
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Briscik et al. BMC Bioinformatics          (2023) 24:282  
https://doi.org/10.1186/s12859-023-05404-y

BMC Bioinformatics

Improvement of variables interpretability 
in kernel PCA
Mitja Briscik1*, Marie‑Agnès Dillies2 and Sébastien Déjean1 

Abstract 

Background: Kernel methods have been proven to be a powerful tool for the inte‑
gration and analysis of high‑throughput technologies generated data. Kernels offer 
a nonlinear version of any linear algorithm solely based on dot products. The ker‑
nelized version of principal component analysis is a valid nonlinear alternative to tackle 
the nonlinearity of biological sample spaces. This paper proposes a novel methodology 
to obtain a data‑driven feature importance based on the kernel PCA representation 
of the data.

Results: The proposed method, kernel PCA Interpretable Gradient (KPCA‑IG), provides 
a data‑driven feature importance that is computationally fast and based solely on linear 
algebra calculations. It has been compared with existing methods on three benchmark 
datasets. The accuracy obtained using KPCA‑IG selected features is equal to or greater 
than the other methods’ average. Also, the computational complexity required dem‑
onstrates the high efficiency of the method. An exhaustive literature search has been 
conducted on the selected genes from a publicly available Hepatocellular carcinoma 
dataset to validate the retained features from a biological point of view. The results 
once again remark on the appropriateness of the computed ranking.

Conclusions: The black‑box nature of kernel PCA needs new methods to interpret 
the original features. Our proposed methodology KPCA‑IG proved to be a valid alter‑
native to select influential variables in high‑dimensional high‑throughput datasets, 
potentially unravelling new biological and medical biomarkers.
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Background
The recent advancement in high-throughput biotechnologies is making large multi-
omics datasets easily available. Bioinformatics has recently entered the Big Data era, 
offering researchers new perspectives to analyse biological systems to discover new gen-
otype-phenotype interactions.

Consequently, new ad-hoc methods to optimise post-genomic data analysis are 
needed, considering the high complexity and heterogeneity involved. For instance, 
multi-omics datasets pose the additional difficulty of dealing with a multilayered frame-
work making data integration extremely challenging.
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In this context, kernel methods offer a natural theoretical framework for the high 
dimensionality and heterogeneous nature of omics data, addressing their peculiar con-
voluted nature [63]. These methods facilitate the analysis and the integration of vari-
ous types of omics data, such as vectors, sequences, networks, phylogenetic trees, and 
images, through a relevant kernel function. Using kernels enables the representation of 
the datasets in terms of pairwise similarities between sample points, which is helpful for 
handling high-dimensional sample spaces more efficiently than using Euclidean distance 
alone. Euclidean distance can be inadequate in complex scenarios, as stated in [17], but 
kernels can help overcome this limitation. Moreover, kernel methods have the advantage 
of providing a nonlinear version of any linear algorithm which relies solely on dot prod-
ucts. For instance, Kernel Principal Component Analysis [62], Kernel Canonical Corre-
lation Analysis [4], Kernel Discriminant Analysis [53] and Kernel Clustering [21] are all 
examples of nonlinear algorithms enabled by the so-called kernel trick.

This work will focus on the kernelized version of Principal Component Analysis, 
KPCA, that provides a nonlinear alternative to the standard PCA to reduce the sample 
space dimensions.

However, KPCA and kernel methods, in general, pose new challenges in interpretabil-
ity. The so-called pre-image problem arises since data points are only addressed through 
the kernel function, causing the original features to be lost during the data embedding 
process. The initial information contained in the original variables is summarised in the 
pairwise kernel similarity scores among data sample points. Thus, retrieving the original 
input dimensions is highly challenging when it comes to identifying the most prominent 
features. Even if it is possible for certain specific kernels to solve the pre-image problem 
through a fixed-point iteration method, the provided solution is typically numerically 
unstable since it involves a non-convex optimisation problem [59]. Moreover, in most 
cases, the exact pre-image does not even exist [43].

However, it is possible to find works that aim at finding the pre-image problem solu-
tion, like the pre-image based on distance constraints in the feature space in [32] or local 
isomorphism as in [25].

Instead, in this article, we propose KPCA Interpretable Gradient (KPCA-IG), a novel 
methodology to assess the contribution of the original variables on the KPCA solution, 
which is based on the computations of the partial derivatives of the kernel itself. More 
specifically, this method aims at identifying the most influential variables for the kernel 
principal components that account for the majority of the variability of the data. To the 
best of our knowledge KPCA-IG is the first method for KPCA that offers a computation-
ally fast and stable data-driven feature ranking to identify the most prominent original 
variables, solely based on the norm of gradients computations. Consequently, unim-
portant descriptors can be ignored, refining the kernel PCA procedure whose similarity 
measure can be influenced by irrelevant dimensions [7].

Existing approaches to facilitate feature interpretability in the unsupervised setting
The literature on unsupervised feature selection is generally less extensive than its super-
vised learning counterpart. One of the main reasons for this disparity is that the selec-
tion is made without a specific prediction goal, making it difficult to evaluate the quality 
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of a particular solution. In the same way, the unsupervised feature selection field that 
takes advantage of the kernel framework has been found to be less explored than kernel 
applications with classification purposes. As mentioned earlier, interpreting kernel PCA 
requires additional attention as the kernel principal component axes themselves are only 
defined by the similarity scores of the sample points. However, the literature has limited 
attempts to explain how to interpret these axes after the kernel transformation. There-
fore, feature selection methods based on KPCA are rare.

Among others, [52] proposed a method to visualize the original variables into the 2D 
kernel PCs plot. For every sample point projected in the KPCA axes, they propose to 
display the original variables as arrows representing the vector field of the direction of 
maximum growth for each input variable or combination of them. This algorithm does 
not provide variable importance ranking, requiring previous knowledge about which 
variables to display.

On the contrary, [40] introduced a variable importance selection method to identify 
the most influential variables for every principal component based on random permuta-
tion. The procedure is performed for all variables, selecting the ones that result in the 
largest Crone-Crosby [14] distance between kernel matrices, i.e. the variables whose 
permutations of the observations lead to a significant change in the kernel Gram matrix 
values. However, the method does not come with a variable representation and can be 
computationally expensive, as many other permutation-based methods. This method 
will be denoted as KPCA-permute in the rest of the article.

Another method that takes advantage of the kernel framework is the unsupervised 
method UKFS with its extension UKFS-KPCA in [7] where the authors proposed to 
select important features through a non-convex optimization problem with a ℓ1 penalty 
for a Frobenius norm distortion measure.

As exhaustively described in the overview presented in [35], there are different 
approaches to assess variable importance in an unsupervised setting not based on the 
kernel framework. Among others, we can mention two methodologies that are based on 
the computation of a score, the Laplacian Score lapl in [23] and its extension Spectral 
Feature Selection SPEC in [78]. Other alternatives are the Multi-Cluster Feature Selec-
tion MCFS in [8], the Nonnegative Discriminative Feature Selection NDFS in [37], and 
the Unsupervised Discriminative Feature Selection UDFS in [75]. These methods aim 
to select features by keeping only the ones that best represent the implicit nature of the 
clustered data. Then, Convex Principal Feature Selection CPFS [41] adopts a distinct 
approach to feature selection, focusing on selecting a subset of features that can best 
reconstruct the projection of the data on the initial axes of the Principal Component 
Analysis.

As mentioned, the present study introduces a novel contribution to the interpretabil-
ity of variables in kernel PCA, assuming that the first kernel PC axes contain the most 
relevant information about the data. The newly proposed method follows and extends 
the idea proposed by [52], with the fundamental difference that it gives a data-driven 
features importance ranking. Moreover, contrarily to KPCA-permute in [40], it does not 
have a random nature while being considerably faster.
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Methods
This section presents the formulation behind our proposed method KPCA-IG, starting 
with the description of the kernel framework.

Kernel PCA

Given a dataset of n observations x1, . . . , xn with xi ∈ χ , a function k defined as k: χ × χ 
−→ R is a valid kernel if it is symmetric and positive semi-definite i.e. k(xi, xj) = k(xj , xi) 
and cTKc � 0, ∀c ∈ R

n , where K  is the n× n kernel matrix containing all the data pair-
wise similarities K = k(xi, xj) . The input set χ does not require any assumption. In this 
work we consider it to be χ= R

p.
Every kernel function is associated with an implicit function φ : χ −→ H which maps 

the input points into a generic feature space H , with possibly an infinite dimensional-
ity, with the expression k(xi, xj) = �φ(xi),φ(xj)� . This relation allows to compute the 
dot products in the feature space, implicitly applying the kernel function to the input 
objects, without explicitly computing the mapping function φ.

Principal Component Analysis is a well-established linear algorithm to extract the 
data structure in an unsupervised setting [22]. However, it is commonly accepted that 
in specific fields, such as bioinformatics, assuming a linear sample space may not help 
to capture the data manifold adequately [52]. In other words, the relationships between 
the variables may be nonlinear, making linear methods unsuitable. Hence, with high-
dimensional data such as genomic data, where the number of features is usually much 
larger than the number of samples, nonlinear methods like kernel methods can provide 
a valid alternative for data analysis.

A compelling approach to overcome this challenge is through kernel PCA, which was 
introduced in [62]. Kernel PCA applies PCA in the feature space generated by the ker-
nel, and as PCA relies on solving an eigenvalue problem, its kernelized version operates 
under the same principle.

The algorithm requires the data to be centered in the feature space, and the diago-
nalization of the centered covariance matrix in the feature space H is equivalent to the 
eigendecomposition of the kernel matrix K  . The data coordinates in the feature space 
are unknown as φ is not explicitly computed. Consequently, the required centering of 
variables in the feature space cannot be done directly. However, it is possible to compute 
the centered Gram matrix K̃  as K̃ = K − 1

nK1n1
T
n − 1

n1n1
T
n K + 1

n2
(1Tn K1n)1n1

T
n  with 

1n a vector with length n and 1 for all entries. If we express the eigenvalues of K̃  with 
�1 ≥ �2 ≥ · · · ≥ �n and the corresponding set of eigenvectors ã1, . . . , ãn , the principal 
component axes can be expressed as ṽk =

∑n
i=1 ã

k
i φ(xi) with ṽk and ãk orthonormal 

in H , k = 1, . . . , q and q the number of retained components. Thus solving n�ã = K̃ ã , 
it is possible to compute the projection of the points into the subspace of the feature 
space spanned by the eigenvectors. The projection of a generic point x into this subspace 
becomes then ρk := �ṽk ,φ(x)� = n

i=1 ã
k
i k(x, xi).

Likewise, utilizing the concise, explicit form of the centered gram matrix K̃  , it is pos-
sible to express the projection of an arbitrary point x into the subspace spanned by the 
eigenvectors ṽk . Defining Z = (k(x, xi))n×1 , we can express this projection with the 
1× q row vector
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with ṽ being the n× q matrix with the eigenvectors ṽ1 . . . , ṽq as columns.
As we observe, the kernel PCA algorithm can be mathematically represented using 

only the entries of the kernel matrix. This means that the algorithm operates entirely on 
the original input data without requiring the computation of the new coordinates in the 
feature space. This technique effectively resolves the issue of potentially high computa-
tional complexity by allowing the input points to be implicitly mapped into the feature 
space.

However, it also introduces new challenges in terms of interpretation. Determining 
which input variables have the most significant impact on the kernel principal compo-
nents can be highly challenging, making it difficult to interpret them in terms of the 
original features. In other words, since the kernel function maps the data to a higher-
dimensional feature space, it can be hard to understand how the original features con-
tribute to the newly obtained kernel principal components.

In the previous section, we have mentioned the few techniques available in the litera-
ture that can be used to gain insight into the original input variables that had the most 
influence on the KPCA solution. The following section presents our contribution to pro-
viding practitioners with a data-driven and faster variable ranking methodology.

Improvement of KPCA interpretability with KPCA‑IG

It is known that gradient descent is one of the most common algorithms for the train-
ing phase of most neural networks [55]. The norm of the cost function gradient plays a 
crucial role as it contributes to the step size for each iteration, together with its direction 
and the learning rate.

Consequently, for explainability in computer vision classification models, gradient-
based methods are a widespread approach for many networks, such as deep neural 
networks (DNN) and convolutional neural networks (CNNs). Some of the most used 
techniques are presented in the review proposed in [46], such as Saliency Maps [64], 
Deconvolutional Networks [76], Guided Backpropagation [67], SmoothGrad [65], Gra-
dient-Input [3] and Integrated Gradients [68]. In post hoc explainability, they are often 
preferred over perturbation-based methods since they are not only less computationally 
expensive but should also be prioritized when a solution robust to input perturbation is 
required [46]. In the Deep Learning (DL) field, the starting point behind all the gradient-
based methods is to assess the so-called attribution value of every input feature of the 
network. Formally, with a p dimensional input x = (x1, . . . , xp) that produces the out-
put S(x) = (S1(x), . . . , SC(x)) , with C the numbers of output neurons, the final goal is to 
compute for a specific neuron c the relevance of each input feature for the output. This 
contribution for the target neuron c can be written as Rc = (Rc

1, . . . ,R
c
p) , as described 

in [2]. Depending on the method considered, the attributions are found by a specific 
algorithm. Generally, the gradient-based algorithms involve the computation of partial 
derivatives of the output Sc(x) with respect to the input variables.

In the unsupervised field of KPCA, the idea cannot be applied directly as there is 
no classification involved, and no numeric output can be used to test the relevance of 

(1)ρk =

(

Z
T −

1

n
1
T
n K

)(

In −
1

n
1n1

T
n

)

ṽ,
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an input feature. However, as shown in [52, 58], every original variable can be repre-
sented in the input space with a function f defined in  Rp, representing the position of 
every sample point in the input space based on the values of the p variables.

Thus, we propose to compute at each sample point the norm of the partial deriva-
tive of every  induced feature curve projected into the eigenspace of the kernel Gram 
matrix.

In support of this procedure, some works in the neuroimaging and earth system 
sciences domain have also shown that kernel derivatives may indicate the influence 
carried by the original variables as in [29, 51].

Consequently, the idea is that when the norm of the partial derivative for a vari-
able is high, it means that the variable substantially affects the position of the sample 
points in the kernel PC axes. Conversely, when the norm of the partial derivative for 
a variable is small, the variable can be deemed negligible for the kernel principal axes.

To sum up, the novel idea of KPCA-IG is to find the most relevant features for the 
KPCA studying the projections of the gradients of the feature functions onto the lin-
ear subspace of the feature space induced by the kernel by computing the lengths of 
the gradient vectors with respect to each variable at each sample point as they repre-
sent how steep the direction given by the partial derivative of the induced curve is.

For completeness, we should also mention that the use of gradient in the kernel 
unsupervised learning framework can also be found in the context of Kernel canoni-
cal correlation analysis, as [69] proposed a new variant of KCCA that does not rely on 
the kernel matrix but where the maximization of canonical correlation is computed 
through the gradients of the pre-images of the projection directions.

Analytically we can describe our method KPCA-IG as follows. First, we can express 
the projection of f in the feature space through the implicit map φ as h. More specifi-
cally, h is defined on the subspace of H where the input points are mapped, i.e., on 
φ(χ) assuming it is sufficiently smooth to support a Riemannian metric [60]. In [58], 
the authors demonstrated how the gradient of h can be expressed as a vector field in 
φ(χ) under the coordinates x = (x1, . . . , xp) as

where j = 1, . . . , p , Db is the partial derivative with respect to the b variable and gjb is the 
inverse of the Riemannian metric induced by φ(χ) i.e. the symmetric metric tensor gjb 
which is unknown and it can be written solely in terms of the kernel [61].

The idea is to look for the curves u whose tangent vectors in t are u′(t) = grad(h) as 
they give an indication of the local maximum variation directions of h.

In the previous section, we showed how to represent the projection of every 
mapped generic point φ(x) into the subspace spanned by the eigenvectors of K̃  in (1).

Similarly, the u(t) curves can be projected into the subspace of the kernel PCA. We 
define u(t) = k(·, x(t)) with x(t) the solution of dx

j

dt
= grad

(

h
)j

 and Zt = (k(x(t), xi))n×1

.

(2)grad
(

h
)j

=

p
∑

b=1

gjb(x)Dbf (x),
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Now we can define the induced curve in the KPCA axes with the row vector:

In order to assess the influence of the original variables on the coordinates of the data 
points into the kernel principal axes, we can represent the gradient vector field of h i.e. 
the tangent vector field of u(t) into the KPCA solution. Formally, the tangent vector at an 
initial condition t = t0 with x0 = φ−1 ◦ u(t0) can be obtained as du

dt
|t=t0 and the projected 

directions of maximum variation as

with

If we assume that φ(χ) is flat (Euclidean subspace), the metric tensor gjb becomes the 
Kronecker delta δjb which is equal to 0 for j  = b and to 1 when j = b.

In this case, (2) becomes

and (5):

If we further assume that f takes the linear form f (x) = x + tej with t ∈ R and 
ej = (0, . . . , 1, . . . , 0 ), having the value 1 only for the j-th component, we obtain the same 
expression as in [52]

Thus, with these hypotheses we can use (4) to compute the projected directions of maxi-
mum variation with respect to the j-th variable as

(3)ϕ1×q =

(

Z
T
t −

1

n
1
T
n K

)(

In −
1

n
1n1

T
n

)

ṽ.
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∣

∣
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dxj
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∣
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(6)grad
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dZi
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with dZ
i
t

dt

∣

∣

∣

t=0
 as in (8).

If we take as kernel the radial basis kernel k(x, xi) = exp(−σ�x − xi�
2) , then (8) 

becomes, as showed in [52]:

with i = 1, . . . , n and with xj the value for the variable j for the generic point x.
If we consider that the 1× q row vector wj can be computed for all the training points 

rather than only for a generic point x , we obtain a n× q matrix Wj giving the direction 
of maximum variation associated with the j-th variable for each input point.

Thus, the idea is to first compute the norm of this partial derivative with respect to 
the variable j for each sample point and then compute the mean value of these n contri-
butions. The score that we obtain suggests the relevance of the j variable in the KPCA 
solution.

Analytically, the n× q matrix Wj rows are denoted by the 1× q vectors vji as 
v
j
i = (w

j
i1, . . . ,w

j
iq) where wj

ik denotes the entry in the i-th row and k-th column of Wj . 
The square root of the quadratic norm of vji is given by

We can now compute the square root of the quadratic norms for all n rows, resulting in 
n values ‖vj1‖, . . . , ‖v

j
n‖ . The mean of these values is given by

Thus, rj , the mean of the norm vectors of the partial derivative of ϕj among all the n 
sample points, it can give an indication of the overall influence of the j-th variable on the 
points.

Finally, we can repeat the procedure for all the p variables with j = 1, . . . , p . The vec-
tor r = (r1, . . . , rp) will contain all the mean values of the norm vectors for every of the 
p variables, and after sorting them in descending order, it represents the ranking of the 
original features proposed by KPCA-IG. Every entry of r is a score that indicates the 
impact of every variable on the kernel PCA representation of the data, from the most 
influential to the least important.

The method is non-iterative, and it only requires linear algebra. Thus, it is not suscep-
tible to numerical instability or local minimum problems. It variables representing the 
ranking of the original features proposed by KPCA-IG. Every entry of𝑟𝑟is a score that 
indicates the impact of every variable on the kernel PCA representation of the data, it 
is then sorted decreasingly, from the most influential to the least important.is compu-
tationally very fast, and it can be applied to any kernel function that admits a first-order 
derivative. The described procedure has been implemented on R, and the code can be 
available upon request to the authors.
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Results
We conducted experiments on three benchmark datasets from the biological domain to 
assess the accuracy of the proposed unsupervised approach for feature selection. These 
datasets include two microarray datasets, named Carcinom and Glioma, which are avail-
able in the Python package scikit-feature [35] and the gene expression data from normal 
and prostate tumour tissues [10], GPL93 from the GEO, a public functional genomics 
data repository. Glioma contains the expression of 4434 genes for 50 patients, while Car-
cinom 9182 genes for 174 individuals. Both datasets have already been used as a bench-
mark in numerous studies including several methods comparisons, such as [7, 35]. Then, 
the dataset GPL93 contains the expression of 12626 genes for 165 patients, and it has 
been chosen for its complexity and higher dimensionality.

The idea is to compare the proposed methodology KPCA-IG with existing unsuper-
vised feature selection methods from diverse frameworks, as conducted in [7, 35]:

• lapl [23], to include one method that relies on the computation of a score.
• NDFS [37], to add one of the methods primarily designed for clustering. It is based 

on the implicit assumption that samples are structured into subgroups and demands 
the a priori definition of the number of clusters.

• KPCA-permute in [40] available in the mixKernel R package to include another 
methodology from the context of kernel PCA.

To evaluate the selected features provided by the four methods, we measured the over-
all accuracy (ACC) and normalized mutual information (NMI) [15] based on k-means 
cluster performance. For each method, the k-means clustering ACC and NMI have 
been obtained using several subsets with a different number d of selected features, with 
d ∈ {10, 20, . . . , 290, 300} . Thus, the relevance of the selected values has been estimated 
according to their ability to reconstruct the clustered nature of the data. More specifi-
cally, the three datasets Glioma, Carcinom and GPL93 are characterized by 4, 11 and 4 
groups respectively. Thus, the k-means clustering was computed using the correct num-
ber of clusters in the datasets to obtain a metric for the capability of the selected features 
to keep this nature.

Note that only the NDFS method is implemented to explicitly obtain an optimum solu-
tion in terms of clustering, also requiring in advance the number of groups in the data. 
For each method, the k-means clustering was run 20 times to obtain a mean of the over-
all accuracy and normalized mutual information for each of the 30 subsets of selected 
features. Both our novel method KPCA-IG and KPCA-permute have been employed 
with a Gaussian kernel with a sigma value depending on the dataset. The selected fea-
tures are, in both cases, based on the first 3, 5 and 3 kernel PC axes for Glioma, Carci-
nom and GPL93, respectively. The CPU time in seconds required to obtain the feature 
ranking for all the methods has also been observed. The experiment was conducted on a 
standard laptop Intel Core i5 with 16GB RAM.

Evaluation on benchmarks datasets

In Table 1, we can see the results in terms of mean Accuracy and NMI over 20 runs 
for different numbers of retained features d. For the first dataset Glioma lapl seems 
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to show the best performance in terms of NMI and AUC, except when d = 300 where 
the Accuracy obtained with KPCA-IG is the highest, even if all the methods seem to 
behave very similarly in terms of ACC. Analyzing the results for the other two data-
sets Carcinom and GPL93 that are considerably bigger and possibly more complex 
in terms of sample space manifold, the two methods based on the kernel framework 
exhibit to surpass the lapl and NDFS approaches, especially in the GPL93 datasets. 
The comparison of the different approaches in terms of NMI and ACC of these two 
datasets can also be observed in Figs. 1 and 2.

Moreover, as shown in [7] NDFS and the other cluster-based methods like MCFS 
and UDFS suffer if the user selects an incorrect decision for the a priori number 
of clusters. In our case, we show that the proposed methodology behaves similarly 
or even better to a method like NDFS that is specifically optimized for this cluster 
setting.

The two kernel-based approaches, namely KPCA-permute and our novel method 
KPCA-IG, reveal an excellent performance in this setting, once again displaying the 
appropriateness of the kernel framework in the context of complex biological data-
sets. However, KPCA-IG can provide these above-average performances with a con-
siderably lower CPU time.

Table 1 Comparison of the different methods in terms of mean ACC and NMI over 20 runs of a 
k‑means clustering for several subsets with a different number d of selected features

CPU represents the computational time in seconds required by the four methods only to find the most influential features

lapl NDFS KPCA‑permute KPCA‑IG

Glioma ( n = 50, p = 4434)

ACC(10) 0.50 (0.02) 0.37 (0.04) 0.48 (0.03) 0.42 (0.01)

NMI(10) 0.34 (0.02) 0.13 (0.03) 0.31 (0.02) 0.21 (0.01)

ACC(150) 0.56 (0.03) 0.53 (0.04) 0.54 (0.04) 0.56(0.05)

NMI(150) 0.50 (0.02) 0.41 (0.03) 0.48 (0.02) 0.36 (0.05)

ACC(300) 0.54 (0.04) 0.55 (0.04) 0.52 (0.03) 0.57 (0.05)

NMI(300) 0.48 (0.03) 0.41 (0.03) 0.45 (0.02) 0.35 (0.05)

CPU time 0.4 84.6 620.9 2.9

Carcinom ( n = 174, p = 9182)

ACC(10) 0.27 (0.02) 0.47 (0.04) 0.48 (0.02) 0.51 (0.01)

NMI(10) 0.23 (0.01) 0.48 (0.03) 0.43 (0.01) 0.49 (0.02)

ACC(150) 0.61 (0.03) 0.68 (0.04) 0.67 (0.03) 0.70 (0.02)

NMI(150) 0.62 (0.03) 0.72 (0.03) 0.69 (0.03) 0.70 (0.03)

ACC(300) 0.69 (0.04) 0.69 (0.04) 0.70 (0.048) 0.69 (0.03)

NMI(300) 0.73 (0.03) 0.73 (0.03) 0.71 (0.03) 0.70 (0.02)

CPU time 1.4 391.8 7937.6 30.5

GPL93 ( n = 165, p = 12626)

ACC(10) 0.38 (0.01) 0.41 (0.01) 0.42 (0.01) 0.40 (0.01)

NMI(10) 0.08 (0.01) 0.109 (0.07) 0.11 (0.01) 0.15 (0.01)

ACC(150) 0.38 (0.01) 0.45 (0.01) 0.60 (0.02) 0.58 (0.01)

NMI(150) 0.07 (0.01) 0.18 (0.02) 0.39 (0.01) 0.29 (0.01)

ACC(300) 0.37 (0.01) 0.49 (0.03) 0.56 (0.05) 0.56 (0.01)

NMI(300) 0.07 (0.01) 0.22 (0.02) 0.22 (0.01) 0.31 (0.01)

CPU time 2.1 1277.4 17691.4 39.8
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Only lapl seems as fast as KPCA-IG while showing poorer results in the more com-
plex scenario represented in this case by the GPL93 dataset. Other methods, such as 
the concrete autoencoder in [1], have proven successful in this context. The results 
obtained with the concrete autoencoder, as demonstrated in [7], were comparable or 
even inferior in terms of accuracy and NMI. Furthermore, the computational time 
required to achieve these results was on the order of days. As a result, we opted not to 
include it in our simulations.

Application on Hepatocellular carcinoma dataset

Liver cancer is a global health challenge, and it is estimated that there will be over 1 mil-
lion cases by 2025. Hepatocellular carcinoma (HCC) is the most common type of liver 
cancer, accounting for around 90% of cases [39].

The most significant risk factors associated with HCC are, among others, chronic 
hepatitis B and C infections, nonalcoholic fatty disease, and chronic alcohol abuse [44]. 

Fig. 1 Carcinom ACC and NMI: Comparison of the performance of the four methods on the Carcinom dataset 
in terms of Accuracy (left) and Normalized Mutual Information (right) as a function of the number of selected 
features d. ACC and NMI are computed for the k‑means results using only the d selected features

Fig. 2 GPL93 ACC and NMI: Comparison of the performance of the four methods on the GPL93 dataset in 
terms of Accuracy (left) and Normalized Mutual Information (right) as a function of the number of selected 
features d. ACC and NMI are computed for the k‑means results using only the d selected features
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To analyse the use of the KPCA-IG method, we used the expression profiling by array 
of an HCC dataset from the Gene expression Omnibus (series GSE102079). It contains 
the gene expression microarray profiles of 3 groups of patients. First, 152 patients with 
HCC who were treated with hepatic resection between 2006 and 2011 at Tokyo Medi-
cal and Dental University Hospital. Then, the gene expression of normal liver tissues of 
14 patients as control [12]. The third group contains the gene expression of 91 patients 
with liver cancer but of non-tumorous liver tissue. The total expression matrix for the 
257 patients contains the expression of 54613 genes, and the data has been normalised 
by robust multichip analysis (RMA) as in [19] and scaled and centered before applying 
KPCA.

To show the potentiality of KPCA-IG, we first perform kernel PCA with radial basis 
kernel with σ = 0.00001 , which was set heuristically to maximize the explained variance 
and obtain a clear two dimension data representation. Even if detecting groups is not the 
optimization criterion of kernel PCA, it is possible to see that the algorithm catches the 
dataset’s clustered structure in Figs. 7 and 8.

For this reason, applying a method like the proposed KPCA-IG can enlighten the ker-
nel component axes, possibly giving an interpretation of the genes’ influence on the sam-
ple points representation.

The KPCA-IG provides a feature ranking based on the KPCA solution, in this case, 
based on the first two kernel Principal Components. As mentioned before, one of the 
main advantages of the proposed method is the fast computational time required, as 
with this high-dimensional dataset, the CPU time was 654.1 seconds. Table 2 presents 
the first 25 genes and Fig. 3 the distribution of the 54613 variables scores.

To obtain an indication of the significance of the variables selected by KPCA-IG in 
terms of retained information, we computed the Silhouette Coefficient, a metric used to 
assess the goodness of a clustering solution. The score values are in [−1, 1] where values 
close to 1 mean that the clusters are clearly separated [6, 54]. In this case, even if KPCA 
is not optimized to create clusters of data, a 2D KPCA plot with clear separation among 
different groups may suggest a solution with more explained variability.

Starting from the feature ranking given by KPCA-IG, we computed the silhouette 
scores for the KPCA solution for 5462 subsets in terms of original variables, i.e. data-
sets with the increasing number of features of 5, 15, 25, . . . , 54605, 54613 . The metric was 
first computed using the features ranked by KPCA-IG and then with 5 different random 
feature rankings.

From Fig. 4, it can be seen that the scores obtained for kernel PC solutions applied to 
datasets composed by the features selected by KPCA-IG are consistently higher when 
compared to those where the ranking of the variables is chosen randomly.

To see more in detail the behaviour of the curves for reduced datasets with a small 
number of features, which can be more relevant for practical biological use, Fig.  5 
represents the scores for 163 subsets of the form in terms of selected features of 
5, 10, . . . , 100, 110, . . . , 1000, 2000, . . . , 54000, 54613 . As we can see, the information 
retained by the KPCA-IG selected features is higher, as they lead to Silhouette scores 
for the KPCA plots closer to 1. All the obtained coefficients are based on a two cluster 
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solution where the sigma parameter of the Gaussian kernel has been adapted to the 
different numbers of considered features to obtain a KPCA solution with maximized 
explained variance.

Moreover, to check the generalization properties of KPCA-IG, we compared 
the explained variance captured by the selected variables on training and test data. 
More specifically, based on 5 different random train-test splits (192 train and 65 test 
points), we computed the feature ranking using KPCA-IG for each of the 5 training 
sets. Based on these features, we plotted the variance explained by KPCA. Again the 
analysis is made on different subsets with an increasing number of variables retained, 
namely 5, 10, . . . , 100, 110, . . . , 1000, 2000, . . . , 54000, 54613.

Now, the variable ranking obtained by KPCA-IG on the training set is applied on 
the test sets. Thus, the computed KPCA explained variance on the test sets contain-
ing only those features is compared to the one obtained with KPCA applied on the 
training sets. In Fig. 6, it can be seen that the variance explained by KPCA for all the 

Table 2 The 25 most relevant genes and the last 3 out of the total number of 54613 according to 
the proposed KPCA‑IG method

Theoriginal scores and their standard deviations have been multiplied by 103 for a better visualization

Genes Score Standard deviation Symbol

1555797_a_at 0.427972 0.12993 ARPC5

237350_at 0.426140 0.11331 TTC36

1559573_at 0.424048 0.11844 LINC01093

230478_at 0.420690 0.12039 OIT3

203213_at 0.417682 0.11453 CDK1

205019_s_at 0.417597 0.11383 VIPR1

1559065_a_at 0.417234 0.12463 CLEC4G

205984_at 0.417234 0.12607 CRHBP

220114_s_at 0.416410 0.12014 STAB2

202604_x_at 0.416228 0.12273 ADAM10

220496_at 0.415608 0.12558 CLEC1B

205866_at 0.414893 0.11862 FCN3

214895_s_at 0.414887 0.13144 ADAM10

240963_x_at 0.413698 0.12648 PLXDC1

234304_s_at 0.413574 0.13119 IPO11

222077_s_at 0.412939 0.11637 RACGAP1

223341_s_at 0.411044 0.13771 SCOC

214710_s_at 0.410616 0.11262 CCNB1

218009_s_at 0.410610 0.11377 PRC1

219918_s_at 0.410460 0.11532 ASPM

226524_at 0.410119 0.13299 C3orf38

201890_at 0.410097 0.11593 RRM2

207804_s_at 0.409962 0.12230 FCN2

210481_s_at 0.409839 0.12106 CLEC4M

209470_s_at 0.409759 0.12423 GPM6A

... ...

229461_x_at 0.0520878 0.088739 NEGR1

230538_at 0.0520119 0.134812 SHC4

206145_at 0.0507935 0.098227 RHAG
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subsets of selected features on the training and the test sets is consistently similar for 
all of the 5 randomly generated train-test splits.

Another way to assess the relevance of the obtained ranking is to visualize the 
genes with the method proposed by [52] and to see if the bio-medical community has 
already investigated the retained genes.

For instance, Fig. 7 displays the representation of the variable TTC36, the second 
feature in the ranking provided by KPCA-IG as it is the first gene that shows differen-
tial expression.

Fig. 3 Distribution of the scores for the ordered 54613 genes, from a maximum of 0.428 to a minimum of 
0.05× 10−3

Fig. 4 Silhouette Coefficients for the KPCA applied on datasets with features ranked according to KPCA‑IG vs 
5 different randomly generated rankings



Page 15 of 21Briscik et al. BMC Bioinformatics          (2023) 24:282  

The direction of the arrows suggests an upper expression of the gene towards the 
cluster of patients that do not have liver cancer or patients whose liver tissue is not 
tumorous.

To validate the procedure, we selected relevant literature about the gene TTC36. 
This gene, also known as HBP21, is a protein encoding gene. It has been shown that 
this gene’s encoded protein may function as a tumour suppressor in hepatocellular 
carcinoma (HCC) since it promotes apoptosis while it has been proven to be down-
regulated in HCC cases [27].

Fig. 5 Silhouette Coefficients for the KPCA applied on datasets with features ranked according to KPCA‑IG vs 
10 different randomly generated rankings, with particular attention given to subsets with a small number of 
features

Fig. 6 Variance explained by the KPCA based on different subsets of retained features by KPCA‑IG on the 
training sets. Comparison between train and test sets
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Another gene that shows differential expression in the two groups is CDK1. In this 
case, Fig. 8 suggests that this gene seems to be upregulated in the presence of cancer 
tissue.

The indication found in multiple studies is that the increased expression of this gene is 
indeed linked with a poorer prognosis or outcome, such as high tumour grade, invasion 
of lymphovascular or muscularis propria, and the presence of distant metastasis [24, 34, 
36, 38, 66]. In the same way, another of the most critical genes, according to KPCA-IG, 
that seems to be prominent in the case of an HCC patient reflecting the same indication 
in the medical literature is ADAM10, known to be involved in the RIPing and shedding 
of numerous substrates leading to cancer progression and inflammatory disease [31], and 

Fig. 7 Gene TTC36: Gene visualization obtained using the procedure described in [52]

Fig. 8 Gene CDK1: Gene visualization obtained using the procedure described in [52]
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indicated as a target for cancer therapy [13, 45], while being upregulated in metastasis 
cancers [20, 33]. Rac GTPase activating protein 1 gene RACGAP1 selected by KPCA-IG 
shares a similar behaviour with ADAM10 and CDK1. The literature concerning this gene 
is also broad, where it has been marked as a potential prognostic and immunological bio-
marker in different types of cancer, such as gastric cancer [56], uterine carcinosarcoma 
[42], breast cancer [49] or colorectal cancer [26] among many others. CCNB1 has also 
been indicated to be an oncogenic factor in the proliferation of HCC cells [9], showing 
a significant impact on the patient’s survival time [16, 79] and thus has been targeted for 
cancer treatments [18]. PRC1 has revealed upper expression in other cancer tissues such 
as, among others, invasive cervical carcinomas [57], papillary renal cell carcinoma [74], 
pediatric adrenocortical tumour [72], while yet not being studied in depth as compared to 
CCNB1, ADAM10 or RACGAP1.

ASPM was known initially as a gene involved in the control of the human brain devel-
opment and in the cerebral cortical size [5, 77] whose mutations may lead to primary 
autosomal recessive microcephaly [30], more recently its overexpression has also been 
linked with tumour progression as in [71, 73].

Lastly, for the group of upregulated genes in HCC, RRM2 has also been linked with 
low overall survival [11, 28], leading to exhaustive cancer research suggesting targeting 
its inhibition for different types of tumour treatments [47, 48, 50, 70].

On the other hand, the selected genes that manifest down-regulation in cancerous 
HCC tissues are LINC01093, OIT3, VIPR1, CLEC4G, CRHBP, STAB2, CLEC1B, FCN3, 
FCN2 and CLEC4M. The literature regarding these genes indicates that they work as 
suppressors in different cancerous situations, once again endorsing the selection pro-
vided by KPCA-IG for the upregulated genes.

The few genes in the first 25 selected by KPCA-IG that do not exhibit differential 
expression using [52] method (ARPC5, IPO11, C3orf38, SCOC) are potential genes that 
explain much variability in the data or that share a possibly nonlinear interaction with 
the differential expressed genes. Since the ultimate goal of KPCA is not to discrimi-
nate groups, it is expected that some of the variables found by the novel method are not 
linked with a classification benefit. However, further follow-up on the function of these 
genes may be done in cooperation with an expert in the field.

Conclusion
We have seen how the unsupervised feature selection literature is narrower than its 
supervised counterpart. Moreover, algorithms that use the kernel principal compo-
nent analysis for feature selection are reduced to a few works. In the present work, we 
have introduced a novel method to enhance variables’ interpretability in kernel PCA. 
Using benchmark datasets, we have proven the comparability in terms of accuracy with 
already existing and recognized methods, where the efficiency of KPCA-IG has proven 
to be competitive. The application on the real-life Hepatocellular carcinoma dataset and 
the validation obtained from the comparison of the selected variables by the method 
with the bio-medical literature have confirmed the effectiveness and strengths of the 
proposed methodology. In future works, further in-depth analysis will be realized to 
assess the impact of the choice of the kernel function on the feature ranking obtained 
by KPCA-IG. Moreover, the method will be adapted to other linear algorithms that are 
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solely based on dot-products hence supporting a kernelized version, such as kernel Dis-
criminant Analysis or kernel Partial Least-Squares Discriminant Analysis.
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