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Abstract 

Background:  COVID-19 is a disease that caused a contagious respiratory ailment 
that killed and infected hundreds of millions. It is necessary to develop a computer-
based tool that is fast, precise, and inexpensive to detect COVID-19 efficiently. Recent 
studies revealed that machine learning and deep learning models accurately detect 
COVID-19 using chest X-ray (CXR) images. However, they exhibit notable limitations, 
such as a large amount of data to train, larger feature vector sizes, enormous trainable 
parameters, expensive computational resources (GPUs), and longer run-time.

Results:  In this study, we proposed a new approach to address some of the above-
mentioned limitations. The proposed model involves the following steps: First, we 
use contrast limited adaptive histogram equalization (CLAHE) to enhance the con-
trast of CXR images. The resulting images are converted from CLAHE to YCrCb color 
space. We estimate reflectance from chrominance using the Illumination–Reflec-
tance model. Finally, we use a normalized local binary patterns histogram generated 
from reflectance (Cr) and YCb as the classification feature vector. Decision tree, Naive 
Bayes, support vector machine, K-nearest neighbor, and logistic regression were used 
as the classification algorithms. The performance evaluation on the test set indi-
cates that the proposed approach is superior, with accuracy rates of 99.01%, 100%, 
and 98.46% across three different datasets, respectively. Naive Bayes, a probabilistic 
machine learning algorithm, emerged as the most resilient.

Conclusion:  Our proposed method uses fewer handcrafted features, affordable 
computational resources, and less runtime than existing state-of-the-art approaches. 
Emerging nations where radiologists are in short supply can adopt this prototype. 
We made both coding materials and datasets accessible to the general public for fur-
ther improvement. Check the manuscript’s availability of the data and materials 
under the declaration section for access.
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Background
In 2019, the globe witnessed one of the most widespread outbreaks, the coronavi-
rus (COVID-19). In January 2020, the World Health Organization (WHO) conceded 
COVID-19 as a public health emergency of international concern. WHO reported 
about 482.34 million infected cases with 6.15 million fatalities worldwide around 
March 2022 [1]. COVID-19 comes from SARS-CoV-2, one of the β-coronavirus fam-
ily.It is one of the most transmissible, contagious, and infectious viruses among those 
implicated in Middle East Respiratory Syndrome (MERS) and Severe Acute Respira-
tory Syndrome (SARS). Most infections occur by respiratory droplets, touching (nose, 
mouth, and eyes), or any other form of close contact [2].

Timely detection and diagnosis of the virus increase the prognostic probability 
of preventing its transmission. Thus, fewer infected cases and fatalities may occur. 
Nowadays, healthcare systems use reverse transcription-polymerase chain reaction 
(RT-PCR) [2]. RT-PCR yielded accurate results, associated with some limitations. 
Kameswari et al. [3] reported a limited sensitivity during the early stages of the dis-
ease. Purohit et al. [4] proved that the RT-PCR approach provides false-positive rates 
higher than expected. Another drawback of this method, it only recognizes viral RNA 
presence with the anticipation that a patient who recovered from COVID-19 may be 
detected as an infected one [5, 6].

To overcome RT-PCR limitations, researchers suggested deep learning, machine 
learning, and transfer learning models [7–9]. Nevertheless, deep learning and 
machine learning models [10, 11] exhibit notable limitations, such as the need for 
large datasets to train, expensive computational resources graphical processing unit 
(GPUs), more extensive trainable parameters, feature vector size, longer running, 
training, and testing time. Conversely, transfer learning models yielded negative 
transfer and overfitting concerns [12].

From the background of this work, it is within the scope to address the above limi-
tations. We proposed a simple, coherent, and computationally efficient model to 
address some earlier drawbacks. The suggested method requires a smaller feature 
vector size, operates on a commodity CPU system, and exhibits less running time to 
detect COVID-19 chest X-ray (CXR) images and pneumonia diseases.

Our major contribution

•	 In literature, high-performance deep learning methods are complex and require 
extensive data to train/test and run on expensive GPUs. However, we proposed a 
simple novel approach using CLAHE, YCrCb, and reflectance features, which runs 
on commodity hardware, and a low-cost CPU (see Table 7).

•	 The proposed model demonstrates experimentally that CLAHE, YCrCb, and 
reflectance features improve previously studied handcrafted features. It uses basic 
handcrafted features and shows comparable performance results to state-of-the-
art methods based on complex deep learning models (see Table 8).
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•	 Finally our model has a significant advantage in making real-time clinical deci-
sions. It achieved high classification accuracy, detecting COVID-19 and Pneumo-
nia, using less run time, and a smaller feature vector size of 25 (see Table 2).

The manuscript is structured in the following manner. Related works are given in 
“Related works” section. “Methods” section showcases the methods used. “Experimental 
results” and “Results” sections explain in detail the experimental results. Finally, com-
parative results and the conclusion are discussed in “Comparative results” and “Conclu-
sion” sections.

Related works
Subramanian et  al. [13] showed that transfer learning outperforms all proposed mod-
els. InceptionV3, DenseNet201, and Mobile-NetV2 attained better accuracy, while 
SqueezeNet and VGG19 reported high specificity. The study conducted by Purohit et al. 
[4] suggested a deep learning model using a multi-image augmentation technique. This 
work reported an accuracy of 98.97%. To facilitate COVID-19 detection, Bhattachar-
yya et al. [14] proposed a deep learning-based generative model (C-GAN). This reduces 
the complexity of images when computing discriminatory features. An accuracy of 96% 
was reported. The work proposed by Ismael et al. [15] adopted a deep feature extraction 
pre-trained on deep CNN models. They used SVM with a linear kernel function as their 
classifier. An accuracy score of 94.7% was obtained. A deep learning model to detect 
COVID-19 from CXR, CT scans, and ultrasound images was introduced by Horry et al. 
[16]. VGG19 model detected COVID-19, pneumonia, and normal images with an accu-
racy of 86%, 84%, and 100%, respectively. Alshayeji et al. [17] proposed a computer-aided 
diagnosis (CAD) technique to classify COVID-19 and normal lungs. Their method per-
formed a three-class semantic segmentation of the lung CT image in infected regions. 
They presented a global accuracy of 99.47%, a mean accuracy of 94.04%, and a mean IoU 
(intersection over union) of 0.8968.

Shah et al. [18] proposed a hybrid deep learning method, combining a convolutional 
neural network (CNN) and gated recurrent unit (GRU) for detecting viral diseases in 
chest X-rays (CXRs).CNN extracted features and the GRU acted as a classifier. After 
training on 424 CXR images with 3 classes, the model achieved a precision, recall, and 
f1-score results of 0.96, 0.96, and 0.95, respectively. The work conducted by Bhyuyan 
et al. [19] proposed a full-resolution convolutional network (FrCN) to detect COVID-19 
from CT scan images. Applying a fourfold cross-validation test, FrCN, with an accuracy 
of 99.9%, performed better than other state-of-the-art models. Khan et al. [20] proposed 
a novel SB-STM-BRNet CNN model, which incorporated squeezed and boosted (SB) 
and dilated convolutional-based split-transform-merge (STM) block to detect COVID-
19. This model reported an accuracy of 98.21%. Khalifa et  al. [11] developed a deep-
learning semantic segmentation model for COVID-19 detection based on the encoder 
and decoder concepts. Their experimental results reported a global accuracy of 99.3% 
and a Weighted Intersection over Union (WIoU) of 98.7%. Khan et  al. [21] proposed 
two novel deep learning frameworks: deep hybrid learning (DHL) and deep boosted 
hybrid learning (DBHL), using machine learning (ML) classifiers to detect COVID-19. 
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The DBHL framework, merging the two-deep CNN features, reported an accuracy of 
98.53%.

Mubarak et al. [9] proposed an integration of VGG-19 and a handcrafted LBP model 
to train KNN and SVM classifiers. An overall accuracy of 99.4% was reported. Adi-
moolam et al. [10] proposed a model which predicts and classifies diseases using chest 
X-ray images. Their model extracts textual and morphological features. Aggarwal et al. 
[2] proposed to use MobileNetV2, ResNet50, InceptionV3, NASNetMobile, VGG16, 
Xception, InceptionResNetV2, and DenseNet121. These transfer learning models were 
fine-tuned by adding a new set of layers to increase their performance. DensNet121 
achieved an accuracy of 97% on the first dataset. Whereas, MobilNetV2 generated an 
overall accuracy of 81% on the second dataset. Zammit et al. [7] developed a generative 
model (shared variational auto-encoder) using a five-layer deep hierarchy of latent vari-
ables and deep convolutional mappings.

Machine learning models have emerged as powerful tools to diagnose and detect 
COVID-19 disease. The work by Kwekha-Rashid et  al. [22] introduced a review study 
highlighting the importance of machine-learning algorithms in detecting COVID-
19. Barstugan et al. [8] developed a classification model to detect COVID-19 from CT 
images using handcrafted features. They applied grey level co-occurrence, zone matrix 
(GLCM/GLZM), and local directional pattern (LDP) as feature extraction techniques. 
The work conducted by Kassania et  al. [23] compared popular deep learning models. 
DensNet121 feature extractor with Bagging Tree classifier reported an overall accuracy 
of 99%. Kumar et al. [24] presented a machine-learning model based on deep features 
extracted using ResNet152. This approach achieved an accuracy of 97.3% using Ran-
dom Forest and 97.7% using XGBoost. Mydukuri et  al. [25] proposed a model based 
on LSRGNFM-LDC (least-square regressive Gaussian neuro-fuzzy multi-layered data 
classification) method. Their method uses a Deming least square regressive to extract 
features.

It is apparent from the literature review that most of the above models achieved good 
performances. Nevertheless, they used numerous integrated algorithms, larger feature 
vectors size, and many trainable parameters [2, 11, 16]. As a result, it engenders more 
running time and expensive computational resources (GPUs).

Methods
We propose a simple, coherent, and efficient computational technique to address the 
above drawbacks. We adopted CLAHE-YCrCb image processing technique [26, 27], the 
Illumination–Reflectance model [28], LBP [29], and machine learning classifiers [30]. 
First, Contrast Limited Adaptive Histogram Equalization is applied to enhance the con-
trast of the chest X-ray images. Second, we convert the output images from CLAHE into 
YCrCb color space. Third, we estimate reflectance from chrominance using the Illumi-
nation–Reflectance model. Finally, a normalized local binary patterns (LBP) histogram, 
generated from reflectance (Cr) and YCb, is used as the classification feature vector. DT, 
NB, SVM, KNN, and LR Machine learning algorithms are used to classify COVID-19, 
normal, and pneumonia CXR images. The overview of the proposed method is high-
lighted in Fig. 1.
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Contrast limited adaptive histogram equalization (CLAHE)

CLAHE improves the appearance of an image and increases the performance of sub-
sequent tasks, such as image segmentation, analysis, and object detection. Enhancing 
an image strengthens its quality and provides a better computational analysis. CLAHE 
performs better in image deblurring, noise removal, and contrast enhancement. It 
expands the gray level’s dynamic range [26, 31, 32]. This study adopted CLAHE to 
implement a local contrast image enhancement, enhancing image quality and ena-
bling a better computational detection of COVID-19 from CXR images.

Figure 2 depicts the histogram equalizer (HE) and CLAHE enhancement on Nor-
mal, COVID-19, and pneumonia CXR images.

Converting CLAHE’s CXR images into YCrCb

YCrCb possesses a luminance Y and a chrominance CrCb. CrCb is red-difference and 
blue-difference from the chrominance constituents. Luminance, on the other hand, is 

Fig. 1  Flowchart of the proposed model
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an intensity constituent [28]. Equation 1 highlights the luminance. Equations 2 and 3 
depict the chrominance Cb and Cr.

Several studies showed that chrominance is a suited component for detecting objects in 
medical images. In [33], authors identified skin color using three-color spaces, namely: 
HSV, YCrCb, and normalized RGB. This study detected the skin pixel with an accuracy 

(1)Y = 0.299 ∗ R+ 0.587 ∗ G + 0.114 ∗ B

(2)Cb = 0.492(B− Y )

(3)Cr = 0.877(R− Y )

Fig. 2  Rowwise First row: Normal images. Second row: COVID-19 images. Third row: pneumonia images. 
Columnwise First column: not enhanced images. Second column: images enhanced with HE. Third column: 
images enhanced with CLAHE
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of 91%. Using chrominance color space techniques to detect objects outperforms the 
existing model in facial recognition [34]. The Chroma component is an adequate fea-
ture for edge detection and localizing objects [34]. We opted to use CLAHE and chroma 
based on the advantages discussed above.

Extracting reflectance component from chroma

The Illumination–Reflectance model highlights how objects interact with light [33]. It 
is used in image enhancement applications that rely on the Homomorphic filter [35] or 
retinex [36]. This model presumes that each pixel intensity shows the quantity of light 
reflected by a specific object. This corresponds to the product of illumination and the 
scene reflectance component of an object.
L, R, and F depict the illumination, reflectance, and image formation, respectively [37]. 

Niyishaka et al. [28] highlighted that L relates to the low-frequency component, and R 
relates to the high-frequency component. Moving into the log domain (ln), to separate 
the illumination and reflectance components, we can turn a multiplicative component 
into an additive one. The following equation highlights the details. Equation  4 shows 
multiplicative component. Equation 5 shows the process of moving into the log domain 
(ln). Equation 6 turns a multiplicative component into an additive one.

Max–Min filter application

Fasihi et  al. [38] demonstrated that the sharp edges of the image are located in high-
frequency bands. Perceiving that R relates to the high-frequency component [28], we use 
the Max–Min filter that blurs CXR images by keeping essential edges.

From this perspective, the Max–Min filter (approximation of an edge-preserving filter) 
was applied to extract Cr from YCrCb. The final image is the estimated reflectance con-
stituent R. Because both Cr and Cb are Chroma components, their performances have 
been compared; Cr performed better than Cb. Equation  7 define the Max–Min filter. 
F(x, y), represents the pixel value at coordinates (x, y) in the output (filtered) image. Sxy 
{K(i, j)}: This expression involves a neighborhood Sxy centered at the pixel (x, y) in the 
original image. K(i, j), represents the pixel value at coordinates (i, j) in the original image, 
within the defined neighborhood Sxy.

Algorithm 1 uses Cr with the Max–Min filter to estimate reflectance component R.

(4)F(x, y) = L(x, y)R(x, y)

(5)ln(F(x, y)) = ln (L(x, y)R(x, y))

(6)ln(F(x, y)) = ln ((L(x, y))+ ln (R(x, y))

(7)f (x, y) = max(i,j)∈Sxy{K (i, j)}, f (x, y) = min(i,j)∈Sxy{K (i, j)}
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R is the estimated reflectance, X: training data, Y: class labels of X, t = 0.05 is a tiny 
positive value used to eliminate division zeros, and a= 1.1 is a small constant somewhat 
greater than 1 used to avoid an overly brilliant image [37].

Local binary pattern (LBP)

LBP is a valuable method for extracting and categorizing textual information [9]. 
Maheshwari et al. [29] highlighted that LBP encodes the information about local pixel 
intensities in a binary-coded decimal value. Hence, LBP is an adequate texture descrip-
tor. Image texture emphasizes color, intensity, and spatial arrangement information from 
an image or a designated location of interest.
pc as a pixel value in the central, P as the number of pixels in the close surroundings, 

and r as a neighborhood’s radius. Equation 9 shows the computational of LBP. LBPp,r: 
denotes the Local Binary Pattern value for a pixel with a radius of r and p sampling 
points (neighbors). For each sampling point (pi), S(pi-pc ) computes a binary value by 
comparing the intensity of the sampling point (pi) with the intensity of the central pixel 
(pc). If the intensity of pi is greater than or equal to pc, S(pi − pc ) is set to 1; otherwise, 
it is set to 0.

Figure  3 illustrates the local binary pattern (LBP) Transformation process applied to 
COVID-19, normal lungs, and pneumonia CXR images.

COVID‑19 chest X‑ray detection

Figure 4 depicts the abnormal regions of CXR (yellow circle). The first row highlights 
two different infected CXR images with COVID-19. At the same time, the second row 
depicts their corresponding rainbow transformations. A professional radiologist per-
formed the annotations.

(8)LBPp,r =

p−1

i=1

S(pi − pc).2
i

(9)S(pi − pc) =

{

1 : pi ≥ pc
0 : pi < pc
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Fig. 3  The top first row corresponds to COVID-19, normal, and pneumonia chest X-Ray images. The second 
row corresponds to the LBP image transformation of COVID-19, normal, and pneumonia

Fig. 4  The first row depicts the CXR image with annotated abnormal regions (yellow circle). The second row 
highlights their corresponding rainbow transformations
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To detect COVID-19 in the input CXR images, we used CLAHE-YCrCb, LBP, and 
machine learning algorithms. Running multiple classifiers and comparing their perfor-
mances has been a common strategy. We have considered the classifier with the best 
results as the best performer. Mubarak et  al. [9] provide instant access to a variety of 
classification techniques, such as KNN, SVM, LDA [39], LR [40], DT [41], and NB [42].

Experimental results
Datasets description

We used three different CXR datasets from [16, 43, 44]. The first dataset [16] has 139, 
190, and 200 images of COVID-19, pneumonia, and normal lungs, respectively. The sec-
ond dataset [43] is constructed based on the below Table 1.

Figure 5 highlights, in brief, a snapshot of used [16] datasets, Whereas Fig. 6 depicts 
the used datasets and their corresponding chest X-ray images.

The third dataset [44] has 841 negative and 243 positives (COVID-19) images.

Fig. 5  The first row depicts COVID-19 images. Whereas the second row shows normal images. These images 
were randomly selected from [16] dataset

Table 1  Description of used datasets by [43]

Datasets Available images Selected images

Ozturk et al.2020 [45] COVID-19:125 COVID-19:125

Normal:500 Normal:329

Pneumonia:500 Pneumonia:325

Mooney,2020 [46] Normal:1592 Normal:1343

Pneumonia:4273 Pneumonia:1345

Chowdhury et al. [47], Rahman et al. [49] COVID-19:3616 COVID-19:1545

Normal:10,192

Total images: COVID-19:1670

Normal:1672

Pneumonia:1670
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Performance metrics

The following metrics are used to evaluate the performance of the proposed model [48]: 
tp are COVID-19 CXR images correctly identified (True positives). Mistakenly identified 
images as COVID-19 are fp (False positives). Undetected COVID-19 chest X-Ray images 
classified as normal are fn (False negatives). CXR images appropriately recognized as 
normal are tn (True negatives). The true positive rate is denoted as tpr , while the false 
positive rate is given by fpr . Precision ( pr ) specifies that a detected COVID-19 chest 
X-Ray image is genuinely a COVID-19 chest X-Ray image. In contrast, recall ( rc ) denotes 
the probability of a valid COVID-19 CXR positive image being recognized. The f1 score 
is a metric that combines pr and rc into a specific numerical. acc denotes the accuracy.

(10)pr =
tp

tp + fp
, rc =

tp

tp + fn
, f1 = 2

prrc

pr + rc

(11)tpr =
# tp

# COVID Chest X − Ray images

(12)fpr =
#fp

# non− COVID Chest X − Ray images

Fig. 6  Data distribution (dataset A [16], dataset B [43], and dataset C [44])
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Analysis of running time and platforms

The platforms adopted include a Dell laptop with an Intel (R) Core (TM) i7-3540 M CPU 
@ 3.00GHz x 4. 64-bit with 8GB RAM. Python 3.7.6, Scikit-learn 0.23.1, and Ubuntu 
18.04.3 LTS OS. Table 2 reports the running time in minutes. Training size = 70% and 
test size = 30%

Results
The experiments are divided into three major sections: the first section used the 
dataset [16] to classify between Covid-19 and normal CXR images, and COVID-19 
and pneumonia. The second section of the experiments focused on dataset [43] 
to classify between COVID-19 and normal CXR images. Finally, the dataset [44] 
was used in the last experimental section to detect COVID-19 and normal CXR 
images.

Experiment (section one) using [16] dataset

The proposed model was initially trained using dataset [16]. We classified normal lungs 
and COVID-19 CXR images. Figures 7 and 8 highlight the graphical plots of the receiver 
operating characteristics (ROC) curve and the confusion matrix.

(13)acc =
tp+ tn

tp + tn + fp + fn

Table 2  Analysis of feature extraction, training time, prediction time, and the feature vector size

(M and S) depict minutes and seconds, respectively

Datasets Extracted 
features (M)

Training time (M) Prediction (S) Feature 
vector 
size

N-CLAHE-MEDICAL-IMAGES [16] 16.32 6.32 0.2 25

CoronaHack-chest X-ray-dataset [43] 47.39 12.54 0.8 25

DLAI3 Hackathon [44] 28.45 6.49 0.4 25

Fig. 7  Receiver operating characteristic (ROC) curve
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Fig. 8  Confusion matrix portraying the plotted ROC in Fig. 7 using [16] dataset
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Table  3 portrays the obtained accuracy of different classifiers. DT, KNN, and Naive 
Bayes reported the highest accuracy of 99.01% each. LR and SVM reported a lower accu-
racy of 55.88% each.

We conducted another experiment, considering the same dataset [16]. This time, we 
were classifying COVID-19 and pneumonia CXR images.

Figures  9 and 10 highlight the graphical plots of the ROC curve and the confusion 
matrix.

Table 4 highlights the attained accuracy. Both the DT and NB reported an accuracy of 
98.9% each. KNN reported an accuracy of 97.9%. LR and SVM reported a lower accuracy 
of 58.50% each.

Fig. 9  Graphical plot of ROC curve

Table 3  The accuracy report of Covid-19 and normal lung detection using [16] dataset

NB, KNN, and DT reported the highest accuracy of 99.01% each

Classifiers Accuracy (%) Precision Recall F1-score

Logistic regression (LR) 55.88 0 – –

Decision tree (DT) 99.01 97.77 100 98.87

K-nearest neighbor (KNN) 99.01 97.77 100 98.87

Naive Bayes (NB) 99.01 97.77 100 98.87

Support vector machines (SVM) 55.88 0 – –
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Fig. 10  Confusion matrix portraying the plotted ROC in Fig. 9 using [16] dataset



Page 16 of 25Prince et al. BMC Bioinformatics           (2024) 25:28 

Experiment (section two) using [43] dataset

The second part of our experiment considered [43] dataset to classify between Normal 
and COVID-19 CXR images. Figures 11 and 12 highlight the graphical plots of the ROC 
curve and the confusion matrix.

Table  5 outlines the reported accuracy. DT, KNN, and NB reported an accuracy of 
100% each. While LR and SVM reported a lower accuracy of 53.59% each.

Experiment (section three) using [44] dataset

The third part of the experiments considered [44] dataset to classify between normal 
and COVID-19 CXR images. Table  6 and Fig.  13 highlight both the model’s accuracy 
summary and the graphical plot of the ROC curve, respectively. While Fig. 14 outlines 
the confusion matrix.

Below Fig. 15 portrays all classifiers and their corresponding accuracy, precision, recall, 
and F1-Score, respectively. Graph (a) corresponds to the first part (section one) experi-
ment to classify COVID-19 and normal CXR images. The second graph (b) depicts the 
classification results between COVID-19 and pneumonia CXR images. Graph (C) repre-
sents the experimental results of the second part (section two). Finally, graph (d) displays 
the results of the experiment’s third part (section three).

Fig. 11  Receiver operating characteristic (ROC) curve

Table 4  The accuracy report of Covid-19 and pneumonia diseases classification using [16] dataset

KNN reported an accuracy of 97.9%. NB and DT reported 98.9% accuracy each

Classifiers Accuracy (%) Precision Recall F1-score

Logistic regression (LR) 58.50 0 0 –

Decision tree (DT) 98.9 97.56 100 97.56

k Nearest neighbor (KNN) 97.9 95.12 100 97.4

Naive Bayes (NB) 98.9 97.56 100 97.56

Support vector machines (SVM) 58.5 0 0 –
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Fig. 12  Confusion matrix portraying the plotted ROC in Fig. 11 using [43] dataset
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From Fig. 15, NB and DT outperformed other classifiers. While LR and SVM poorly 
detected COVID-19, normal, and pneumonia CXR images.

Both experiments, one and three, used imbalanced datasets. Therefore, to evaluate 
the measurement of the uncertainty of the proposed model, we used an accuracy con-
fidence interval and PR curve.

Table 6  The accuracy report of Covid-19 and normal CXR image detection using [44] dataset

NB, DT, and KNN reported an accuracy of 98.46% each. While LR and SVM reported an accuracy of 76.68% each

Classifiers Accuracy (%) Precision Recall F1-score

Logistic regression (LR) 76.68 100 76.68 86.80

Decision tree (DT) 98.46 100 98.03 99

Naive Bayes (NB) 98.46 100 98.03 99

k Nearest nearbor (KNN) 98.46 100 98.03 99

Support vector machines (SVM) 76.68 100 76.68 86.80

Fig. 13  The receiver operating characteristic (ROC) curve

Table 5  The accuracy report of Covid-19 and normal lung detection using [43] dataset

Both DT, KNN, and NB reported an accuracy of 100% each

Classifiers Accuracy (%) Precision Recall F1-score

Logistic regression (LR) 53.59 100 53.59 69.78

Decision tree (DT) 100 100 100 100

k-nearest neighbor (KNN) 100 100 100 100

Naive Bayes (NB) 100 100 100 100

Support vector machines (SVM) 53.59 100 53.59 69.78
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Figure  16, (A and B) highlights the Confidence interval and PR curve of the per-
formed section one experiment classifying Covid-19 and normal images, respectively. 
Whereas (C and D) portray the confidence interval and PR curve of the performed 
section three experiment, classifying Covid-19 and normal, respectively.

Fig. 14  Confusion matrix portraying the plotted ROC in Fig. 13 using [44] dataset
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Comparative results
The proposed model is computationally efficient (see Table 7). It has a simple model 
architecture (see Table 8), and uses a small feature vector size (see Table 9).

Table  7 demonstrates the platform and obtained accuracy. Taking into consid-
eration the work performed by [16], they adopted an Intel Xeon Gold 6150 2.7GHz 
18-core (16 cores enabled) server with 24.75MB L3 Cache, (Max Turbo Freq. 3.7GHz, 
Min 3.4GHz). The GPU on this server was an NVIDIA Quadro P5000 (2,560 Cores, 
16GB Memory). RAM on the server was Three hundred and sixty GB (Six channels).

Our proposed model uses a Dell laptop with an Intel (R) Core (TM) i7- 3540 M CPU 
@ 3.00GHz x 4. 64-bit with 8GB RAM. Python 3.7.6, Scikit-learn 0.23.1, and Ubuntu 
18.04.3 LTS OS.

Table 8 highlights the reported accuracy and the model descriptions. El-Sayed et al. 
[43] used the RESCOVIDTCNNet model. This integrates the empirical wavelet trans-
form (EWT), temporal convolutional neural network (TCN), dilated Causal Convolu-
tion Layer, and residual block. They reported an accuracy of 100%. Rahman et al. [49] 
adopted a transfer learning model (ChexNET). They reported an accuracy of 96.29%. 
Chowdhury et  al. [47] used the DensNet201 transfer learning model. An accuracy of 
99.70% was computed.

Fig. 15  Graphs a, b, c, and d correspond to section one, section two, and section 3 experiments, respectively
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Table 7  Comparative results of our proposed model with Horry et al. [16], regarding accuracy and 
used platform

Used models Accuracy (%) Used platform

Horry et al. [16] 86 Intel Xeon Gold 6150 
2.7GHz 18 cores (Server)

Our proposed model 100 Dell intel(R)core (Laptop)

Table 8  Comparative results between the proposed model with El-Sayed et al. [43] dataset

Taking into consideration the accuracy and the model descriptions

Used models Accuracy (%) Model descritpions

Rahman et al. [49] 96.29 ChexNet

El-Sayed et al. [43] 100 EWT+TCN Structure
+ Dilated Causal Convolution Layer
+ Residual Block

Chowdhury et al. [47] 99.70 DensNet201

Our proposed model 100 YCrCb+LBP
+ Machine Learning Algorithms

Fig. 16  Graphs A and B, C and D correspond to the confidence interval and PR curve of the performed 
experiments, section one and three respectively
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In contrast, our proposed model uses a simple architecture of CLAHE, YCrCb, LBP, 
and machine learning algorithms to classify our CXR images.

Table 9 depicts reported accuracy, trainable parameters, and the feature vector size. 
The work performed by [44] used estimated trainable parameters of 2112. These meth-
ods compute the trainable parameters [50, 51].

Conclusion
This paper presents a novel method to detect COVID-19, Normal, and pneumonia 
using CXR images. The proposed method is based on Contrast Limited Adaptive Histo-
gram Equalization, Illumination–Reflectance model, and LBP. This method takes input 
chest X-ray images and enhances them using the CLAHE algorithm. The output images 
from CLAHE are converted into YCrCb color space. The reflectance component is esti-
mated using the Illumination–Reflectance model from Cr. Finally, the Local Binary Pat-
terns (LBP) histogram generated from reflectance and YCb is used as the feature vector. 
Experimental results from three publicly available datasets reported accuracy of 99.01%, 
100%, and 98.46%, respectively. Our model is computationally efficient, using a small 
feature vector size and less running time. Emerging nations can use this prototype where 
radiologists need more supply.

Our future work will explore other modalities, such as CT scans, ultrasounds, and 
chest MRIs. We will investigate multi-classification tasks between COVID-19, nor-
mal, and pneumonia, also exploring why SVM and LR are ineffective. Additionally, 
we will utilize image blob visualization techniques to precisely and accurately locate 
the infected area. Ultimately, we hope to develop an AI model that can be integrated 
with electronic health records (EHRs) to extract critical clinical data, including vital 
signs, lab results, and patient demographics, and combine it with chest X-ray images 
to enhance the accuracy of COVID-19 diagnosis and interpretability.

Abbreviations
C.X.R	� Chest X-rays
LBP	� Local binary pattern
HE	� Histogram equalizer
CLAHE	� Contrast limited adaptive histogram equalization
R.O.C	� Receiver operating characteristics
CNN	� Convolutional neural network
TL	� Transfer learning
AUC​	� Area under the curve
PR	� Precision–recall
CI	� Confidence interval

Table 9  Comparative results between the proposed model with Chenqi li et  al. [44] datasets 
considering the accuracy, trainable parameters, and feature vector size

Used models Accuracy (%) Trainable parameters/
feature vector size

Khalifa et al. [52] 97.4 –

Chenqi li et al. [44] 98 2112 Trainable-parameters

Our proposed model 98.46 25 Feature vector-size
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