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Abstract 

Pathogenic bacteria present a major threat to human health, causing various infec-
tions and illnesses, and in some cases, even death. The accurate identification of these 
bacteria is crucial, but it can be challenging due to the similarities between different 
species and genera. This is where automated classification using convolutional neural 
network (CNN) models can help, as it can provide more accurate, authentic, and 
standardized results.In this study, we aimed to create a larger and balanced dataset 
by image patching and applied different variations of CNN models, including training 
from scratch, fine-tuning, and weight adjustment, and data augmentation through 
random rotation, reflection, and translation. The results showed that the best results 
were achieved through augmentation and fine-tuning of deep models. We also modi-
fied existing architectures, such as InceptionV3 and MobileNetV2, to better capture 
complex features. The robustness of the proposed ensemble model was evaluated 
using two data splits (7:2:1 and 6:2:2) to see how performance changed as the training 
data was increased from 10 to 20%. In both cases, the model exhibited exceptional 
performance. For the 7:2:1 split, the model achieved an accuracy of 99.91%, F-Score 
of 98.95%, precision of 98.98%, recall of 98.96%, and MCC of 98.92%. For the 6:2:2 split, 
the model yielded an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall 
of 98.96%, and MCC of 99.26%. This demonstrates that automatic classification using 
the ensemble model can be a valuable tool for diagnostic staff and microbiologists in 
accurately identifying pathogenic bacteria, which in turn can help control epidemics 
and minimize their social and economic impact.

Keywords: Pathogen classification, Deep learning models, Ensemble learning, Image 
patching, Feature fusion, Tuning hyper-parameter

Introduction
Bacteria are ubiquitous in our environment, living on and within us as well as in the 
atmosphere. Some bacteria are harmless and coexist with other species like animals and 
birds, while others can cause disease in humans. Approximately 1500 different pathogens 
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are responsible for causing illnesses in humans, including tuberculosis, cholera, pneu-
monia, diarrhea, plague, and typhoid [1]. These pathogens are not only responsible for 
significant outbreaks but also cause billions of dollars in economic losses worldwide and 
disrupt businesses [2].

Accurate and rapid identification of bacterial genera and species is critical in preventing the 
spread of diseases, especially contagious ones. The current study concentrates on 24 bacte-
rial pathogens, with a focus on the five pathogens (Enterococcus faecium, Acinetobacter bau-
mannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Neisseria gonorrhoeae) that 
instantly need new therapeutics by the World Health Organization [3]. The DIBaS dataset [4] 
used in this research includes all of these pathogens. Automated identification of these patho-
gens using computational approaches is becoming increasingly important. The advent of deep 
Convolutional Neural Network (CNN) models has the potential to greatly aid in the quick 
diagnosis, prevention, and treatment of illnesses.

Traditional laboratory techniques for bacterial identification are time-consuming and 
require expert knowledge and experience. Two key features can help with bacterial rec-
ognition: shape and colony structure. Bacterial shape is a distinctive feature that can be 
identified in an image, but it is difficult to classify bacteria solely based on shape as bac-
teira can have similar forms or structures. Colony structure, including the shape and size 
of colonies, is another important characteristic in terms of unique structures and spa-
tial arrangements. However, some bacterial species have morphologically dissimilar cells 
and can have different forms and sizes, making classification based on shape and colony 
structure challenging. As a result, specialists may require additional examination using 
additional microbiological features.

Deep learning models like AlexNet  [5], GoogleNet  [6], SqueezNet  [7], Mobile-
NetV2  [8], and InceptionV3  [9], large-size databases like ImageNet [10], and effective 
regularization methods “dropout”  [11], show improved performance, prediction accu-
racy, and excellent generalizability to resolve complex computer vision, biological and 
medical tasks [12]. The benefit of Convolution network’s for image classification is that 
the network automatically identifies essential features without any human intervention.

However, training deep models with large features on small datasets can result in over-
fitting. Transfer learning (TL) is a solution to this problem, using the knowledge gained 
from solving a specific task to solve a different but related problem. The method is effec-
tive when combined with augmentation, rigorous hyper-parameter optimization, and 
appropriate fine-tuning policies. Moreover, deep learning models possess varying archi-
tectures, layers, and convolutions, which enable them to learn distinct features from the 
data. This diversity of features can be leveraged through ensemble learning, a successful 
approach in computer vision, to integrate distinctive features from different models and 
achieve consistent and improved predictive performance.

Computer-aided techniques are efficient tools for the classification of bacterial spe-
cies. During the early days of the research image processing techniques like morphologi-
cal and geometric properties were applied for bacterial classification. However, recently 
newly devised machine and deep learning methods are being used in this area of 
research. Zielinski et al. [4] propose a deep learning approach for bacterial colony clas-
sification using Convolutional Neural Networks (CNNs). They provide an open-source 
image dataset for various bacterial species and use the CNNs for feature extraction. The 
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classification is performed using two traditional machine learning algorithms, Random 
Forest and Support Vector Machines (SVM). The authors report an impressive accuracy 
of 97.24% with their proposed approach. However, the limitations of the study include 
the lack of external testing data to evaluate the generalizability of the design. In recent 
years different researches have applied DIBaS dataset for training their models. Khalifa 
et al.  [13] developed a deep neural network approach for the classification of bacterial 
colonies. They used the DIBaS dataset, consisting of 660 images of 33 classes of bacte-
ria, for their study. To overcome the limitation of limited data, the authors applied data 
augmentation techniques to increase the number of images. The proposed approach was 
evaluated using a split of 80% of the data for training and 20% for testing, resulting in an 
accuracy of 98.22%. Muhammed Talo [14] proposed an automated approach for bacterial 
colony classification by fine-tuning a pre-trained ResNet-50 model on the DIBaS data-
set. The study achieved a classification accuracy of 99.12% but used an imbalanced data-
set with varying number of images in each class. Additionally, the study did not employ 
augmentation techniques or perform hyperparameter optimization. Another research 
by Rujichan et al. [15] proposed a deep learning solution for bacterial colony classifica-
tion by fine-tuning a MobileNetV2 model. The authors utilized color masking for data 
preparation and applied various data augmentation techniques to increase the number 
of training images. The study reported an accuracy of 95.09% for the classification of 
bacterial colonies. Abd Elaziz et al. [16] applied a novel approach for feature extraction 
in bacterial colony classification. They used fractional-order orthogonal moments to 
extract fine features from the images. The authors tested their method on 660 images 
from the DIBaS dataset and achieved an accuracy of 98.68%. In the study by Gallardo 
et al. [17], the authors employed a fine-tuned MobileNetV2 model and utilized data aug-
mentation techniques to perform bacterial colony classification. The research was based 
on the DIBaS dataset, which consisted of imbalanced classes of images. Despite this, the 
authors were able to achieve an accuracy of 94.22% in their classification results. Satoto 
et  al.  [18] proposed an automated classification model for bacterial colonies based on 
a Convolutional Neural Network (CNN). The study focused on a subset of four classes 
from the DIBaS dataset and applied data augmentation techniques to increase the diver-
sity of the training data. The model achieved a classification accuracy of 98.59%.

In recent years, the use of deep learning models in the field of bacterial specie classi-
fication has increased. However, many of these studies are limited by the small amount 
of available training data and the absence of testing data to assess the generalizability of 
the models. Most previous approaches also neglected crucial techniques such as image 
patching, ensemble learning, data augmentation, and hyperparameter tuning, which 
have the potential to further enhance the performance of these models. Table 1 gives us 
an overview of previous approaches presented in the literature.

The gap in the existing studies that motivated this research is the need for a more 
robust and accurate classification model for bacterial species. This is particularly 
important in the classification of pathogenic bacteria, as incorrect classification could 
have serious implications for public health. To address this gap, this research pre-
sents an extensive and balanced dataset prepared by segmenting high-scale images 
using image patching, and each class of the dataset now consists of 320 images. The 
bacterial images are trained using a combination of transfer learning, fine-tuning, 
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hyper-parameter tuning, and augmentation strategies applied on pre-trained models. 
The research also introduces a deep model, which combines the distinctive features of 
InceptionV3 and MobileNetV2, using an ensemble learning technique, as illustrated 
in Fig. 1.

Our research contribution can be summarized as follows: 

(1) An extensive and balanced dataset was prepared through image patching.
(2) An ensemble learning design combining InceptionV3 and MobileNetV2 architec-

tures with additional dense layers and a dropout layer was proposed.
(3) The research blended transfer learning, fine-tuning, hyper-parameter tuning, and 

augmentation in one design.
(4) The focus of the research was specifically on the classification of pathogenic bacte-

ria.

Table 1 A comparison of different deep learning models that applied DIBaS dataset for training

The Images column describes the number of images in the dataset. Augmentation? column elaborate whether the 
researcher applies data augmentation. Data split? describes the ratio in which the dataset is divided. Testing data? means 
whether testing data was kept for checking models peformance. Similarly the Image Patching? column indicates whether 
the large-scale images were divided into smaller images. The column Balance Dataset? displays if the approach uses a 
dataset with equal number of image instances in each class. The column Ensemble Model? reflects whether the technique 
applies ensemble learning. The last column Hyper-parameter Tuning describes whether the research uses various variations 
of Learning rate, Batch size,and Epochs etc

Approach Technique/ 
Model

Number 
of 
images

Augme
ntation?

Data split? Testing 
data?

Image 
patching?

Balanced 
dataset?

Ensemble 
model?

Hyper-
parameter 
Tunings?

[4] VGG16, SVM 660 × 50:50 × × � × ×

[19] VggNet, 
AlexNet

35600 × 80:20 × � × × ×

[20] BoW,SVM 200 × 70:30 × × � × ×

[14] ResNet50 689 × 80:20 × × × × ×

[16] MFrLFMs, 
SSATLBO

660 × 80:20 × × � × ×

[17] Mobile-
NetV2

669 � 80:10:10 � × × × �

[18] CNN 1000 � 80:20 × � � × ×

[21] VGG16 660 � 80:10:10 � × × × ×

Fig. 1 Various phases of our proposed method
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(5) Two data splits were applied to evaluate the robustness of the ensemble model with 
increased training data from 10 to 20%.

Materials and methods
In our study, we used two state-of-the-art deep learning architectures, MobileNetV2 and 
InceptionV3, to classify bacterial colonies based on their gram-stain images. The archi-
tectural differences between MobileNetV2 and InceptionV3 allow them to capture dis-
tinct features from the data. MobileNetV2 focuses on efficiently capturing spatial details 
using depthwise separable convolutions, making it effective at capturing fine-grained 
features and patterns [8]. In contrast, InceptionV3 utilizes factorized inception blocks to 
gather a wide range of feature patterns at varying scales [9].

Fig. 2 Flowchart of different stages of our deep ensemble model
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These architectural variances lead to differences in the types of features learned by each 
model. MobileNetV2 excels at capturing intricate textures, edges, and local patterns, while 
InceptionV3 excels at capturing more global features, such as object shapes or larger con-
textual information [8, 9]. By combining the outputs of these models in the ensemble, we 
leverage their complementary learned features. The ensemble model benefits from the 
diverse representations captured by each model, resulting in improved performance by 
capturing a broader range of discriminative features from the bacterial colony images.

A CNN model for merging features of pre-trained models with the help of ensemble 
learning is given in the Fig. 2. The presented design comprises of the following steps: (i) 
Segmenting a large-scale image into patches (ii) Image resizing (iii) Dataset splitting (iv) 
Data augmentation (iv) Embedding pre-trained MobileNetV2 and InceptionV3 models 
to the framework (v) Adding Dense layers to these models (vi) Merging features of these 
models using addition layer (vii) Adding some dropout and dense layers and eventually 
applying classification on the suggested ensemble design.

Algorithm 1 portrays the pseudocode of the suggested deep ensemble design. Initially, 
large scale gram-stained bacterial images are segmented into smaller patches. These seg-
mented images are then resized to meet the input size requirement of the deep learning 
models. The resized images are then split into train, validation, and test datasets, and 
data augmentation techniques are applied to produce an augmented dataset. Two pre-
trained deep models, MobileNetV2 and InceptionV3, are embedded into the ensemble 
model and dense layers are added before merging their features. Finally, dropout and 
dense layers are added to further enhance the quality of the model, and then classifica-
tion is performed to obtain the class labels of the 24 categories of pathogenic bacterial 
images as output.

Dataset details and augmentation

In our research, we utilied the DIBaS dataset [4] that comprises of annotated, high reso-
lution, and microscopic images from thirty three species of bacteria. Out of these, 24 
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pathogenic species are selected, which are present in various environment’s and cause 
different diseases [22]. Each strain consists of 20 images of a specific class. Various aug-
mentation techniques (random vertical translation, horizontal reflection, and transla-
tion) are applied to produce an augmented dataset. For experimentation, we divide the 
dataset into 3 sets, i.e., train, validation, and test data, with split ratio’s of 7:2:1 and 6:2:2.

Patch extraction and data preprocessing

The High dimensional images (2040 x 1536) consume a subsequent amount of memory. 
So, we segment each image into 16 patches of dimension i.e. (512 x 383), as shown in Fig. 3. 
Hence, now we have 320 bacterial images relating to each category. The patches with a white 
background and no significant information are removed. In the research, we have assessed 
different deep learning models. Each model’s input size is different like InceptionV3 has an 
input image size of 299-by-299, and MobileNetV2 has dimensions of 224-by-224. So, the 
images need to be further adjusted to meet the input requirement of the models.

Hyper-parameters tuning

We evaluated the effect of different hyper-parameter optimizations on the model perfor-
mance, such as the learning rate, batch size, and epochs. In addition to the proposed model, 
we also assessed five CNN models and implemented fine-tuning using different parameters 
like learning rate, batch size, and number of epochs, etc. Table 2 shows the details of hyper-
parameters utilized to optimize these models during the training phase.

Convolution neural networks

The motivation for using Convolutional Neural Network (CNN) models in computer vision 
tasks is due to their ability to handle large amounts of data and learn and extract mean-
ingful features from images automatically that improve the accuracy of predictions. Unlike 
traditional machine learning models that require hand-crafted features, CNNs can learn 
hierarchical representations of images that capture complex relationships between pixels. 
They normally consists of three components: convolution, pooling, and dense layers. Dur-
ing a convolution operation, various filters are applied to extract features (feature map) 
from the image, by which their spatial information can be conserved. The pooling method 
is also known as subsampling, which is used to decrease the dimensionality of feature maps 
and also to pick the most vital feature from the convolution process.  Dense layers, also 
known as fully connected layers, play a crucial role in making final predictions by mapping 
high-level features from convolution and pooling layers to output classes or labels. They are 

Fig. 3 Original Image of size 2040x1536 and its Patches of 512 x 383
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responsible for capturing complex relationships and patterns in the data to provide accurate 
predictions.

The training of CNN’s starts from the first input layer and goes up till the final layer. The 
error is back-propagated from the last classification layer to the initial convolutional layer. If 
n is a neuron in layer h, which recieves input from a neuron m of layer h− 1,the sum input 
Inhn can be computed as follows:

where bn and Wh
nm are the bias term and weight vector of the hth layer respectively.The 

output of the hth layer can be computed by the ReLU function as:

The connections in the fully connected and convolution layers utilize Eqs. 1 and  2 to 
calculate the inputs/outputs. For more details on working of CNNs, the researchers may 
refer to [23]. In this section, we will discuss two popular CNN models, MobileNet and 
InceptionNet, and their motivations.

Pre-trained architectures

Different pre-trained models were utilized in our research, including MobileNetV2 and 
InceptionV3. These models are pre-trained on the ImageNet dataset, which consists of a 
vast collection of images across multiple classes. The pre-training process enables these 
models to learn generic features from the ImageNet dataset [10], which can then be fine-
tuned for our specific task of classifying pathogenic bacteria. The following sub-sections 
provide a detailed description of these pre-trained models and their architectures.

AlexNet

The AlexNet was the victorious model in the 2012 ImageNet competition, primarily uti-
lized for image classification. It is an expanded and deeper version of LeNet that includes 
the fundamental components of CNNs and serves as the basis for other deep learning 
architectures. While preserving the original design, it has added features such as LRN, 
dropout, and ReLU. The key finding from the study was that the model’s impressive per-
formance was largely due to its depth, although this came at the cost of increased com-
putational demands during training, which were made feasible through the use of GPUs. 

(1)In
h
n =

n

m=1

W
h
nmxm + bn

(2)Out
h
n = max(0, Inhn)

Table 2 The details of hyper-parameters applied for various CNN models

CNN model Batch-size Learning-rate

AlexNet 48,24,16 8e−7,1e−8,1e−7,6e−7,1e−5,1e−6,1e−10

SqueezeNet 48,24,16 1e− 8, 1e− 7, 1e− 6, 9e−5

GoogleNet 48,24,16 1e− 8, 6e− 7, 1e− 7, 9e− 6, 1e− 6, 1e−5

MobileNetV2 24,16,8 9e− 6, 3e−6,5e−6,1e−7,8e−5,1e−6

InceptionV3 48,24,16 8e−5,1e−6,9e−6,1e−5,1e−7

Our ensemble model (MobileNetV2
+InceptionV3 )

24,16,8 4e-7, 1e-7, 1e-5, 1e-6
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The model consists of 5 convolutional and 3 fully connected layers, as illustrated in the 
Fig. 4.

SqueezeNet

The Squeeznet model was developed by researchers from Stanford, Berkeley, and Deep-
Scale with the aim of creating a smaller CNN with fewer parameters that would con-
sume less memory and could be efficiently transmitted over a computer network. The 
foundation of this deep learning architecture is the fire module, which consists of a con-
volution layer with 1x1 filters that feed into an expand layer that has both 1x1 and 3x3 
convolution filters, as depicted in the Fig. 5.

GoogleNet

Google introduced the inception structure called GoogLeNet, which was the best per-
former at the 2014 ImageNet competition. While constructing a Convolution Network 
you have to pick 1 x 1, 3 x 3, 5 x 5, convolution layer, or pooling layer. The GoogleNet has 
them all in its inception module. It makes architecture complicated but works remark-
ably well.

MobileNetV2

MobileNetV2 is a computationally efficient CNN model that is well-suited for mobile 
and embedded systems. Its design focuses on reducing the number of parameters, com-
putations, and memory usage while still achieving good performance on image classifi-
cation tasks. This makes it ideal for deployment on resource-constrained devices such as 
smartphones, which have limited computational resources. MobileNetV2 is quite simi-
lar to MobileNetV1, which offers a depthwise separable convolutional layer that reduces 
the size and complexity of the model. It also includes a useful module with an inverted 
residual block with bottlenecking features. It has a drastically lesser parameter than the 
initial MobileNetV1 design [24]. Figure 1 illustrates the MobileNetV2 block.

Fig. 4 AlexNet architecture
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InceptionV3

InceptionNet is a flexible and scalable CNN model that is designed for a wide range of 
computer vision tasks. It features an Inception module that allows for multiple paral-
lel convolutions of different kernel sizes, which can extract features from an image at 
multiple scales. This makes InceptionNet well-suited for tasks such as object detec-
tion, semantic segmentation, and image classification. Additionally, its scalability makes 
it possible to adapt the model to different data sets and computational resources. Like 
MobileNetV2, it strikes a balance between accuracy and computational cost, making it 
a good choice for our study. The inceptionV3 model is an updated form of inceptionV2 
that attains excellent results on image recognition challenges by removing 5 × 5 convo-
lutions and including preferably two more 3 × 3 convolution layers. The model restricts 
overfitting and tend to achieve label smoothing. It also factorizes a 7 × 7 convolution 
layer and combines different CNN layers after normalization, rendering greater accuracy 
with limited computation complexity, as shown in Fig. 6.

Ensemble classification

These CNN’s are non-linear architectures that learn complex relations from input data 
through stochastic optimizations and error back-propagation, which makes them very 
responsive to weight initializations and the noise present in the dataset. Ensemble learn-
ing resolves these issues by training several models and joining their predictions or fea-
tures. In this technique, model shortages are balanced by the predictions of the other 
architectures. Merged predictions produce better results than any single model [25]. 
Ensemble learning techniques reduce variance error, enhance performance, and general-
izability of models.

Performace metrics

To evaluate the performance of the different deep models in comparison to the proposed 
methodology, multiple performance measures are employed, including precision, recall, 

Fig. 5 SqueezeNet fire module
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F-Score, and Matthews Correlation Coefficient (MCC), in addition to accuracy. This 
comprehensive set of metrics provides a more complete assessment of the model’s effec-
tiveness, as accuracy alone may not sufficiently capture its performance [26].

By considering precision, recall, F-Score, and MCC in conjunction with accuracy, 
we gain insights into different aspects of the model’s predictive capabilities, such as its 
ability to correctly identify positive instances (precision), capture all relevant positive 
instances (recall), achieve a balance between precision and recall (F-Score), and provide 
an overall correlation measure (MCC). Together, these performance measures offer a 
comprehensive evaluation of the deep models’ effectiveness in the context of the pro-
posed methodology. The computation of these metrics involves the following equations, 
where TP represents true positives, TN represents true negatives, FP represents false 
positives, and FN represents false negatives:

Model training strategies

In the Results section, various experimental Strategies were adopted to demonstrate the 
effects of fine-tuning and augmentation on deep learning models with and without pre-
trained weights from the ImageNet dataset. These strategies are as follows:

(3)Accuracy =

TN + TP

FP+ TP+ FN + TN

(4)Precision =

TP

FP+ TP
,

(5)Recall =

TP

FN + TP

(6)FScore =

2× Precision × Recall

Precision + Recall

(7)MCC =

TP× TN − FP× FN
√

(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

Fig. 6 InceptionV3 Module
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Training from the beginning

In this approach, deep models are trained from scratch on the target dataset without apply-
ing any parameter-tuning or utilizing any previously learned weights from the ImageNet 
dataset.

Parameter‑tuning without pre‑trained weights

In this strategy, various parameters such as learning rate, batch size, etc., of deep models 
are tuned on the target dataset without utilizing any previously learned weights from the 
ImageNet dataset.

Fine‑tuned with pre‑trained weights when all layers unfrozen

In this technique, deep models are fine-tuned on the target dataset using previously learned 
weights from the ImageNet dataset. However, the weights of the layers are not frozen, and 
they are updated during the training process.

Augmented and fine‑tuned with pre‑trained weights when all layers are unfrozen

In this strategy, deep learning models are fine-tuned on the target dataset, and various aug-
mentation techniques are applied to increase the size of the training data. The models uti-
lize previously learned weights from the ImageNet dataset, and the weights are updated as 
the models learn during training.

Results
Initially, we analyze the performance of the CNN models in four different scenarios. 
When the deep learning models are: (i) trained from scratch (ii) Parameter-tuning with-
out pre-trained weights (iii) fine-tuned with pre-trained weights when all layers un-
frozen, and (iv) augmented and fine-tuned with pre-trained weights when all layers are 
unfrozen. For every approach, the outcomes of loss and accuracy of models are shown in 
Tables 3 and 4. By looking at it, we can infer the following conclusions: 

(1) The results depicit that shallow models produce substantially better results than 
deeper models for stratergy (i) and (ii) for small-size dataset like DIBaS. Specially in 
case of (ii) we can see that only tuning model parameters like learning-rate, batch 
size etc. without any pre-trained weights from ImageNet show significant better 
results in shallower models as compared to deeper models because these deeper 
models need substaintially larger number of parameters to train as compared to 
shallow models, as reflected by the results in Tables 3 and 4.

(2) Applying fine-tuning on a pre-trained model is a highly efficient transfer learning 
approach for image classification tasks. The results show improvement in the accu-
racy of all CNN models fine-tuned on the primary dataset.

(3) Augmentation is extremely beneficial for enriching a design’s performance, nota-
bly when the dataset is inadequate. The deep learning designs, together with tradi-
tional augmentation procedures, can help in achieving excellent results. The results 
display that the strategies where augmentation was applied show a 1–6% enhance-
ment in test accuracy, and the reduction in loss ranges from 19 to 91% over prior 
fine-tuned deep models without augmentation.
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(4) The two best-performing models, MobileNetV2 and InceptionV3, were selected 
for feature fusion in our ensemble model I. The results showed that these models 
produced a test accuracy of 97.79% and 97.92% and a minimum loss of 0.0212 and 
0.0446, respectively.

(5) The proposed ensemble model I and II, with a split ratio of 7:2:1, produces a valida-
tion accuracy and loss of 99.41% and 0.0275, respectively, for model I; and 97.14% 
and 0.0953, respectively, for model II. The test results for model I include an accu-
racy of 99.91%, F-Score of 98.95%, precision of 98.98%, recall of 98.96%, and MCC 
of 98.92%. For model II, the test results are an accuracy of 99.79%, F-Score of 
97.52%, precision of 97.60%, recall of 97.53%, and MCC of 97.44%.

(6) Similarly, the ensemble model I and II, with a split ratio of 6:2:2, produces a valida-
tion accuracy and loss of 98.96% and 0.0284, respectively, for model I; and 97.72% 
and 0.3087, respectively, for model II. The test results for model I include an accu-
racy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall of 98.96%, and MCC 
of 99.26%. For model II, the test results are an accuracy of 99.85%, F-Score of 
98.24%, precision of 98.30%, recall of 98.24%, and MCC of 98.18%.

(7) These results indicate that both ensemble models I and II demonstrate signifi-
cant improvements over their respective base models, InceptionV3 and Mobile-

Table 3 Comparative analysis of the Deep Ensemble design with various Deep learning 
architectures with a data split of 70:20:10.

Here, ADS, ODS, PTW, NPTW, ALUF, PT, FT stands for augmented dataset, original dataset, pre-trained weights, no pre-
trained weights, all layers un-frozen, parameter-tuning, fine-tuned

Model Methods Validation-loss Validation-
accuracy

Test-accuracy

Proposed model I
(MobileNetV2+InceptionV3)

FT on ADS-ALUF 0.0275 99.41 99.91

Proposed model II
(GoogleNet+SqueezeNet)

FT on ADS-ALUF 0.0953 97.14 99.79

AlexNet Trained on ODS-NPTW 4.1254 13.53 11.98

PT on ODS-NPTW 0.8999 75.47 76.43

FT on ODS-PTW 0.2375 93.10 93.10

FT on ADS-ALUF 0.1056 96.23 96.09

SqueezeNet Trained on ODS-NPTW 3.1779 6.51 8.07

PT on ODS-NPTW 0.3370 79.83 82.16

FT on ODS-PTW 0.3102 87.51 87.89

FT on ADS-ALUF 0.2614 94.60 93.62

GoogleNet Trained on ODS-NPTW 4.1299 2.93 1.95

PT on ODS-NPTW 0.3924 87.77 88.41

FT on ODS-PTW 0.5174 90.83 90.63

FT on ADS-ALUF 0.2897 95.64 93.75

MobileNetV2 Trained on ODS-NPTW 3.1169 5.27 5.86

PT on ODS-NPTW 2.1408 44.05 39.84

FT on ODS-PTW 0.2569 93.10 92.45

FT on ADS-ALUF 0.0212 97.85 97.79

InceptionV3 Trained on ODS-NPTW 3.4025 1.69 0.91

PT on ODS-NPTW 2.4302 56.93 57.03

FT on ODS-PTW 0.4128 96.62 96.74

FT on ADS-ALUF 0.0446 98.39 97.92
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NetV3 for model I, and GoogleNet and SqueezeNet for model II. The performance 
enhancements are consistently observed across the different evaluation metrics, 
highlighting the effectiveness of the ensemble approach.

Furthermore, we investigated the performance of ensemble model I on the test data-
set, focusing on two different aspects: i) classification of bacteria from similar genera, 
and ii) classification of bacteria from dissimilar genera. Based on the confusion matri-
ces shown in Figs. 7 and  8, we draw the following conclusions: 

(1) There are 8 misclassification’s in Model I with 10% test data and only 9 misclassifi-
cation’s for model with 20% test data.

(2) The Model I exhibitions exceptional result for similar and dissimilar genera.
(3) Additionally, for 10% test data, there are 6 misclassifications for different genera 

and 2 misclassifications for the same genera. For 20% test data, there are 6 misclas-
sifications for different genera and 3 misclassifications for the same genera.

Table 4 Comparative analysis of the Deep Ensemble design with various deep learning 
architectures with a data split of 60:20:20.

Here, ADS, ODS, PTW, NPTW, ALUF, PT, FT stands for augmented dataset, original dataset, pre-trained weights, no pre-
trained weights, all layers un-frozen, parameter-tuning, fine-tuned

Model Methods Validation-loss Validation-
accuracy

Test-accuracy

Our proposed model I
(MobileNetV2+InceptionV3)

FT on ADS-ALUF 0.0284 98.96 99.94

Proposed model II
(GoogleNet+SqueezeNet)

FT on ADS-ALUF 0.3087 97.72 99.85

AlexNet Trained on ODS-NPTW 5.4068 8.07 8.46

PT on ODS-NPTW 0.6312 74.37 74.87

FT on ODS-PTW 0.3788 95.64 94.14

FT on ADS-ALUF 0.3230 94.93 94.86

SqueezeNet Trained on ODS-NPTW 3.1764 5.86 5.53

PT on ODS-NPTW 0.3806 79.38 79.62

FT on ODS-PTW 0.2673 86.47 86.33

FT on ADS-ALUF 0.0646 93.43 92.90

GoogleNet Trained on ODS-NPTW 3.2394 4.16 4.17

PT on ODS-NPTW 0.3559 88.68 88.35

FT on ODS-PTW 0.3937 91.35 90.76

FT on ADS-ALUF 0.2774 95.71 95.83

MobileNetV2 Trained on ODS-NPTW 3.3572 4.16 4.10

PT on ODS-NPTW 1.8974 43.98 41.73

FT on ODS-PTW 0.4196 93.62 94.73

FT on ADS-ALUF 0.0879 95.95 96.16

InceptionV3 Trained on ODS-NPTW 3.3490 4.03 4.23

PT on ODS-NPTW 2.3959 58.82 57.94

FT on ODS-PTW 0.4737 95.51 96.06

FT on ADS-ALUF 0.2032 97.14 96.68
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 These findings provide valuable insights into the performance of ensemble model I 
when classifying bacteria from similar and dissimilar genera.

Overfitting can be an important matter, specially with small datasets. The model may 
achieve excellent accuracy, but when analyzed for unseen real-life examples, it may not 
generalize well for new examples. So, a vital issue to examine if there is overfitting or 
the design has generalized well for examples provided during training of the model. 
We access it by estimating the gap within validation and training curves, wider the gap 
among them higher the overfitting.

Figure 9 depicts that the validation and training curves either overlap or move along-
side each other without any significant gap, which shows that the model has generalized 
accurately without any overfitting.

Fig. 7 Confusion matrix of ensemble learning model for 10% test data

Fig. 8 Confusion matrix of ensemble learning model for 20% test data
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A comparison against previous works on bacterial colony classification

In order to provide a comprehensive comparison between our ensemble model and 
other state-of-the-art classifiers, we conducted additional experiments using a common 
dataset consisting of 660 images representing 33 bacterial classes. This ensures that the 
number of bacterial species is consistent across all models, eliminating any potential bias 
caused by variations in class distribution. To ensure a fair evaluation, we adopted the 
same train, validation, and test split as utilized in our proposed model. Furthermore, 
we carefully fine-tuned the compared models based on the specified experimental set-
tings provided by the authors. This included factors such as the number of epochs, batch 
size, learning rate, and any additional dense or dropout layers added to the model. By 
following this approach, we aim to provide a comprehensive and unbiased comparison 
between our ensemble model and the other classifiers, enabling a more accurate assess-
ment of their respective performances. While assessing the performance indicators in 
Table 5, the suggested ensemble models display better results for all the performace met-
rics applied for assissing the model performance.

Discussion
Deep and machine learning procedures are generating outstanding results in the area of 
pathogen classification [27], bacterial identification [4], COVID19 [25]. They can help in 
the immediate and reliable diagnosis of diseases.

Our study reveals that transfer learning can significantly improve current modes of 
identification of bacterial images while also independently yielding exceptional results 
for small datasets. Researches [28] reveal that transfer learning can generate outstanding 
performance, especially for small datasets [29].

Fine-tuning helps models to converge quicker and acquires refine and insight-
ful features that capture intricate image details  [30], as is visible in our approach. It is 
also effective and efficient technique for diverse classification tasks in the biological 
domain [31].

Fig. 9 Model Performance Curves for train and validation accuracy (blue, black dotted lines) and train 
and validation loss (orange, black dotted lines) of Deep Ensemble model, for the Classification of Bacterial 
pathogens using DIBaS dataset
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Image patching preserves important local details that would otherwise be lost due to 
down-scaling [30]. Researches have elaborated that image patching help increase dataset 
size [32] and preserve essential local image details [30].

We also applied augmentation to our model, which produced excellent results as com-
pared to other models. Studies show that augmentation boosts performance and gener-
ates a generalized model without overfitting [29].

In our ensemble learning approach, we utilized both MobileNetV2 and InceptionV3, 
where MobileNetV2 is an improvement of Resnet’s residual block and faster than 
MobileNetV1 due to its efficient design   [33]. Additionally, InceptionV3 demonstrated 
remarkable performance in skin cancer diagnosis and applied factorized inception 
blocks for the accumulation of low-level to high-level feature patterns through smaller 
and larger convolutions [34]. The combination of these unique features learned by the 
two models resulted in improved performance compared to using a single model, as 
the diverse architecture and layers allowed them to learn distinctive features, provid-
ing a more comprehensive understanding of the data. Our work shows that suggest that 
ensemble models acquire beneficial features and generate better performance than indi-
vidual models, as in Tables 3 and 4. Ensemble models have achieved excellent results in 
image classification tasks in multiple fields like radiology images [35], and histopathol-
ogy images [36].

Current improvements in computer-vision are usually dependent on extensive, anno-
tated data, which are not conveniently accessible in the biological field. Hence, our pro-
posed model can be extremely helpful for environments where the dataset is limited and 
may continue to be especially beneficial in the days to come for the automatic diagnosis 
of disease-causing bacteria.

Conclusion
The work presents a classification technique for pathogenic bacteria, which leverages 
the advantages of ensemble learning, image patching, transfer learning, fine-tuning, and 
data augmentation. Ensemble learning integrates diverse features from different mod-
els and addresses their weaknesses. Image patching preserves local details and increases 
the dataset size. Fine-tuning allows for quick convergence and acquisition of domain-
related features. Transfer learning solves the problem of limited training data. Data aug-
mentation increases the diversity of the data and improves the generalization ability of 

Table 5 A comparison of our approach with previous deep learning methodologies for bacterial 
classification

Approach Number of 
images

Augmentation Data split Loss Accuracy Precision Recall FScore MCC

Proposed 
model 1

660 � 7:2:1 0.2674 99.91 98.98 98.48 98.38 98.52

Proposed 
model 2

660 � 7:2:1 0.0431 99.82 97.98 96.97 96.77 97.04

ResNet-50 [14] 660 � 7:2:1 0.0155 99.72 – 95.45 94.34 –

Mobile-
NetV2 [17]

660 � 7:2:1 3.0262 95.04 – 18.18 11.64 –

VGG16 [21] 660 � 7:2:1 3.5460 94.58 – 10.61 5.82 –
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the models, reducing the risk of overfitting. For the 6:2:2 split, the proposed ensemble 
model I achieved an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall 
of 98.96%, and MCC of 99.26%. These results are significantly better than those of any of 
the fine-tuned models, demonstrating the efficacy of the proposed approach. In conclu-
sion, the suggested model can aid diagnostic staff and microbiologists in the accurate 
identification of pathogenic bacteria, which can help control pandemics and mitigate the 
socioeconomic impact on society.
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