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Abstract 

Background:  Hepatitis C is a prevalent disease that poses a high risk to the human 
liver. Early diagnosis of hepatitis C is crucial for treatment and prognosis. Therefore, 
developing an effective medical decision system is essential. In recent years, many 
computational methods have been proposed to identify hepatitis C patients. Although 
existing hepatitis prediction models have achieved good results in terms of accuracy, 
most of them are black-box models and cannot gain the trust of doctors and patients 
in clinical practice. As a result, this study aims to use various Machine Learning (ML) 
models to predict whether a patient has hepatitis C, while also using explainable mod-
els to elucidate the prediction process of the ML models, thus making the prediction 
process more transparent.

Result:  We conducted a study on the prediction of hepatitis C based on serologi-
cal testing and provided comprehensive explanations for the prediction process. 
Throughout the experiment, we modeled the benchmark dataset, and evaluated 
model performance using fivefold cross-validation and independent testing experi-
ments. After evaluating three types of black-box machine learning models, Random 
Forest (RF), Support Vector Machine (SVM), and AdaBoost, we adopted Bayesian-opti-
mized RF as the classification algorithm. In terms of model interpretation, in addition 
to using common SHapley Additive exPlanations (SHAP) to provide global explanations 
for the model, we also utilized the Local Interpretable Model-Agnostic Explanations 
with stability (LIME_stabilitly) to provide local explanations for the model.

Conclusion:  Both the fivefold cross-validation and independent testing show that our 
proposed method significantly outperforms the state-of-the-art method. IHCP main-
tains excellent model interpretability while obtaining excellent predictive performance. 
This helps uncover potential predictive patterns of the model and enables clinicians 
to better understand the model’s decision-making process.

Keywords:  Hepatitis C, Machine learning, Interpretable artificial intelligence, SHAP, 
LIME
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Background
The liver plays a vital role in many essential functions in the human body. Any dam-
age to the liver will adversely affect critical physiological processes and the patient’s 
health status [1, 2]. At the same time, the early stages of liver disease are often dif-
ficult to diagnose, because even if partially infected, they do not affect the normal 
functioning of the liver. Moreover, in the case of depleted liver capacity, life can only 
last one or two days [3]. Therefore, early diagnosis of hepatitis is crucial for both 
doctors and patients [4]. Among them, hepatitis C is an inflammatory liver disease 
caused by the hepatitis C virus (HCV) and is the principal global cause of chronic 
hepatitis, hepatic sclerosis, and hepatocellular carcinoma [5, 6]. WHO estimates 
that around 290,000 people will die from hepatitis C in 2019, mainly from cirrhosis 
and hepatocellular carcinoma (primary liver cancer) [7]. By 2022, WHO reports that 
diagnosis and treatment of hepatitis C will be interrupted in half of the countries 
due to the COVID-19 pandemic [8]. Multiple studies have shown that early detec-
tion remains the best option to improve the survival rate of patients with liver dis-
ease [3, 9]. Therefore, exploring serum-based prediction methods for hepatitis C is 
important for the early detection and treatment of hepatitis.

In recent years, machine learning techniques are rapidly applied in different medi-
cal applications [10–13], such as chronic COVID-19, fatty liver disease, liver disease 
[14], kidney disease, heart disease, and diabetes. This technique uses large datasets 
and statistical methods to identify complex relationships between patient medi-
cal attributes and outcomes. The two main medical areas currently using machine 
learning are diagnosis and outcome prediction. In particular, machine learning is a 
valuable tool for identifying individuals at high risk of health deterioration.

A number of studies have used machine learning techniques to study hepatitis 
in the last few years [6, 14–17]. The application of machine learning methods has 
greatly improved the predictive performance of hepatitis, but the interpretation of 
the underlying predictors is generally lacking.

In this study, we introduce a combined method of IHCP to predict hepatitis C, 
which integrates an interpretable model based on SHAP and LIME_stabilitly with a 
machine learning method. IHCP combines interpretability with high predictive per-
formance. More importantly, our interpretable model can help physicians identify 
hepatitis at an early stage and help cure patients at an early stage of hepatitis.

We summarize the contributions of this study as follows:

1.	 We propose a hepatitis C prediction method IHCP. IHCP introduces RF, AdaBoost, 
and SVM machine learning models for early hepatitis prediction, and uses SHAP and 
LIME_stability for interpretability analysis.

2.	 Comparative experiments based on the UCI dataset and an independent testing set 
show that IHCP significantly outperformed the current most advanced methods.

3.	 IHCP conducts interpretable analyses to validate the factors that have the greatest 
impact on the patient population and help healthcare providers to predict hepatitis at 
an early stage and prevent the deterioration of the disease.
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Result and discussion
RF hyperparameter setting

Based on the experimental analysis, different datasets need to be trained with different 
hyperparameters in the Bayesian optimized RF, and the optimization parameters on the 
UCI dataset and the independent testing set are respectively recorded in Tables 1 and 2.

Performance evaluation of different machine learning algorithms

In this section, we compare the performance of different machine learning algorithms in 
predicting hepatitis C patients using fivefold cross-validation. The confusion matrices of 
the RF, SVM, and AdaBoost models are shown in Fig. 1. As can be seen from the figure, 
SVM has the worst prediction results and will easily misdiagnose hepatitis C patients as 
blood donors. In clinical practice, it does not serve as an early diagnosis. The AdaBoost 
is most likely to diagnose blood donors as hepatitis C patients, which may cause unnec-
essary patient panic. In comparison, RF is the best-performing model among them.

Table 3 shows the performance comparison of the three classifiers in the UCI data-
set. It can be seen that RF performed the best among all five evaluation indicators, it 
achieved a correct rate of 0.9944 and an AUC value of 0.9986. And Table 4 shows the 
comparison of the performance of the three classifiers in the independent testing set, 
and it can be seen that, overall, it is still RF that performs the best. Therefore, we choose 
to use Bayesian-optimized RF as the proposed classifier for hepatitis diagnosis.

Explainable models based on SHAP and LIME

Several recent studies have introduced new interpretable methods to explain the predic-
tion process and underlying mechanisms of machine learning classifiers. Interpretable 

Table 1  RF model hyperparameters settings in the UCI dataset

Hyperparameter Value

n_estimators 500

max_depth 70

max_features 2

min_samples_split None

min_samples_leaf None

max_leaf_nodes None

Table 2  RF model hyperparameters settings in the independent testing set

Hyperparameter Value

n_estimators 102

max_depth 100

max_features 1

min_samples_split None

min_samples_leaf None

max_leaf_nodes None
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Fig. 1  Confusion matrix. a Confusion matrix of RF in the UCI dataset. b Confusion matrix of SVM in the UCI 
dataset. c Confusion matrix of AdaBoost in the UCI dataset. d Confusion matrix of RF in the independent 
testing set. e Confusion matrix of SVM in the independent testing set. f Confusion matrix of AdaBoost in the 
independent testing set

Table 3  Comparison of the three machine learning classifiers in the UCI dataset

Bold represents the best performing indicator

Classifier Accuracy AUC​ Precision Recall F1-score

RF 0.9944 0.9986 0.9946 0.9954 0.9944
SVM 0.8546 0.9241 0.9821 0.7248 0.7684

AdaBoost 0.903 0.9514 0.9759 0.8319 0.8515

Table 4  Comparison of the three machine learning classifiers in the independent testing set

Bold represents the best performing indicator

Classifier Accuracy AUC​ Precision Recall F1-score

RF 0.9148 0.9895 0.9008 0.9277 0.9052
SVM 0.7298 0.7662 0.9504 0.5207 0.5545

AdaBoost 0.771 0.8236 0.9136 0.6481 0.6571
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methods are divided into global and local interpretable techniques [18]. We extended 
our machine learning model by using SHAP [19] and LIME [20]. LIME is the most com-
monly used local interpretation method, and SHAP is the most popular global inter-
pretable method. Global interpretability aims to help one understand the overall logic 
behind complex models and the internal working mechanism, and local interpretability 
aims to help one understand the decision process and decision basis of machine learning 
models for each input sample.

SHAP uses the SHAP value to measure the impact of the characteristics of a complex 
model. The SHAP value is defined as the weighted average of the marginal contributions 
[21]. It can be used to explain any type of predictive model for classification or regres-
sion [21]. Figure 2 shows a summary plot of the SHAP values of our proposed hepatitis 
diagnostic model. Where the horizontal coordinate is the SHAP value and the vertical 
coordinate is the feature type. Each point’s color determines the element’s value; higher 
values are marked in red and lower values are marked in blue. The summary plot depicts 
the relationship between each feature and the final prediction of the model, the prob-
ability that the sample is malignant. All features are ranked on the y-axis according to 
their importance in the prediction. Figure 3 visualizes the binary output of the hepatitis 
diagnostic model. The visualization shows the mean absolute Shapley values of 12 char-
acteristics for hepatitis patients and non-hepatitis patients, where the hepatitis patient 
category is represented by “1” and the no hepatitis patient category is represented by 
“0”. Based on the two visualizations, the most important features among the 12 visual-
ized features are AST, GGT, ALP, BIL, and ALT, with AST having the highest priority. 

Fig. 2  SHAP summary diagram
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In contrast, some features, such as Age and PROT, have low priority in determining 
whether a patient has hepatitis.

LIME, a black-box model interpretation method, interprets the model by providing a 
model that behaves very similarly to the original model [20]. It approximates the black 
box model f by using a simple function g around a point x, where g must belong to the 
class of interpretable models G. Each model corresponds to a specific input point x, only 
around x are the predictions of the interpretable model guaranteed to be very close to 
the black box model. This property determines the ability of LIME to act as a local inter-
pretable tool.

Each time LIME is used, it generates new data points that follow the same distribution 
but differ in different applications. Due to the random nature of sampling, using different 
issues, different interpretable models may be obtained, thus obtaining different interpre-
tations for the selected individuals [22]. To avoid uncertainty in model interpretation, we 
use an enhanced LIME model with a statistical stability index in this study [22] (https://​
github.​com/​giorg​iovis​ani/​LIME_​stabi​litly), which assesses the LIME by developing a 
complementary pair of indices for stability: the Variable Stability Index (VSI) and the 
System Stability Index (CSI). The VSI index is used to check whether different LIMEs 
return the same variables as explanations, and the CSI index controls whether the coef-
ficients of each variable can be considered equal under repeated LIME calls.

We demonstrate the use of the LIME_stabilitly model on the RF model. As shown in 
Figs. 4 and 5, the bars on the left represent the contribution of each feature to the no 
hepatitis class, and the bars on the right depict the contribution of each feature to the 
prediction of the hepatitis class. Figure 4 indicates that the model has 90% confidence 

Fig. 3  Summary of the average absolute SHAP values on the model targets

https://github.com/giorgiovisani/LIME_stabilitly
https://github.com/giorgiovisani/LIME_stabilitly
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that this patient is a patient without hepatitis, with AST, BIL, ALP, and GGT being the 
most critical factors. Figure  5 indicates that the model has 99% confidence that this 
patient is a hepatitis patient, with AST, ALT, ALP, and BIL being the most critical dis-
criminatory factors. It explains the judgment category of individual cases and the basis 
of discrimination for clinical reference.

Comparison of IHCP with existing state‑of‑the‑art methods

In this section, we compare the predictive performance of IHCP with existing meth-
ods, as shown in Table 5. Akter et al. used machine learning methods to classify normal 

Fig. 4  LIME_stabilitly interpretation chart for no hepatitis patients

Fig. 5  LIME_stabilitly interpretation chart for hepatitis patients

Table 5  Comparison of IHCP with existing art-the-start methods on the UCI dataset

Bold represents the best performing indicator

Author Method Accuracy (%) AUC​

Akter [23] LR 95 –

Edeh et al. [24] Ensemble Learning 95.59 –

Safdari et al. [25] RF 97.29 0.998

Li [26] SPFLR 98.74 0.9401

Yağanoğlu [27] DT with new feature 99.31 0.98

Alizargar et al. [28] XGBoost 95 0.984

This study IHCP 99.44 0.9986
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individuals and patients with hepatitis C. LR performed the best with an accuracy of 
95% [23]. Edeh et al. [24] proposed the use of an ensemble learning predictive model to 
predict patients with hepatitis C. It achieved an accuracy of 95.59%. Safdari et al. pro-
posed a method using SMOTE to eliminate the interclass imbalance and RF as a classi-
fier to get 0.998 AUC and 97.29% accuracy [25]. Li [26] proposed a predictor selection 
strategy based on a stepwise random forest and logistic regression model combined with 
the SMOTE technique [26], ultimately achieving an accuracy of 98.74% and an AUC of 
0.9401. Yağanoğlu et al. [27] used feature extraction techniques to obtain new features 
and trained the dataset on multiple classifiers, DT performed the best, obtaining 99.31% 
accuracy and 0.98 AUC. According to the most recent study to our knowledge, Alizargar 
et al. [28] proposed a method using XGboost to get 0.984 AUC and 95% accuracy. Com-
pared with the above-proposed method, our proposed IHCP model obtained 99.44% 
accuracy and 0.9986 AUC, both of which were improved compared with the previous 
method. Also, our IHCP provides a good global and local interpretation of the predic-
tion results. This allows physicians to better understand the process predicted by the 
model and integrate it with reality to improve clinical usability.

To demonstrate the superiority and robustness of our proposed model, we conducted 
experiments on an independent testing set. Huynh et  al. [29] proposed an ensemble 
method that obtained 83.42% accuracy and 0.8418 AUC on this dataset, and Rosly et al. 
[30] proposed a stacking technique combined with a multilayer perceptron that obtained 
86.25% accuracy. In comparison, as shown in Table 6, our IHCP has improved in both 
AUC and accuracy and is more suitable as a prediction model for hepatitis C.

Based on the cross-validation comparison results and independent testing, we dem-
onstrate the robustness and superior performance of IHCP for the hepatitis prediction 
problem. At the same time, our model provides interpretability for medical practitioners 
while ensuring high predictive performance. Among them, the global interpretation pro-
vides physicians with which indicators are abnormal causing the disease, and the local 
interpretation is analyzed for individuals. The interpretability makes the prediction pro-
cess of the model transparent, allowing medical workers without specialized knowledge 
to understand the prediction process of the prediction model, and helps accelerate the 
process of machine learning-based hepatitis prediction models to clinical use.

Conclusion
In this study, we propose a new computational method IHCP that can perform hepa-
titis C prediction more accurately and interpretably, SMOTE is used to eliminate the 
class imbalance in the dataset, Bayesian optimized random forest is selected as the final 
prediction model, and SHAP and LIME_stabilitly are used to perform interpretative 
analysis of the model. The experimental results and independent testing show that IHCP 

Table 6  Comparison of IHCP with existing art-the-start methods on the independent testing set

Method Accuracy (%) AUC​

Ensemble learning [29] 83.42 0.8418

Stacking + MLP [30] 86.25 –

IHCP 91.48 0.9895
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obtains significant performance gains compared to the state-of-the-art methods. Nota-
bly, IHCP has good interpretability compared to existing methods. This has important 
applications for improving the diagnosis rate and simplifying the diagnostic process for 
hepatitis C patients.

However, there are still some limitations that need to be further investigated later. 
First, more factors need to be considered when deploying the model in real-world sce-
narios, such as the patient’s medical history and lifestyle habits. Second, most clinical 
scenarios require more information beyond binary prediction. Finally, we hope to use 
higher-quality datasets to enhance model performance in future studies and to use more 
interpretable methods to explain the potential predictive patterns of the model.

Method
The benchmark dataset

High-quality benchmark datasets are essential for building reliable computational mod-
els. The Dataset used in this work was obtained from the publicly available UCI machine 
learning repository [31]. The multivariate data type includes 615 samples with 13 input 
attributes and 1 output attribute. These column attributes were: patient ID/number, 
diagnostic category, age, gender, ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GT, 
and PROT. The multi-category dataset sample consists of 4 labels (‘0 = blood donor’, 
‘0s = suspected blood donor’, ‘1 = hepatitis’, ‘2 = fibrosis’, ‘3 = cirrhosis’). Subsequently, we 
perform pre-processing and data balancing operations on the raw data to further con-
struct the prediction model.

To validate the generalization capability of the proposed model, we conducted inde-
pendent dataset tests based on the second dataset. This dataset was obtained from the 
study by Huynh et  al. [29]. It contains 155 data samples with 18 input attributes and 
1 output attribute. These column attributes were: age, sex, steroid, antivirals, fatigue, 
malaise, anorexia, liver_big, liver_firm, spleen_palpable, spiders, ascites, varices, biliru-
bin, alk_phosphate, sgot, albumin, protime, histology, class.

Data pre‑processing

Pre-processing can help improve data quality and ensure that the data used in building 
the model are meaningful. Generally, the data pre-processing process includes process-
ing missing values, noise data, and inconsistent data.

In this paper, we constructed a binary classifier to identify whether a patient has hepa-
titis or not. Thus, we perform the following operations. For the UCI dataset, the first 
step is to remove the columns that are not relevant for predicting patients, the patient 
ID/number column. The second step is to replace the data labels. We treated both blood 
and suspected blood donors as non-diseased with label 0 and treated all three types of 
hepatitis, fibrosis, and cirrhosis as diseased with label 1. The third step was performed 
for missing values, and the missing data are shown in Table 7. There are only 31 null val-
ues in the given dataset, so we chose the mean-filling method to process them.

For the independent testing set, we first transform the attribute names to facilitate 
understanding and comparison, and the changed attribute names are shown in Table 8. 
Second, the independent testing set has only two classifications, either die or live, and 
we assign label 0 to live and label 1 to die. Finally, the independent testing set also has 
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some missing values, and the missing cases are shown in Table 9, and we also take the 
mean-filling approach to process them.

Handling imbalanced data

In practice, many datasets are imbalanced. A highly imbalanced dataset will lead to 
overfitting of the model and further affect the prediction results. Therefore, the opera-
tion of balancing the dataset is particularly important to improve the universality and 

Table 7  Number of missing values per column in the UCI dataset

Column NUM

Category 0

Age 0

Sex 0

ALB 1

ALP 18

ALT 1

AST 0

BIL 0

CHE 0

CHOL 10

CREA 0

GGT​ 0

PROT 1

Table 8  Comparison table for changing the names of independent testing set attributes

Original attribute name Changed 
attribute 
name

Sgot AST

Protime PROT

Albumin ALB

alk_phosphate ALP

Bilirubin BIL

Table 9  Number of missing values per column in the independent testing set

Column NUM Column NUM

Age 0 Sex 0

Steroid 1 Antivirals 0

Fatigue 1 Malaise 1

Anorexia 1 liver_big 10

liver_firm 11 spleen_palpable 5

Spiders 5 Ascites 5

Varices 5 BIL 6

ALP 29 AST 4

ALB 16 PORT 67

Histology 0 Category 0
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generalization of the model. The main methods to deal with data imbalance are class bal-
ancer, resampling, synthetic minority oversampling, and component-sensitive classifier 
[32]. In this work, dataset balancing is done by resampling, including oversampling and 
undersampling [33]. Oversampling is the random sampling from the minority category 
sample to add new samples so that the number of minority category samples is the same 
as the number of majority category samples. Undersampling is the process of sampling 
the same number of samples from the majority class sample as the minority class sample.

In this study, the UCI dataset we used was divided into 540 positive samples and 75 
negative samples.

Figure 6a shows a bar chart comparing the number of patients with and without liver 
disease. Since the number of positive and negative samples in the dataset is hugely 
unbalanced, a simple oversampling technique would result in the divided training set 
and the testing set containing many duplicate negative samples. Therefore, we use the 
Synthetic Minority Oversampling Technique (SMOTE) to process the imbalanced data. 
The bar chart comparing the number of patients with and without liver disease after 
processing is shown in Fig.  6b, at which time there are 540 positive and 540 negative 
samples, and the dataset is balanced. We perform the same operation on the independ-
ent testing set and compare the independent testing set data before and after balancing, 
as shown in Fig. 6c, d. Then, the datasets are partitioned into a training set and a test-
ing set in a 4:1 ratio, and the datasets are trained using fivefold cross-validation. When 
performing cross-validation, first, the dataset is divided into equal quintiles, using the 

Fig. 6  Comparison of datasets before and after balancing. a Comparison of the original unbalanced 
dataset in the UCI dataset. b Comparison of the dataset after the oversampling process in the UCI dataset. c 
Comparison of the original unbalanced dataset in the independent testing set. d Comparison of the dataset 
after the oversampling process in the independent testing set. (Sex: 0 = female, 1 = male; category: 0 = no 
hepatitis, 1 = hepatitis)



Page 12 of 16Fan et al. BMC Bioinformatics          (2023) 24:333 

first fold as the testing set and the remaining 2–5 folds as the training set to obtain a 
prediction accuracy; then, the second fold is used as the testing set, the other first, third, 
fourth, and fifth folds as the training set, and so on. Finally, five prediction accuracies 
will be obtained, and the average value will be taken as the final accuracy of the model.

Model overview

This paper aims to propose an interpretable prediction model for hepatitis. The IHCP 
framework for predicting hepatitis is shown in Fig. 7. First, the data are pre-processed, 
which are data cleaning, missing value completion, and data balancing. Then, three dif-
ferent black box models are introduced to train the data. Next, the optimal model was 
selected using five evaluation criteria. Finally, the models were interpreted globally and 
locally using visualization methods, and the obtained results were analyzed.

Classification method

In this section, we describe the three classification methods used by our proposed IHCP 
for hepatitis identification and the optimization process, and the proposed processing is 
shown in Fig. 8. Further, we describe the three machine learning methods and the pro-
cessing in detail.

Random forest

Random Forest is a typical supervised machine-learning method proposed initially 
by Breiman et  al. [34]. It is an algorithm that combines multiple trees through the 
idea of integration learning, where the basic unit is a decision tree and the integration 
method used is bagging. The workflow of RF is shown in Fig. 9, RF consists of many 

Fig. 7  Overview of predicting hepatitis C patients and interpreting model predictions. Collect hepatitis 
dataset. Preprocess the hepatitis dataset with data cleaning, missing value filling, data balancing, and input 
into the model. Divide the dataset into training and testing sets to perform training and evaluate the best 
model. SHAP and LIME are applied to analyze the resulting experimental results
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decision trees, and each decision tree is a classifier. For any classification sample, N 
decision trees will have n classification results. The RF uses bagging to integrate these 
results, using the principle of minority rule to assign the category with the highest 
number of votes as the final output result. Compared with the decision tree with only 
one tree, RF solves the disadvantage of the weak generalization ability of the decision 
tree.

Based on the experimental analysis, we investigated various hyperparameter val-
ues of the RF model using a Bayesian optimization approach. It is ensured that the 
final values used on the validation dataset are the hyperparameters with the high-
est measurement prediction accuracy. Bayesian optimization is mainly used to solve 
computationally expensive black-box optimization problems using Bayes’ theorem to 
search for finding the maximum or minimum value of the objective function, which 
is characterized by using the previously observed prior knowledge at each iteration 
for the next optimization. Therefore, after constructing the black box model, we used 

Fig. 8  Model processing flowchart

Fig. 9  Random forest algorithm workflow
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Bayesian optimization to find the optimal RF hyperparameters. We choose the num-
ber of iterations to find the optimal parameters to be 30.

Support vector machine

Support Vector Machines were originally a binary classification model, and the SVM in use 
today was proposed by Corinna and Vapnik in 1993 [35]. SVM maps the feature vector of 
an instance to some points in space and classifies the example by drawing a line that best 
distinguishes these points to classify the cases drawing the line that can best indicate these 
points [36]; this line is called the maximum interval division hyperplane. This hyperplane 
allows the algorithm to classify new data more accurately and makes the classifier more 
robust.

During the experiments, we set default parameter values to train the model. Penalty fac-
tor C is set to 1 for higher generalization ability. The kernel function is selected as RBF, and 
auto is specified as the kernel function coefficient gamma, while probability estimation is 
enabled.

AdaBoost

The AdaBoost algorithm is a boosting method proposed initially by Yoav Freund in 1995 
[37]. Its core idea is that all samples are given an identical initial weight. A particular feature 
is selected, and only this feature is used to classify the instances, after which a weak clas-
sifier is obtained. Next, a new round of weights is assigned to the samples; misclassified 
samples are assigned higher weights, and correctly classified samples are assigned lower 
weights. Then another feature is selected to classify the samples again, and so on. Finally, all 
the classifiers are weighted and averaged to obtain the final classifier.

When using AdaBoost it is necessary to select the base classifier first. In our experiments, 
we choose to use the default base classifier, which in general has low complexity. So, we 
use grid search tuning to tune it. The final experimental results show that the base classi-
fier works better when the number of boosts of the base classifier is chosen to be 50. When 
the boosting number is too large, it leads to overfitting the model, and too small leads to 
underfitting the model. Meanwhile, the base classifier has the highest accuracy when the 
maximum depth max_depth = 3 and the remaining parameter values are not restricted.

Performance evaluation

Measurement of the performance of the algorithm classification in research is that by using 
a confusion matrix. We evaluate the proposed model using the following five metrics: accu-
racy, precision, recall, F1-score, and Area Under Curve (AUC). Higher values for these met-
rics indicate better performance of the model. The calculation formulas for these metrics 
are as follows:

(1)accuracy =
TP+ TN

TP+ FP+ FN+ TN
,

(2)precision =
TP

TP+ FP
,
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where TP represents correctly predicted hepatitis patients, FP represents incorrectly 
predicted hepatitis patients, TN represents correctly predicted non-hepatitis patients, 
and FN represents incorrectly predicted non-hepatitis patients.
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