with respect
to the beginning of its node. Bold entries indicate checkpoint k-mers

idB 0 1 2 3 4 5 6 7 8 9

id 5 6 2 3 4 0 4 1 4 1

offset 2 2 0 0 3 0 0 0 2 2

Page 16 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

Given a k-mer, we use the basic functionality of the bidirectional FM-index to find
its interval SA[b, e[and SAr

[br, er[ . We assume that the k-mer exists in T, i.e., these
intervals are non-empty. Algorithm 6 shows how to retrieve the node identifier given
the SA interval [b, e[of the k-mer. On line 3, we consider the index i of the lexico-
graphically largest suffix that has the k-mer of interest as a prefix. On lines 4 to 6, we
consider the adjacent k-mers within the node, by advance to the left, character by
character. More precisely, the LF operation returns the lexicographically largest index
of the suffix prefixed by such an adjacent k-mer. This process continues until an index
is encountered that is indicated by a 1-bit in bit vector B. In that case, the identifier
and offset are retrieved on lines 7 to 8 in a similar manner as in Algorithm 1. By keep-
ing track of the number of times the LF operation was used, the positional offset of
the k-mer is easily computed on line 9.

For example, consider k-mer “TTG” with SA interval [19, 20[(see Table 2). Assume
scp = 2 . Because B[19] = 0 , “TTG” is not the rightmost or a checkpoint k-mer of its
node. Using the LF operation, we shift the k-length window one character to the
left: LF[19] yields index 11. Suffix TSA[11] is indeed prefixed by k-mer “GTT”. Because
B[11] = 1 when scp = 2 (indeed, “GTT” is a checkpoint k-mer), we obtain id = 4 (see
Table 6).

Note that the information on these checkpoint k-mers is only stored with respect
to SA (not SAr ): both the SA range and the SAr range will always be available when
we want to identify the node corresponding to an arbitrary k-mer (pattern matching
to the bidirectional FM-index keeps track of both ranges in a synchronized manner).

In summary, at most scp − 1 LF operations are needed to find a k-mer that can be
used to identify its node. Because the LF operation requires O(1) time, the time com-
plexity of Algorithm 6 is O(scp) . The user-defined parameter scp hence controls the
time-space tradeoff.

Page 17 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

Step 2: Extending the Node Path

The sequence of nodes with which O aligns can now be easily identified as shown in
Algorithm 7. In lines 2 to 5, the node identifier and start position of the leftmost k-mer
O[0, k[is found using the findID function. Next, the nodes to which O[k, |O|[aligns
are identified in lines 6 to 9. Note that because we know that O is an exact substring of
T, it is not necessary to match O character by character to the graph. Rather, for each
visited node, one can immediately jump to the end of that node and use the getSuc-
cIDWithChar function from Algorithm 2 to find the next node, etc.

The computation of the suffix array interval [b, e[of O[0, k[on line 2 of Algorithm 7
can be avoided. Recall that each occurrence O is generated character by character using
search schemes. Therefore, it suffices to save the suffix array interval when the (partially
generated) occurrence O reaches a length of k. Note that this interval does not necessar-
ily correspond to the leftmost k-mer of O, as O can still be extended to the left and the
right during the search scheme procedure. Nevertheless, it is easy to adapt Algorithm 7
such that one can start from any k-mer of O and then extend the path both to the left
and right, using the bidirectional functionality offered by the data structure.

Finally, we consider the case |O| < k . This means that O could be found in multiple
locations in the graph. In order to enumerate all locations, it suffices to enumerate, using
the bidirectional FM-index, all possible k-length extensions of O that exist in T, and to
identify the corresponding node for each such extension using the FindID function.
This procedure can lead to redundant results, which can be filtered afterwards.

Results and discussion
We implemented the algorithms of this paper in Nexus, an open-source tool written
in standard C++14. The source code is available at https://​github.​com/​bioin​tec/​nexus
under AGPL-3.0 license.

Data and hardware

We built pan-genomes of up to ten human genome builds also used in [40]: (i) five dif-
ferent assemblies of the human reference genome (UCSC Genome Browser assem-
bly IDs: hg16, hg17, hg18, hg19, and hg38), (ii) the maternal and paternal haplotype of

https://github.com/biointec/nexus

Page 18 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

individual NA12878 (Utah female) of the 1000 Genomes Project [53], and (iii) three long
read (PacBio) assemblies (GenBank assembly accession numbers: GCA_000001405.27,
GCA_000002125.2 and GCA_000306695.2). All occurrences of ‘N’ were replaced by a
randomly chosen nucleotide (‘A’, ‘C’, ‘G’ or ‘T’) to limit the alphabet size. The chromo-
somes within each build are concatenated into one string.

For benchmarking, we consider 100 000 Illumina HiSeq 2000 reads (101 bp) ran-
domly sampled from a larger whole genome sequencing dataset (accession number
ERR194147). All benchmark experiments were run on a Red Hat Enterprise Linux 8 sys-
tem, using a single core of two 18-core Intel® Xeon® Gold 6240 CPUs running at a base
clock frequency of 2.60 GHz with 738 GiB of RAM. Reported runtimes include the time
for the approximate pattern matching procedure, but exclude the time to read the FM-
index and graph data structures from disk.

We also conduct a case study on a pan-genome of 341 M. tuberculosis strains. Anal-
ogous to what was done in [54], we selected one reference strain of H37Rv (GenBank
accession number CP003248.2), the assemblies of three historical isolates collected from
KwaZulu-Natal [55, 56] (KZN4207, accession GCA_000669655.1; KZN1435, acces-
sion GCA_000669675.1; KZN605, accession GCA_000669635.1) and the assemblies
of 337 clinical isolates, also collected from KwaZulu-Natal [54] (subset of BioProjects
PRJNA183624 and PRJNA235618).

Memory usage

Storing and using the data structure

Recall that we build our implicit pan-genome graph representation directly on top of the
bidirectional FM-index as implemented in Columba. This additional graph representa-
tion, along with navigation functionality, comes at only a limited supplementary memory
cost. Table 7 details the memory usage of the components of the bidirectional implicit
representation of the ccdBG for a pan-genome of 10 human genomes, with sSA = 16 ,
scp = 128 and k = 25 . The suffix array sparseness factor sSA is inversely proportional
with the number of suffix array entries that are stored. This pan-genome consists of
30 340 521 923 characters, 66 102 955 graph nodes and 4 166 716 509 graph edges (not
explicitly stored). The complete representation comprises 95.46 GiB, or approximately
27.03 bits per character.

Table 7  Overview of the components of Nexus’ data structure, with their respective memory usage

For each component, we indicate its number of entries and the number of bits per entry. The number of entries and
memory usage of each component is illustrated for the pan-genome of 10 human genomes ( sSA = 16 , scp = 128 , k = 25)

Component Memory usage
per entry [bits]

Number of entries Total for 10
human genomes
(GiB)General 10 human genomes

Bidirectional FM-index 19.75 + 64/sSA n ~ 30 billion bp 83.89

G

B

Br

IDmap

IDmapr

192
1.25
1.25
64
32

|V|
n
n
|V | + |V |cp
|V|

~ 66 million nodes
~ 30 billion bp
~ 30 billion bp
~ 137 million k-mers
~ 66 million nodes

1.48
4.42
4.42
1.02
252.16 MiB

Subtotal graph elements - - - 11.57

Total - - - 95.46

Page 19 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

The five components corresponding to the representation of the graph are stored
as follows. Node vector G stores attributes len (32 bits), mult (32 bits), left_kmer (64
bits), and right_kmerr (64 bits) for each node. Bit vectors B and Br support constant-
time rank operations using the rank9 algorithm [51], i.e., 1.25 bits per character (25%
overhead). Mapping IDmap stores the node identifier (32 bits) and offset (32 bits) for all
|V| rightmost k-mers and all |V |cp checkpoint k-mers. In the example pan-genome of
10 human genomes ( scp = 128 and k = 25 ), 70 927 010 checkpoint k-mers are stored.
Finally, IDmapr stores node identifiers (32 bits) for only the |V| leftmost k-mers. Note
that unlike the bidirectional FM-index, these five components depend on the value of k.

In conclusion, the memory usage of the components corresponding to this pan-
genome graph comprises less than 15% of the underlying bidirectional FM-index. This
overhead is limited given the functionality that is provided to navigate and visualize
the pan-genome graph. By building upon the underlying (bidirectional) FM-index in a
complementary and modular way, future developments on index structures can likely
be incorporated easily. The application of search schemes to the graph demonstrates
this principle. However, the drawback of the bidirectional FM-index is that its space
usage increases linearly with the pan-genome’s sequence content, limiting our current
data structure to a few dozen human genomes. To address this, we plan to investigate
the bidirectional r-index [57] as an alternative. The bidirectional r-index offers the same
functionality as the bidirectional FM-index, but with sublinear index growth (i.e., pro-
portional to the amount of new variation introduced by additional genomes incorpo-
rated into the pan-genome).

State of the Art Table 8 compares the memory usage of Nexus with that of other linear
or graph pan-genome representations that can serve as a reference during read align-
ment. Both deBGA and Pufferfish represent the pan-genome as a (cc)dBG and use a
k-mer hash table based data structure to index that (cc)dBG and label the unitigs with
their corresponding occurrences in the input genomes. The memory usage of the index
for deBGA and Nexus is quite similar, while Pufferfish is about 35% more space-efficient.
However, note that unlike deBGA and Pufferfish, Nexus also provides other function-
alities (such as visualization) next to read alignment. In contrast to a k-mer hash table,
both the A4 algorithm by Beller and Ohlebusch and Nexus are based on a full-text index
of the concatenation of all input genomes. Algorithm A4 builds its index based on the

Table 8  Comparison of Nexus ( sSA = 16 ) with other indexes that support read alignment either to a
linear index (BWA, Bowtie 2), or to a graph which is used as a reference (Giraffe, deBGA, Pufferfish, A4)

We report index memory usage, and index construction time and peak RAM usage for a pan-genome of 10 human genomes

Tool Pan-genome representation Memory usage
data structure
(GiB)

Construction time Construction
peak RAM
usage (GiB)

deBGA dBG 90.50 10 hours and 9 minutes 312.13

Pufferfish ccdBG 62.29 17 hours and 27 minutes 139.24

A4 ccdBG 36.91 7 hours and 22 minutes 38.77

BWA Linear concatenation 49.45 13 hours and 47 minutes 42.40

Bowtie 2 Linear concatenation 54.14 26 hours 246.88

Giraffe Variation graph 180.04 21 hours and 3 minutes 638.93

Nexus ccdBG 95.46 15 hours and 44 minutes 269.32

Page 20 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

unidirectional FM-index, whereas Nexus utilizes the bidirectional FM-index, clarify-
ing the increase in memory usage. Note that Nexus’ memory use can be reduced using
parameter sSA , see Additional file 1: Fig. S1. The indexes of BWA and Bowtie 2 are also
based on the FM-index of the concatenation of all genomes in the pan-genome. In this
regard, these linear indexes are conceptually highly similar to the underlying data struc-
ture of the graphs in A4 and Nexus. This similarity is also reflected in their reported
memory usage. Finally, the Giraffe index comprises 2 to 5 times more memory than any
other index discussed here.

Building the data structure

For the building process of the bidirectional implicit representation of the ccdBG, we
prioritize limiting RAM usage over optimizing performance, as we believe the RAM
usage to be the main bottleneck when building such large-scale graphs. The CPU and
RAM usage of the building process depends on many factors:

•	 The more (diverse) input data, the more CPU time and RAM is needed.
•	 The smaller the suffix array sparseness factor sSA , the less CPU time and the more

RAM is needed.
•	 The lower parameter k, the more CPU time is needed.

The checkpoint sparseness factor scp has a relatively small impact on the graph construc-
tion process.

We built the data structure for a pan-genome of 10 human genomes with sSA = 16 ,
scp = 128 and k = 25 . The complete process took 15 hours and 44 minutes, of which
41% was required for building the underlying bidirectional FM-index and the remain-
ing time was used for constructing the implicit graph representation. Most of the for-
mer time period is spent building the regular and reverse suffix arrays. Most of the latter
duration is used for building the longest common prefix (LCP) array (which is necessary
to build the graph representation). The peak RAM usage is 269.32 GiB, which is reached
during suffix array construction (the complete suffix array must be built before it can be
stored in sparse form).

State of the Art Table 8 reports the CPU time and RAM required to build the index for
Nexus and the other tools we compare with. We observe that the results for Nexus are
in the same ballpark as those for deBGA, Pufferfish and Bowtie 2. A4 leverages a semi-
external building process in order to limit the peak RAM usage, and it appears that this
algorithm is also more efficient in terms of CPU usage. Also the BWA indexing process
is more efficient than Nexus in terms of RAM usage. Building the variation graph using
Giraffe was computationally more intensive than any of the other indexing processes,
mainly in terms of RAM usage.

Approximate pattern matching performance

Breakdown of Nexus’ performance

Due to the underlying bidirectional FM-index, Nexus provides a very efficient implemen-
tation of lossless approximate pattern matching against the ccdBG. That is, every occur-
rence that matches the pattern of interest within a specified maximum edit distance is

Page 21 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

reported, along with its corresponding positions in the sequences of the pan-genome.
In Table 9, we analyze the runtimes for performing exact pattern matching using A4 and
Nexus ( K = 0 ), and approximate pattern matching using Nexus ( K = {1, 2, 3, 4} ). Note
that A4 does not provide the option to match patterns approximately.

As can be observed in Table 9, Nexus performs pattern matching 4.8 times faster than
A4. Moreover, whereas A4 reports only the node path in the graph for each occurrence,
Nexus also reports the position(s) with respect to the original reference text. For Nexus,
Table 9 provides a breakdown of total runtime as follows: approximate pattern matching
against the underlying FM-index (i.e., finding the SA interval(s)), finding the node paths
corresponding to each occurrence found in the former procedure, and performing post-
processing (i.e., finding all occurrences in the original reference text using suffix array
accesses, extracting the corresponding pan-genome sequence identifier, and filtering
these text occurrences). Note that a single search pattern can have multiple occurrences
in the graph (in case of approximate pattern matching, i.e., K > 0 ) and that each individ-
ual occurrence in the graph can have multiple underlying text occurrences (in case it is
repeated within or between strains). From this breakdown, we conclude that the fraction
of time spent on finding node paths is limited. For approximate pattern matching to the
graph, extracting the node path corresponding to the occurrences only requires about
11% of the total runtime. In contrast, the post-processing step (which is only present in
sequence-to-graph aligners that report coordinates with respect to the underlying refer-
ence sequences) requires a substantial amount of time (40 to 50%).

Alignment sensitivity analysis

In Table 10, we compare the alignment results of Nexus (for different values of K) with
other tools that support read alignment to the pan-genome as a reference in some form.

Table 9  Performance of A4 and Nexus for pattern matching against the graph for different
maximum allowed edit distances: K = {0, 1, 2, 3, 4}

We aligned 100 000 Illumina reads (length 101 bp) and their reverse complement to the pan-genome graph of 10 human
genomes ( k = 25 , scp = 128 and sSA = 16 – last two parameters only apply to Nexus). Runs were repeated 10 times.
Performance (expressed in reads per second) is reported along with the 95% confidence intervals. Additionally, for Nexus,
we provide a breakdown of the total runtime into the runtime for approximate pattern matching using the underlying
FM-index, identifying the corresponding node path in the graph, and post-processing (identifying and filtering text
occurrences)

Maximum edit
distance

A4 performance [reads/s] Nexus performance [reads/s]

APM runtime [s] Node path finding
runtime [s]

Post-
processing
runtime [s]

K = 0 2 793 ± 278 13 324 ± 880

2.60 (34%) 2.03 (27%) 2.93 (39%)

K = 1 Not supported 3 274 ± 128

11.31 (37%) 3.80 (12%) 15.52 (51%)

K = 2 Not supported 1 145 ± 31

32.97 (38%) 9.36 (11%) 45.12 (51%)

K = 3 Not supported 472 ± 13

87.89 (41%) 23.17 (11%) 101.08 (48%)

K = 4 Not supported 199 ± 4

253.23 (51%) 52.27 (10%) 196.15 (39%)

Page 22 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

Note that unlike the other aligners, Nexus (and A4) is currently more of a proof-of-con-
cept implementation as it lacks support for certain features such as SAM output. Aligner
deBGA is left out of the comparison for a few reasons. The authors state that deBGA is
mainly focused on paired-end read alignment and may therefore not provide strong sup-
port for single-end read alignment. With a small alteration to deBGA’s code we got the
single-end functionality running, but for reads with a large number of text occurrences,
a segmentation fault occurs.

The first thing that stands out, is the difference in number of reported text occurrences
between Nexus and any of the other tools, which highlights the difference in sensitivity
between lossy and lossless aligners. The average number of text occurrences per read
varies around 10 for all of the lossy aligners, with a maximum of 20.37 for BWA-MEM.
This is unsurprising since the pan-genome consists of 10 genomes, and we expect some
reads to appear at multiple positions due to duplications. From Nexus’ results however,
we learn that these tools miss quite some alignments: even at K = 0 (i.e., exact align-
ment), Nexus identifies an average number of 28.38 text occurrences per read. This is
because some reads have an extremely high number of text occurrences in the pan-
genome (up to 37 872 exact text occurrences). For such reads, only a limited subset of
text occurrences (or none at all) is reported by the other tools. This trend continues for
a higher number of allowed errors: the number of text occurrences increases exponen-
tially, due to the highly abundant reads (up to 227 347 text occurrences for some reads at
edit distance 4).

The average number of graph occurrences (i.e., node paths) per read shows a simi-
lar increasing trend, but not as pronounced. This was to be expected, as one graph

Table 10  Comparison of the alignment results of Nexus with other tools that support read
alignment to the pan-genome in some form

For Nexus, we perform approximate pattern matching with different maximum allowed edit distances: K = {0, 1, 2, 3, 4} .
We ran 10 experiments for aligning 100 000 Illumina reads of length 101 bp as well as their reverse complement to the pan-
genome of 10 human genomes. The pan-genome dBGs are built for k = 25 , Nexus’ additional parameters are scp = 128
and sSA = 16 . In terms of alignment output, we report the average number of reported text occurrences (i.e., in the form
of a coordinate with respect to one of the input sequences) per read, the average number of graph occurrences (i.e., in the
form of a node path) per read, and the fraction of reads that has at least one occurrence. In terms of performance, we report
the average number of reads aligned per second, the average number of text occurrences reported per second, and the
peak RAM usage of the alignment process. For BWA-MEM and Giraffe, two sets of text occurrences are reported: one with
clipped alignments included and one with clipped alignments filtered out. For Bowtie 2 and Giraffe, the maximum number
of alignments per read is capped at 10

The best result in each column is indicated in bold

Tool Avg. nr. of text
occurrences/
read

Avg. nr. of graph
occurrences/
read

Fraction of
aligned reads

Performance Peak RAM
usage
[GiB][reads/s] [text occs/s]

PuffAligner 11.79 Not reported 98.17% 7 216 85 724 62.44

A4 Not supported 0.90 89.39% 2 793 Not supp. 38.57
BWA-MEM 20.37/19.57 Not applicable 99.95/99.60% 1 430 29 113/27 975 49.80

Bowtie 2 9.92 Not applicable 99.56% 2 591 25 705 40.08

Giraffe 7.80/7.68 Not reported 98.36/96.95% 18 143/141 284.53

Nexus, K = 0 28.38 0.90 89.39% 13 324 378 198 90.71

Nexus, K = 1 94.01 2.14 95.11% 3 274 307 831 90.71

Nexus, K = 2 228.05 7.88 96.69% 1 145 261 124 98.08

Nexus, K = 3 450.76 23.17 97.47% 472 212 799 99.08

Nexus, K = 4 782.70 46.56 97.98% 199 156 133 100.59

Page 23 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

occurrence can correspond to many text occurrences. A4 and Nexus (at K = 0 ) produce
identical results. None of the other tools report graph occurrences, which emphasizes a
core difference with our approach: next to the text coordinates, Nexus reports the cor-
responding node paths that were identified in the graph, which can be used for visualiza-
tion and downstream analysis.

From the fraction of aligned reads, we learn that the state-of-the-art aligners are able
to align slightly more reads than Nexus. This is a consequence of the hard limit of edit
distance 4, which is imposed by Nexus as of now, while the other aligners are able to
detect occurrences that have 5 (or more) errors. To address this limitation, Nexus can
easily be extended to support search schemes for edit distance 5 (or higher). Moreover,
we intend to develop an implementation for gapped alignment as well, to support the
detection of longer indels.

In-Depth Pairwise Sensitivity Comparisons Upon performing an in-depth pairwise
analysis of the aligned reads by Nexus ( K = 4 ) versus graph aligners PuffAligner or
Giraffe (Additional file 1: Fig. S2), two distinct subsets of reads were each time iden-
tified, which could only be aligned by one of the tools. These subsets characterize the
different search spaces of the two aligners. In both cases, the reads that are exclusively
aligned by Nexus often correspond to a high number of text occurrences (i.e., multimap-
ping reads). The reads exclusively aligned by PuffAligner or Giraffe tend to correspond
to 10 or 8 text occurrences, respectively. These occurrences contain over 4 errors and are
therefore missed by Nexus. Giraffe has an unexpected median of 8 text occurrences per
read. Moreover, the distribution of Giraffe’s text occurrences across the 10 genomes in
the pan-genome is uniform (Additional file 1: Fig. S3). These observations indicate that
Giraffe is unsuitable for aligning reads to pan-genomes consisting of multiple complete
genomes.

A pairwise comparison between Nexus and linear aligners BWA-MEM and Bowtie 2
reveals that, in this case, there are (virtually) no reads exclusively aligned by Nexus (not
shown). Upon further investigation however, we observe that although these linear
aligners excel at identifying at least one occurrence for nearly all reads, they are more
insensitive to detecting all (almost) equally good alternative alignments. Figure 3 shows
a detailed comparison of the occurrences reported by Nexus and BWA-MEM. The left
panel demonstrates that Nexus identifies 40 times more occurrences than BWA-MEM,
98.30% of which are reported exclusively by Nexus. On the other hand, 32.05% of BWA-
MEM’s alignments are not found by Nexus. The middle panel of Fig. 3 shows that, apart
from 118 exceptions, the reads exclusively aligned by BWA-MEM correspond to an edit
distance larger than 4, which falls outside Nexus’ current limitations. These 118 excep-
tions are in fact also reported by Nexus, but at a slightly different coordinate in the ref-
erence genome. Furthermore, Nexus is guaranteed to report each alignment with its
minimal edit distance (right panel of Fig. 3). Additional file 1: Figure S4 illustrates how
Nexus accurately reports the minimal edit distance for an example read. The same anal-
ysis conducted with Bowtie 2 yields similar conclusions (see Additional file 1: Fig. S5;
Table S3). In summary, Nexus’ core strength is complete sensitivity within its defined
limitations, whilst BWA-MEM for instance only finds 35.75% of all exact alignments and
only 0.16% of all alignments within an edit distance of 4.

Page 24 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

Alignment performance analysis

Table 10 also reports three performance metrics. In terms of CPU time usage, PuffA-
ligner, BWA-MEM and Bowtie 2 are the most efficient fully functional aligners in our
comparison. Based on the number of reads mapped per second, Nexus is almost two
times faster than PuffAligner at K = 0 , and faster than BWA-MEM and Bowtie 2 even
at K = 1 . For higher values of K on the other hand, Nexus appears to be slower. How-
ever, based on the number of reported text occurrences per second, Nexus is signifi-
cantly faster than any other aligner in our comparison. In other words, Nexus’ perceived
lower performance per read is primarily due to it reporting a larger number of occur-
rences compared to other tools. In cases where the focus is solely on obtaining the opti-
mal alignment(s) instead of all possible alignments within a specific edit distance, we
propose a multi-stratum design gradually increasing the value of K until the optimal
alignment(s) for a read are found. As such, the same alignment fraction reported for
K = 4 can be reached at a much higher speed. The results for peak RAM memory usage
are similar to what was reported in Table 8. In conclusion, despite Nexus detecting all
occurrences within a specified edit distance, it achieves similar or even better perfor-
mance levels compared to its competitors.

The effect of scp and k on Nexus’ memory usage and APM performance

The use of checkpoint k-mers reduces the time complexity to identify the node in the
graph that corresponds to an arbitrary k-mer to constant time at the cost of higher
memory requirements. In Fig. 4, we analyze this time-space tradeoff by performing
APM on a pan-genome of 10 human genomes for different values of scp and k. We also
benchmarked without using checkpoint k-mers ( scp = ∞ ). We observe that for k = 50
and k = 75 , decreasing scp results in faster node path extraction (Fig. 4, left). For k = 25 ,
we see that scp has only a limited effect on runtime. This is because, in that case, the

Fig. 3  Analysis of the read alignment results of BWA-MEM (without clipped alignments) and Nexus ( K = 4 )
for mapping 100 000 Illumina reads of length 101 bp as well as their reverse complement to the pan-genome
graph of 10 human genomes. Left: upset plot that shows the average number of occurrences per read
reported by both tools, or exclusively by one tool. Middle: distribution of the reported number of occurrences
(on logarithmic scale) in function of the corresponding edit distance. We distinguish occurrences reported by
both tools (plotted in function of the edit distance reported by Nexus), and those reported uniquely by only
one of the tools. Right: scatter plot visualizing the common occurrences where the edit distance reported
by Nexus does not match that of BWA-MEM. In total, 2 258 such occurrences are observed, 9 of which are
reported at an edit distance of 23 and 3 by BWA-MEM and Nexus, respectively (not shown in the scatter plot).
Additional file 1: Table S2 lists the same information

Page 25 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

median node length is short (28 characters), which means that even without intermedi-
ate checkpoint k-mers, only few LF-iterations are required to identify the node.

The total memory usage of component IDmap is similar for all three values of k (Fig. 4,
right). This is because where the average number of checkpoint k-mers per node is lower
for low values of k, the higher number of nodes in the graph cancels out this effect (and
vice versa). Note that the memory usage at its highest point ( k = 75 , scp = 8 ) amounts to
4.89 GiB. This is a significant increase with respect to component IDmapr (83.90 MiB),
but still only about 5% of the total data structure (Table 7). For a good balance between
better APM performance and limited additional memory usage, we recommend a
checkpoint sparseness factor around 128 (default). Finding the node paths for k = 75
using this default value of scp = 128 for example, is twice as fast than without checkpoint
k-mers with only 228 MiB additional memory usage.

Case study on the bacterium M. Tuberculosis

In this case study, we demonstrate the potential of visualizing subgraphs and extract-
ing information from the pan-genome graph topology. Specifically, we want to study
antibiotic resistance in bacteria, as it remains a medically relevant topic for monitor-
ing infectious diseases [54, 58–60]. Therefore, we built a pan-genome containing 340 M.
tuberculosis strains from KwaZulu-Natal and one H37Rv reference strain, with k = 19
(which was chosen after manual investigation), to visualize and investigate regions that
are related to rifampicin resistance. Cohen et al. [54] listed 18 mutations from the RRDR
region (the Rifampicin Resistance Determining Region, i.e., the 81 bp core region of gene
rpoB), which is known to be related to rifampicin resistance [61]. From these mutations,
we select the three that were reported to be observed in more than 50 strains of the
dataset for closer investigation, as to limit the extent of this case study. Table 11 shows
these three mutations, along with their coordinates with respect to the reference strain
and the number of strains in the dataset that carry it.

Using the visualization algorithms discussed earlier, these mutations with their sur-
roundings can be visualized. As the visualization of the complete RRDR region is too

Fig. 4  Left: average runtime over 10 runs for finding the node paths corresponding to the occurrences of
100 000 Illumina reads of length 101 bp and their reverse complement to the pan-genome graph of 10
human genomes, as a function of the checkpoint sparseness factor scp (8 to ∞ ). To find the occurrences, we
performed approximate pattern matching with a maximum allowed number of errors of K = 4 , using the
search scheme proposed by Kucherov et al. The pan-genome is built for k = 25 , k = 50 and k = 75 , and
sSA = 16 . The 95% confidence intervals for the runtime are also indicated. Right: total memory usage of the
IDmap component as a function of scp

Page 26 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

large to include in this paper, we show the subgraph that contains mutations S450L and
L452P (i.e., the end of the RRDR region) in Fig. 5. Such visualizations are beneficial dur-
ing hands-on research, as they allow the end-user to manually investigate the regions of
interest in depth. In this case, we can indeed confirm that the mutations observed in [54]
are present in our dataset.

Compensatory mutations

Cohen et al. report, “While accumulation of drug-resistance mutations can confer a fit-
ness cost to bacteria, subsequent development of compensatory mutations can amelio-
rate these costs by restoring certain affected physiological functions while maintaining
drug resistance” [54]. For rifampicin resistance, putative compensatory mutations in
genes rpoA, rpoC and the non-RRDR regions of gene rpoB have already been discussed
in previous literature [62–64]. Cohen et al. analyzed these reported compensatory muta-
tions and investigated the pan-genome for new ones. In total, they report 49 putative
rifampicin compensatory mutations that meet their requirements (i.e., evolved after or
concurrent to genotypic rifampicin resistance), 26 of which were newly identified. In this
paper, we only consider putative compensatory mutations that are co-mutated with one
of the three mutations in Table 11, and that occur at least twice. These limitations leave
us with 15 putative compensatory mutations, which are reported in the second column
of Table 12.

In this paper, we set up an independent search for putative compensatory mutations
by leveraging the functionality of finding the neighboring nodes of a certain node path.
Specifically, we find the neighboring nodes in the graph for genes rpoA, rpoC and the
non-RRDR regions of gene rpoB in the H37Rv reference strain, using the visualization
algorithms. If possible, we assign a coordinate to the neighboring nodes, by jumping
back to predecessor nodes (Algorithm 3) until a node is encountered that can be unam-
biguously positioned with respect to reference H37Rv (details are omitted). We then
consider a neighboring node to contain a candidate putative compensatory variation if
the following conditions are met:

1	 A coordinate was found within a limited number of steps back in the graph.
2	 The neighboring node contains only strains that carry one of the three mutations

from Table 11. All strains must carry the same RRDR mutation.
3	 The neighboring node must have a multiplicity of at least two. In other words, the

candidate putative compensatory variation must appear at least twice.

Table 11  Overview of the mutations in the RRDR region in the rpoB gene of M. tuberculosis reported
in [54], that are observed more than 50 times

Coordinates are reported with respect to the H37Rv reference strain (zero-based indexing). We also show the number of
strains in the 341-strain dataset that carry the mutations of interest

Polymorphism identifier Coordinate Number
of
strains

D435G 761112 51

S450L 761157 88

L452P 761163 69

Page 27 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

Applying this workflow to our pan-genome, results in 14 candidate putative compensa-
tory mutation nodes, for which their coordinate (with respect to reference H37Rv), node
identifier, corresponding RRDR mutation and multiplicity is shown in Table 12. Note

Fig. 5  Visualization of a subgraph of the pan-genome ccdBG of 341 M. tuberculosis strains ( k = 19 ),
corresponding to the end of the RRDR region of gene rpoB. The first k − 1 overlapping characters have been
omitted from each node and numerical node identifiers were replaced by characters A, B, etc., for clarity. The
original subgraph is shown in Additional file 1: Fig. S6. Parallel edges are collapsed into a single edge, shown
with its multiplicity. Edge thickness also reflects multiplicity. The reference H37Rv strain follows the path of
the dominating edges (i.e., node path ADEFGHIK). Except for the lateral inflow of 21 strains on the right (due
to other mutations in upstream regions), we observe that there are three alternative paths from node A to
node K: through node B, C or J. These alternative paths are present due to mutations in codons 450 and 452
(“TCG” and “CTG” in the reference), which are shown in green and blue. Specifically, mutations S450L, S450W
(not present in Table 11 as it is only observed in 6 strains), and L452P are underlined (codons “TTG”, “TGG”, and
“CCG” in nodes B, C, and J, respectively)

Page 28 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

that most candidate compensatory genes correspond to the S450L RRDR mutation, as
was also observed in [54]. We compare our results with the 15 putative compensatory
mutations reported in [54] we selected previously. We can distinguish three categories in
Table 12: 2 entries were only reported in [54], 1 entry was only reported by our pipeline,
and 13 entries correspond to a matching polymorphism reported both in [54] and by our
pipeline.

Two polymorphisms are missed by our pipeline due to the following reasons:

•	 E750D: the transition from glutamic acid to aspartic acid happens in two ways: from
“GAG” to “GAC” (node 67460) and from “GAG” to “GAT” (node 108256). Hence,
they are presented as two separate mutations with a multiplicity of one, which do not
meet the third condition.

•	 V183G: this mutation can be found in node 61254, but one of the strains that passes
through it is not genotypically rifampicin resistant (i.e., does not carry an RRDR
mutation). Hence, this node does not meet the second condition.

In summary, our pipeline detects all putative compensatory mutations from [54] within
the limits we imposed.

For the entry that is only reported by our pipeline, further research is required.
First, we investigate the type of the variant: it could be a substitution (silent, missense
or nonsense), or an insertion/deletion (possibly introducing frameshift). We do this
manually, based on the visualization of the neighborhood of this variation (see Fig. 6)
and the codon information of the reference genome on NCBI. As is detailed in Fig. 6,

Table 12  Overview of the candidate putative compensatory mutations in rpoA, rpoC and the non-
RRDR regions rpoB 

We report the coordinate with respect to the reference H37Rv strain; the name of the mutation (if it is reported in
[54]); the node identifier in the graph ( k = 19 ) of the candidate (if it is reported by our pipeline); the co-mutated RRDR
polymorphism, i.e., the mutation from Table 11 which is also carried by all strains that pass through this candidate; and the
number of strains in the dataset that correspond to this candidate

Coordinate Mutation name Node identifier RRDR mutation Nr. of strains

761246 I480V 97472 S450L 2

761549 V581M 55246 S450L 4

762199 111083 S450L 2

762279 R824L 105067 S450L 2

762287 R827C 109947 S450L 8

762733 Q975H 108299 S450L 5

762891 H1028R 82684 L452P 6

763125 I1106T 61206 L452P, D435G 50

764365 G332S 50267 S450L 2

764819 V483G 96203 S450L 2

765621 E750D S450L 2

766487 V1039A 56977 S450L 9

766489 P1040S 105810 S450L 18

766490 P1040R 92909 S450L 3

767125 V1252L 115316 S450L 5

3878138 V183G S450L 3

Page 29 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

node 111083 contains a silent mutation, which is currently not known to have compen-
satory effects. If a missense mutation had been found, additional research would have
been required (e.g., verifying the presence of this candidate in multiple, distinct phylo-
genetic clades or verifying that this candidate evolved after or concurrent to genotypic
rifampicin resistance).

Note that the pipeline discussed in this section is more of an ad hoc solution to the
problem of finding candidate compensatory mutations corresponding to mutations in
the RRDR region of rpoB, rather than a general pipeline to be readily applied to other
problems. Moreover, the choice of parameter k has a big impact on the results of this
pipeline. Nevertheless, the results from [54] can be reproduced within the limitations
we impose, without the need for variant calling. Hence, this application clearly shows
the potential of exploiting the information that is embedded in the pan-genome ccdBG,
using the graph operations we propose in this paper.

Conclusions
In this paper we proposed Nexus, a memory-efficient representation of the colored
compacted de Bruijn graph enabling subgraph visualization and lossless approximate
pattern matching of reads to the graph, developed to store pan-genomes. This implicit
graph representation is built on top of the bidirectional FM-index in a modular and
complementary way, with a limited additional memory cost (around 15%). We dem-
onstrated that it allows for easy integration of recent developments for the bidirec-
tional FM-index, by applying search schemes to our pan-genome graph. Using search
schemes, we provided a very efficient implementation of lossless approximate pat-
tern matching of reads to the graph, showing similar performance to state-of-the-art
lossy read(-to-graph) aligners. We showed that Nexus’ strength is to identify all pos-
sible occurrences corresponding to a read, even if they are highly abundant. We also

TGCTC...(+60)...CTGGT24491

CGGCAAGGTCACCCCGAAG71288 TGGCAAGGTCACCCCGAAG111083

GGTGA...(+51)...GGCCC 5413

339

339

2

2

Fig. 6  Visualization of the new candidate putative compensatory mutation at coordinate 762199 from
Table 12, as a subgraph of the pan-genome ccdBG of the 341-strain M. tuberculosis dataset ( k = 19 ). The first
k − 1 overlapping characters have been omitted from each node for clarity. Parallel edges are collapsed into
a single edge, shown with its multiplicity. Edge thickness also reflects multiplicity. The reference H37Rv strain
follows the path of the dominating edges (i.e., node path 24491-71288-5413). Node 111083 is reported by
our pipeline to be a candidate putative compensatory variation. The mutation of interest happens in codon
797, which is indicated in blue. Specifically, codon “GTC” is altered to codon “GTT”, which both translate to
amino acid valine. Hence, this variation is a silent mutation

Page 30 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

established a use-case demonstrating the advantage of Nexus’ versatility, by combin-
ing both the approximate pattern matching and visualization functionalities to ana-
lyze antimicrobial resistance mutations and their possible compensatory mutations.
Future work includes extending the implementation to a complete aligner (e.g., pro-
viding SAM output), integrating paired-end read alignment, building a multi-stratum
search scheme design and extending the search schemes to allow for more than 4
errors.

Abbreviations
AGPL	� Affero general public license
AMR	� Antimicrobial resistance
APM	� Approximate pattern matching
BWA	� Burrows-Wheeler aligner
BWT	� Burrows-Wheeler transform
ccdBG	� Colored compacted de Bruijn graph
cdBG	� Compacted de Bruijn graph
CPU	� Central processing unit
dBG	� de Bruijn graph
DNA	� Deoxyribonucleic acid
DP	� Dynamic programming
ED	� Edit distance
ID	� Identifier
LCP	� Longest common prefix
LF	� Last-to-First (property)
MEM	� Maximal exact match
NCBI	� National center for biotechnology information
ONT	� Oxford nanopore technologies
PacBio	� Pacific biosciences
RAM	� Random-access memory
RRDR	� Rifampicin resistance determining region
SA	� Suffix array
SNP	� Single-nucleotide polymorphism
UCSC	� University of California Santa Cruz

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05531-6.

Additional file 1. Supplementary information on the bidirectional FM-index, supplementary results, and instructions
for reproducing the results

Acknowledgements
The authors thank Enno Ohlebusch for reading the manuscript and providing useful suggestions.

Author Contributions
L.D., L.R. and J.F. designed and implemented the algorithms. L.D. performed all benchmarks. T.A. and J.F. supervised the
study. All authors have written and approved the manuscript.

Funding
L.D.: PhD Fellowship FR (1117322N) by the Research Foundation - Flanders (FWO). L.R.: PhD Fellowship SB (1SE7822N) by
the Research Foundation - Flanders (FWO).

Availability of data and materials
The datasets supporting the conclusions of this article are publicly available, and the ‘Data and Hardware’ section lists all
corresponding dataset identifiers and references. The C++ source code of Nexus is available at https://​github.​com/​bioin​
tec/​nexus under the GNU AGPL v3.0 license.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

https://doi.org/10.1186/s12859-023-05531-6
https://github.com/biointec/nexus
https://github.com/biointec/nexus

Page 31 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

Competing interests
The authors declare that they have no competing interests.

Received: 13 February 2023 Accepted: 12 October 2023

References
	1.	 Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple patho-

genic isolates of Streptococcus agalactiae: implications for the microbial pan-genome. Proc Natl Acad Sci.
2005;102(39):13950–5. https://​doi.​org/​10.​1073/​pnas.​05067​58102.

	2.	 Consortium TCPG. Computational pan-genomics: status, promises and challenges. Brief Bioinform. 2016;19(1):118–
35. https://​doi.​org/​10.​1093/​bib/​bbw089.

	3.	 Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips. Bioinformat-
ics. 2014;30(24):3476–83. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu756.

	4.	 Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the Burrows-
Wheeler transform. Bioinformatics. 2015;32(4):497–504. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv603.

	5.	 Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping bias overestimates reference allele
frequencies at the HLA genes in the 1000 genomes project phase I data. Genes Genom Genet. 2015;5(5):931–41.
https://​doi.​org/​10.​1534/​g3.​114.​015784.

	6.	 Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read-mapping biases on detecting allele-
specific expression from RNA-sequencing data. Bioinformatics. 2009;25(24):3207–12. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btp579.

	7.	 Martiniano R, Garrison E, Jones ER, Manica A, Durbin R. Removing reference bias and improving indel calling in
ancient DNA data analysis by mapping to a sequence variation graph. Genome Biol. 2020;21(1):250. https://​doi.​org/​
10.​1186/​s13059-​020-​02160-7.

	8.	 Groza C, Kwan T, Soranzo N, Pastinen T, Bourque G. Personalized and graph genomes reveal missing signal in epig-
enomic data. Genome Biol. 2020;21(1):124. https://​doi.​org/​10.​1186/​s13059-​020-​02038-8.

	9.	 Chen NC, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reducing reference bias using multiple population
genomes. Genome Biol. 2021;22(1):8. https://​doi.​org/​10.​1186/​s13059-​020-​02229-3.

	10.	 Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013. https://​doi.​org/​10.​
48550/​arXiv.​1303.​3997.

	11.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://​doi.​org/​
10.​1038/​nmeth.​1923.

	12.	 Ferragina P, Manzini G. Opportunistic data structures with applications. In: Proceedings 41st Annual Symposium on
Foundations of Computer Science; 2000. p. 390–398. https://​doi.​org/​10.​1109/​SFCS.​2000.​892127.

	13.	 Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal text searching in BWT-runs bounded space. J
ACM. 2020;67(1):635. https://​doi.​org/​10.​1145/​33758​90.

	14.	 Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher O, et al. Simultaneous alignment of
short reads against multiple genomes. Genome Biol. 2009;10(9):R98. https://​doi.​org/​10.​1186/​gb-​2009-​10-9-​r98.

	15.	 Rakocevic G, Semenyuk V, Lee WP, Spencer J, Browning J, Johnson IJ, et al. Fast and accurate genomic analyses using
genome graphs. Nat Genet. 2019;51(2):354–62. https://​doi.​org/​10.​1038/​s41588-​018-​0316-4.

	16.	 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. https://​doi.​org/​10.​1038/​s41587-​019-​0201-4.

	17.	 Jain C, Misra S, Zhang H, Dilthey A, Aluru S. Accelerating Sequence Alignment to Graphs. In: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS); 2019. p. 451–461. https://​doi.​org/​10.​1109/​IPDPS.​2019.​
00055.

	18.	 Vaddadi K, Srinivasan R, Sivadasan N. Read Mapping on Genome Variation Graphs. In: Huber KT, Gusfield D, editors.
19th International Workshop on Algorithms in Bioinformatics (WABI 2019). vol. 143 of Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2019. p. 7:1–7:17.
https://​doi.​org/​10.​4230/​LIPIcs.​WABI.​2019.7.

	19.	 Darby CA, Gaddipati R, Schatz MC, Langmead B. Vargas: heuristic-free alignment for assessing linear and graph read
aligners. Bioinformatics. 2020;36(12):3712–8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa2​65.

	20.	 Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves read mapping
by representing genetic variation in the reference. Nat Biotechnol. 2018;36(9):875–9. https://​doi.​org/​10.​1038/​nbt.​
4227.

	21.	 Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, et al. Pangenomics enables genotyping of known
structural variants in 5202 diverse genomes. Science. 2021;374(6574):8871. https://​doi.​org/​10.​1126/​scien​ce.​abg88​
71.

	22.	 Rautiainen M, Marschall T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol.
2020;21(1):253. https://​doi.​org/​10.​1186/​s13059-​020-​02157-2.

	23.	 Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol.
2020;21(1):265. https://​doi.​org/​10.​1186/​s13059-​020-​02168-z.

	24.	 Jain C, Zhang H, Gao Y, Aluru S. On the complexity of sequence-to-graph alignment. J Comput Biol. 2020;27(4):640–
54. https://​doi.​org/​10.​1089/​cmb.​2019.​0066.

	25.	 Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al. A whole-genome assembly of drosophila.
Science. 2000;287(5461):2196–204. https://​doi.​org/​10.​1126/​scien​ce.​287.​5461.​2196.

	26.	 Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet. 2012;44(2):226–32. https://​doi.​org/​10.​1038/​ng.​1028.

https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bioinformatics/btu756
https://doi.org/10.1093/bioinformatics/btv603
https://doi.org/10.1534/g3.114.015784
https://doi.org/10.1093/bioinformatics/btp579
https://doi.org/10.1093/bioinformatics/btp579
https://doi.org/10.1186/s13059-020-02160-7
https://doi.org/10.1186/s13059-020-02160-7
https://doi.org/10.1186/s13059-020-02038-8
https://doi.org/10.1186/s13059-020-02229-3
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/3375890
https://doi.org/10.1186/gb-2009-10-9-r98
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1109/IPDPS.2019.00055
https://doi.org/10.1109/IPDPS.2019.00055
https://doi.org/10.4230/LIPIcs.WABI.2019.7
https://doi.org/10.1093/bioinformatics/btaa265
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1126/science.abg8871
https://doi.org/10.1126/science.abg8871
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1126/science.287.5461.2196
https://doi.org/10.1038/ng.1028

Page 32 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400

	27.	 Limasset A, Cazaux B, Rivals E, Peterlongo P. Read mapping on de Bruijn graphs. BMC Bioinform. 2016;17(1):237.
https://​doi.​org/​10.​1186/​s12859-​016-​1103-9.

	28.	 Heydari M, Miclotte G, Van de Peer Y, Fostier J. BrownieAligner: accurate alignment of Illumina sequencing data to
de Bruijn graphs. BMC Bioinform. 2018;19(1):311. https://​doi.​org/​10.​1186/​s12859-​018-​2319-7.

	29.	 Dvorkina T, Antipov D, Korobeynikov A, Nurk S. SPAligner: alignment of long diverged molecular sequences to
assembly graphs. BMC Bioinform. 2020;21(12):306. https://​doi.​org/​10.​1186/​s12859-​020-​03590-7.

	30.	 Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn Graphs. In: Raphael B, Tang J, editors. Algorithms in
Bioinformatics. Berlin: Springer; 2012. p. 225–235. https://​doi.​org/​10.​1007/​978-3-​642-​33122-0_​18.

	31.	 Boucher C, Bowe A, Gagie T, Puglisi SJ, Sadakane K. Variable-Order de Bruijn Graphs. In: 2015 Data Compression
Conference; 2015. p. 383–392. https://​doi.​org/​10.​1109/​DCC.​2015.​70.

	32.	 Belazzougui D, Gagie T, Mäkinen V, Previtali M, Puglisi SJ. Bidirectional Variable-Order de Bruijn Graphs. In: Kranakis
E, Navarro G, Chávez E, editors. LATIN 2016: Theoretical Informatics. Berlin, Heidelberg: Springer Berlin Heidelberg;
2016. p. 164–178. https://​doi.​org/​10.​1007/​978-3-​662-​49529-2_​13.

	33.	 Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, et al. Succinct colored de Bruijn graphs. Bioinformat-
ics. 2017;33(20):3181–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx067.

	34.	 Díaz-Domínguez D, Gagie T, Navarro G. Simulating the DNA Overlap Graph in Succinct Space. In: Pisanti N, Pissis SP,
editors. 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019). vol. 128 of Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2019. p.
26:1–26:20. https://​doi.​org/​10.​4230/​LIPIcs.​CPM.​2019.​26.

	35.	 Alanko JN, Vuohtoniemi J, Mäklin T, Puglisi SJ. Themisto: a scalable colored k-mer index for sensitive pseudoalign-
ment against hundreds of thousands of bacterial genomes. bioRxiv. 2023; https://​doi.​org/​10.​1101/​2023.​02.​24.​
529942.

	36.	 Liu B, Guo H, Brudno M, Wang Y. deBGA: read alignment with de Bruijn graph-based seed and extension. Bioinfor-
matics. 2016;32(21):3224–32. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw371.

	37.	 Almodaresi F, Zakeri M, Patro R. PuffAligner: a fast, efficient and accurate aligner based on the Pufferfish index.
Bioinformatics. 2021;37(22):4048–55. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab4​08.

	38.	 Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index for the compacted colored de Bruijn
graph. Bioinformatics. 2018;34(13):i169–77. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty292.

	39.	 Beller T, Ohlebusch E. A representation of a compressed de Bruijn graph for pan-genome analysis that enables
search. Algorithms Mol Biol. 2016;11(1):20. https://​doi.​org/​10.​1186/​s13015-​016-​0083-7.

	40.	 Dede K, Ohlebusch E. Dynamic construction of pan-genome subgraphs. Open Comput Sci. 2020;10(1):82–96.
https://​doi.​org/​10.​1515/​comp-​2020-​0018.

	41.	 Lam TW, Li R, Tam A, Wong S, Wu E, Yiu SM. High Throughput Short Read Alignment via Bi-directional BWT. In: 2009
IEEE International Conference on Bioinformatics and Biomedicine; 2009. p. 31–36. https://​doi.​org/​10.​1109/​BIBM.​
2009.​42.

	42.	 Kucherov G, Salikhov K, Tsur D. Approximate String Matching Using a Bidirectional Index. In: Kulikov AS, Kuznetsov
SO, Pevzner P, editors. Combinatorial Pattern Matching. Cham: Springer International Publishing; 2014. p. 222–231.
https://​doi.​org/​10.​1007/​978-3-​319-​07566-2_​23.

	43.	 Kianfar K, Pockrandt C, Torkamandi B, Luo H, Reinert K. Optimum Search Schemes for Approximate String Matching
Using Bidirectional FM-Index; 2018. https://​doi.​org/​10.​48550/​arXiv.​1711.​02035.

	44.	 Pockrandt CM. Approximate String Matching: Improving Data Structures and Algorithms [dissertation]. Free Univer-
sity of Berlin, Dahlem, Germany; 2019. https://​doi.​org/​10.​17169/​refub​ium-​2185.

	45.	 Renders L, Marchal K, Fostier J. Dynamic partitioning of search patterns for approximate pattern matching using
search schemes. iScience. 2021;24(7):102687. https://​doi.​org/​10.​1016/j.​isci.​2021.​102687.

	46.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci.
2001;98(17):9748–53. https://​doi.​org/​10.​1073/​pnas.​17128​5098.

	47.	 Manber U, Myers G. Suffix arrays: a new method for on-line string searches. SIAM J Comput. 1993;22(5):935–48.
https://​doi.​org/​10.​1137/​02220​58.

	48.	 Burrows M, Wheeler D. A Block-Sorting Lossless Data Compression Algorithm. 130 Lytton Avenue, Palo Alto, Califor-
nia 94301: Digital Equipment Corporation Systems Research Center; 1994. 124.

	49.	 Pockrandt C, Ehrhardt M, Reinert K. EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time Searches
in Unidirectional and Bidirectional FM Indices. In: Sahinalp SC, editor. Research in Computational Molecular Biology.
Cham: Springer International Publishing; 2017. p. 190–206. https://​doi.​org/​10.​1007/​978-3-​319-​56970-3_​12.

	50.	 Renders L, Depuydt L, Fostier J. Approximate Pattern Matching Using Search Schemes and In-Text Verification.
In: Rojas I, Valenzuela O, Rojas F, Herrera LJ, Ortuño F, editors. Bioinformatics and Biomedical Engineering. Cham:
Springer International Publishing; 2022. p. 419–435. https://​doi.​org/​10.​1007/​978-3-​031-​07802-6_​36.

	51.	 Vigna S. Broadword Implementation of Rank/Select Queries. In: McGeoch CC, editor. Experimental Algorithms.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 154–168. https://​doi.​org/​10.​1007/​978-3-​540-​68552-4_​12.

	52.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://​doi.​org/​10.​1101/​gr.​12393​
03.

	53.	 Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, et al. AlleleSeq: analysis of allele-specific expression and
binding in a network framework. Mol Syst Biol. 2011;7(1):522. https://​doi.​org/​10.​1038/​msb.​2011.​54.

	54.	 Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of extensively drug-
resistant tuberculosis over four decades: whole genome sequencing and dating analysis of mycobacterium tuber-
culosis isolates from KwaZulu-Natal. PLoS Med. 2015;12(9): e1001880. https://​doi.​org/​10.​1371/​journ​al.​pmed.​10018​
80.

	55.	 Koenig R. Few mutations divide some drug-resistant TB strains. Science. 2007;318(5852):901–2. https://​doi.​org/​10.​
1126/​scien​ce.​318.​5852.​901a.

https://doi.org/10.1186/s12859-016-1103-9
https://doi.org/10.1186/s12859-018-2319-7
https://doi.org/10.1186/s12859-020-03590-7
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.4230/LIPIcs.CPM.2019.26
https://doi.org/10.1101/2023.02.24.529942
https://doi.org/10.1101/2023.02.24.529942
https://doi.org/10.1093/bioinformatics/btw371
https://doi.org/10.1093/bioinformatics/btab408
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1186/s13015-016-0083-7
https://doi.org/10.1515/comp-2020-0018
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1007/978-3-319-07566-2_23
https://doi.org/10.48550/arXiv.1711.02035
https://doi.org/10.17169/refubium-2185
https://doi.org/10.1016/j.isci.2021.102687
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1137/0222058
https://doi.org/10.1007/978-3-319-56970-3_12
https://doi.org/10.1007/978-3-031-07802-6_36
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/msb.2011.54
https://doi.org/10.1371/journal.pmed.1001880
https://doi.org/10.1371/journal.pmed.1001880
https://doi.org/10.1126/science.318.5852.901a
https://doi.org/10.1126/science.318.5852.901a

Page 33 of 33Depuydt et al. BMC Bioinformatics (2023) 24:400 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	56.	 Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs WR Jr, et al. Genome analysis of multi- and extensively-drug-
resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE. 2009;4(11): e7778. https://​doi.​org/​10.​1371/​journ​
al.​pone.​00077​78.

	57.	 Arakawa Y, Navarro G, Sadakane K. Bi-Directional r-Indexes. In: Bannai H, Holub J, editors. 33rd Annual Symposium
on Combinatorial Pattern Matching (CPM 2022). vol. 223 of Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik; 2022. p. 11:1–11:14. https://​doi.​org/​10.​4230/​
LIPIcs.​CPM.​2022.​11.

	58.	 Manson AL, Tyne DV, Straub TJ, Clock S, Crupain M, Rangan U, et al. Chicken meat-associated enterococci: influence
of agricultural antibiotic use and connection to the clinic. Appl Environ Microbiol. 2019;85(22):e01559. https://​doi.​
org/​10.​1128/​AEM.​01559-​19.

	59.	 Tyne DV, Manson AL, Huycke MM, Karanicolas J, Earl AM, Gilmore MS. Impact of antibiotic treatment and host
innate immune pressure on enterococcal adaptation in the human bloodstream. Sci Transl Med. 2019;11(487):8418.
https://​doi.​org/​10.​1126/​scitr​anslm​ed.​aat84​18.

	60.	 Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. Tracing the Enterococci from Paleozoic Origins
to the Hospital. Cell. 2017;169(5):849-861.e13. https://​doi.​org/​10.​1016/j.​cell.​2017.​04.​027.

	61.	 Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T, et al. Detection of rifampicin-resistance mutations
in Mycobacterium tuberculosis. The Lancet. 1993;341(8846):647–51. https://​doi.​org/​10.​1016/​0140-​6736(93)​90417-F.

	62.	 Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resist-
ant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet.
2012;44(1):106–10. https://​doi.​org/​10.​1038/​ng.​1038.

	63.	 Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, et al. Evolution and transmission of
drug-resistant tuberculosis in a Russian population. Nat Genet. 2014;46(3):279–86. https://​doi.​org/​10.​1038/​ng.​2878.

	64.	 de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, et al. Putative compensatory mutations in the
rpoC gene of Rifampin-resistant mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob
Agents Chemother. 2013;57(2):827–32. https://​doi.​org/​10.​1128/​AAC.​01541-​12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0007778
https://doi.org/10.1371/journal.pone.0007778
https://doi.org/10.4230/LIPIcs.CPM.2022.11
https://doi.org/10.4230/LIPIcs.CPM.2022.11
https://doi.org/10.1128/AEM.01559-19
https://doi.org/10.1128/AEM.01559-19
https://doi.org/10.1126/scitranslmed.aat8418
https://doi.org/10.1016/j.cell.2017.04.027
https://doi.org/10.1016/0140-6736(93)90417-F
https://doi.org/10.1038/ng.1038
https://doi.org/10.1038/ng.2878
https://doi.org/10.1128/AAC.01541-12

	Pan-genome de Bruijn graph using the bidirectional FM-index
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	State-of-the-art pan-genome representations
	Contributions

	Methods
	Preliminaries
	Bidirectional graph data structure
	Bidirectional FM-index
	Collection of graph nodes
	Auxiliary bit vectors and tables
	Building the data structure

	Elementary graph operations
	Determining the node identifier for an extreme k-mer
	Jumping to a neighbor with a character
	Jumping to a predecessor through a specific edge

	Visualization
	Approximate pattern matching to the graph
	Search schemes
	Identifying an occurrence in the graph

	Results and discussion
	Data and hardware
	Memory usage
	Storing and using the data structure
	Building the data structure

	Approximate pattern matching performance
	Breakdown of Nexus’ performance
	Alignment sensitivity analysis
	Alignment performance analysis
	The effect of and k on Nexus’ memory usage and APM performance

	Case study on the bacterium M. Tuberculosis
	Compensatory mutations

	Conclusions
	Anchor 37
	Acknowledgements
	References

