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Abstract 

Background:  Reaction networks are widely used as mechanistic models in systems 
biology to reveal principles of biological systems. Reactions are governed by kinetic 
laws that describe reaction rates. Selecting the appropriate kinetic laws is difficult for 
many modelers. There exist tools that attempt to find the correct kinetic laws based on 
annotations. Here, I developed annotation-independent technologies that assist mod-
elers by focusing on finding kinetic laws commonly used for similar reactions.

Results:  Recommending kinetic laws and other analyses of reaction networks can be 
viewed as a classification problem. Existing approaches to determining similar reac-
tions rely heavily on having good annotations, a condition that is often unsatisfied 
in model repositories such as BioModels. I developed an annotation-independent 
approach to find similar reactions via reaction classifications. I proposed a two-dimen-
sional kinetics classification scheme (2DK) that analyzed reactions along the dimen-
sions of kinetics type (K type) and reaction type (R type). I identified approximately ten 
mutually exclusive K types, including zeroth order, mass action, Michaelis–Menten, Hill 
kinetics, and others. R types were organized by the number of distinct reactants and 
the number of distinct products in reactions. I constructed a tool, SBMLKinetics, that 
inputted a collection of SBML models and then calculated reaction classifications as 
the probability of each 2DK class. The effectiveness of 2DK was evaluated on BioMod-
els, and the scheme classified over 95% of the reactions.

Conclusions:  2DK had many applications. It provided a data-driven annotation-inde-
pendent approach to recommending kinetic laws by using type common for the kind 
of models in combination with the R type of the reactions. Alternatively, 2DK could also 
be used to alert users that a kinetic law was unusual for the K type and R type. Last, 2DK 
provided a way to analyze groups of models to compare their kinetic laws. I applied 
2DK to BioModels to compare the kinetics of signaling networks with the kinetics of 
metabolic networks and found significant differences in K type distributions.
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Background
Reaction networks are widely used in systems biology as mechanistic models that can 
reveal governing principles of biological systems.1 The choice of kinetic laws for reac-
tions (e.g., mass action kinetics, Michaelis–Menten kinetics) is crucial for the develop-
ment of mechanistic models of biological systems. Computational studies of systems 
biology often involve the analysis of synthetically generated networks (e.g., [1, 2]). As 
noted in [3, 4], the choice of kinetic laws for these networks is as important as the set of 
reactions (the reactants, products, and modifiers for reactions) since reactions alone are 
not sufficient to determine dynamics [5]. Indeed, many computational studies only con-
sider mass action kinetics, which may be inadequate [1]. In addition, kinetics are crucial 
considerations in parameter inference and model identification [6].

There is a wide diversity of kinetic laws. For example, allosteric and cooperative kinet-
ics are important considerations in some biological systems [7, 8], and there are gener-
alizations of these laws [9, 10], such as convenience kinetics [11]. Complications arise if 
some inhibitors or activators target the active site (non-allosteric). A further considera-
tion is an order in which elemental reactions occur to form complexes such as compul-
sory order and ping-pong [12–14].

A significant motivation for this work was addressing the challenges modelers face 
with choosing appropriate kinetic laws. A detailed example of choosing kinetic laws is 
given for the models of glycolysis [15] and Trypanosoma models [16, 17]. Further, King–
Altman [18] considers a much more complex reaction mechanism than deriving Michae-
lis–Menten kinetics using the steady-state assumption. Kinetic laws are chosen based on 
the best knowledge of the underlining kinetic mechanism. Some books describe kinetic 
laws, such as Segel’s enzyme kinetics [12] and others [13, 14].

Despite the examples, there remains a significant challenge with applying the the-
ory in practice, especially for less experienced modelers. To address this, programs 
such as COPASI [19] and CellDesigner [20], provide pre-defined lists of kinetic laws. 
SBMLsqueezer 2 [21] goes further by making recommendations for kinetic laws in two 
ways. One way is a classification scheme that “depends on the annotations associated 
with each reactant, reaction and modulation”, which are “incorporated into the Systems 
Biology Markup Language (SBML) [22] specifications in the form of Systems Biology 
Ontology (SBO) [23]” [24]. “The most important sources of information in determining 
these categories are Minimal Information Required In the Annotation of Models (MIR-
IAM) [25] and SBO annotations” [21]. The other way also depends on annotations to 
match reactions in the SBAIO-RK [26] database to obtain kinetic laws. I emphasize that 
these two ways are limited because of the heavy dependence on annotations. Further, the 
authors note that even with annotations, there are serious limitations in that “the extrac-
tion from SABIO-RK depends on existing biochemical data and might therefore not 
always yield results.” Here, I expanded one aspect of the first way taken in SBMLsqueezer 

1  Abbreviations: The two-dimensional kinetics classification scheme (2DK) organized reactions along two dimensions: 
kinetics type (K type) and reaction type (R type). (I) Kinetics type (K type) . K type includes ten types: ZERO: Zeroth 
order; UNDR: Uni-directional mass action; UNMO: Uni-term with the moderator; BIDR: Bi-directional mass action; 
BIMO: Bi-terms with the moderator; MM: Michaelis–Menten kinetics without an explicit enzyme; MMCAT: Michae-
lis–Menten kinetics with an explicit enzyme; HILL: Hill kinetics; FR: Kinetic law in the fraction format other than MM, 
MMCAT, or HILL; NA: not classified. (II) Reaction type (R type). R type was quantitatively represented by the number 
of distinct reactants (R = 0, 1, 2, >2) and products (P = 0, 1, 2, >2).
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2 to find similar reactions, whose core is to classify reactions. In SBMLsqueezer 2, this 
relies on annotations which include SBO and MIRIAM.

In this article, I developed a classification scheme that did not depend on annotations. 
Existing approaches to determining similar reactions rely heavily on having good anno-
tations of chemical species, a condition that is often unsatisfied in model repositories 
such as BioModels. This article introduced 2DK, a new scheme for classifying reactions 
based on a two dimension structure: kinetics type (K type) and reaction type (R type). 
K types were mutually exclusive kinds of kinetic laws such as zeroth order, mass action, 
Michaelis–Menten, and Hill kinetics. R types classified reactions by the number of dis-
tinct reactants and products. I developed a Python-based cross-platform tool, SBMLKi-
netics, that constructed reaction classifications by inputting a collection of models and 
outputting the probability of each 2DK class (combinations of K type and R type).

I validated the 2DK classification scheme using BioModels Database. I further 
described how 2DK could provide a data-driven approach, with BioModels Database 
as an example, to recommending kinetic laws and providing an alert of unusual kinetic 
laws. Finally, I applied BioModels Database as an example again to compare the kinetics 
of signaling networks with the kinetics of metabolic networks. The results showed that 
the signaling networks were dominated by uni-directional mass action kinetics whereas 
metabolic networks had a proportionally larger number of regulatory kinetics in the 
form of kinetic laws that had a fractional representation. This is reasonable because met-
abolic models are derived heavily from underlying enzyme mechanisms whereas signal-
ing pathways are generally simpler binding/unbinding reactions or gross simplifications 
of the kinetics because very little is known about the mechanism.

Methods
I developed an annotation-independent classification scheme for kinetic laws based on 
patterns in existing reaction networks. The focus was on the standard community of 
SBML. The approach classified reactions along two dimensions. The first was a charac-
terization of the algebraic expression of the kinetic law. I referred to this as the kinetics 
type (K type) of the reaction. The second was a simplification of reaction stoichiometry, 
namely the number of distinct reactants and the number of distinct products. I referred 
to this as the reaction type (R type) of the reaction.

Define the two‑dimensional kinetics classification scheme (2DK)

The two-dimensional kinetics classification scheme (2DK) organized reactions along two 
dimensions: kinetics type (K type) and reaction type (R type).

Define the kinetics type (K type)

On one hand, K type was defined mainly by the algebraic expressions of kinetic laws. 
For example, the kinetics with a reaction of A+ B → C and with its kinetic law K1 is 
different from the same reaction A+ B → C but with another kinetic law K1 · A · B . On 
the other hand, K type also included some information from the reactions. For example, 
it was necessary to consider whether a species inside the kinetic law was a reactant or 
not. To evaluate the kinetics statistically, I classified the kinetics into commonly used 
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and mutually exclusive ten types with defined categories as below, referring to Ontology 
Search (OLS) [27].

•	 Zeroth order (ZERO) the number of species in the kinetic law was zero;
•	 Uni-directional mass action (UNDR) the kinetic law was a single product of terms 

and all species in the kinetic law were reactants;
•	 Uni-term with the moderator (UNMO) the kinetic law was a single product of terms 

and not UNDR, namely at least one species in the kinetic law was not a reactant;
•	 Bi-directional mass action (BIDR) the kinetic law was the difference between two 

products of terms, and the first product of terms contained species as all the reac-
tants while the second product of terms contained species as all the products;

•	 Bi-terms with the moderator (BIMO) the kinetic law was the difference between two 
products of terms and NOT BIDR;

•	 Michaelis–Menten kinetics without explicit enzyme (MM) the kinetic law was in the 
format of Michaelis–Menten expressions without an explicit enzyme;

•	 Michaelis–Menten kinetics with an explicit enzyme (MMCAT) the kinetic law was in 
the format of Michaelis–Menten expressions with an explicit enzyme;

•	 Hill equation (HILL) the kinetic law was in the format of Hill equations;
•	 Fraction format other than MM, MMCAT, and HILL (FR) the kinetic law was in 

the format of fraction with at least one species in the denominator and NOT MM, 
MMCAT, or HILL;

•	 Not classified (NA) not classified kinetics.

Table  1 provided an example for each certain K type. In particular, the type FR 
included generalized kinetics with the kinetic law in the format of fraction based on but 
beyond Michaelis–Menten and Hill kinetics. All the information in Table 1 other than 
K type was from the SBML files in the BioModels Database. There are four columns: 
“K Type”, “BIOMD” (BioModel identifier number), “Reaction” and “Kinetic law”. In the 
column of “BIOMD”, i.e., 5 means BIOMD0000000005. In the “Kinetic law” column, all 
the species in the kinetic law are in bold. As a comparison, all the parameters are not in 

Table 1  Kinetics examples for ten defined kinetics types (K type)

K type BIOMD Reaction Kinetic law

ZERO 5 EmptySet → Y Cell·k1aa

UNDR 5 CP → C2 Cell·CP·k9

UNMO 12 → PX k_tl·X
BIDR 1 B → BL Comp1·(kf_0·B - kr_0·BL)

BIMO 88 s172 → s135 c1·g·s173·(s172–s135)

MM 4 MI → M Cell·MI·V1·pow(K1 + MI, − 1)

MMCAT​ 10 MKK → MKK_P uVol·k3·MKKK_P·MKK/(KK3 + MKK)

HILL 55 → cLm Compartment·(n1·pow(cXn, a)/
(pow(g1, a) + pow(cXn, a)))

FR 3 → M Cell· (1 + − 1·M)·
V1·pow(K1 + − 1·M + 1, − 1)

NA 160 → timm WholeCell·((1 - pow(1 - prct, npt))·tccctimp
+ pow(1 - prct, npt)·tcdvpmt)·timp
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bold. For instance, variable compartment sizes were considered as parameters. The K 
types did not consider the values of the parameters; therefore, units were not considered 
here either.

OLS lists the mathematical expressions of kinetic laws in SBO as four types: mass 
action kinetic laws, modular kinetic laws, enzymatic kinetic laws, and Hill-type kinetic 
laws. Table 2 described how the defined K types correspond to the mathematical expres-
sions of kinetic laws in SBO.

Define the reaction type (R type)

R type was defined by the structure of reactions. It was a simplification of reaction stoi-
chiometry in that only the number of distinct reactants and products were considered. 
For example, two reactants and one product are in the reaction of A+ B → C . I defined 
R type quantitatively with a pair of the number of reactants (R = 0, 1, 2, > 2) and prod-
ucts (P = 0, 1, 2, > 2). As a comparison, the stoichiometry matrix indicates reactants and 
products by negative and positive signs respectively. The 2DK classification was a combi-
nation of the K type and the R type.

Code structure and statistical analysis

I developed a Python package called SBMLKinetics that read a collection of SBML mod-
els and then did statistical analysis for the 2DK clarifications. There were four major 
workflow steps in SBMLKinetics implemented by three Python scripts as shown in 
Fig. 1.

Expand the kinetic law formula if applicable

Before analyzing kinetics, I expanded the kinetic law formula if it was in the format with 
a function name. In the SBML files, some kinetic laws are expressed via specific function 
names. Therefore, the function names are supposed to get replaced by certain function 
bodies. For instance, the kinetic law is sometimes defined by f(t). Then, it is necessary to 
expand f(t) to its explicit equation at + b based on the definition of f (x) = ax + b in the 
SBML file.

Analysis of the kinetic laws and reactions

K types were determined by a collection of eight kinetics properties (K properties) listed 
below that were ascertained from analyzing the reaction’s kinetic law.

(a)	 the number of species in the kinetic law;

Table 2  Comparison between kinetics types (K types) and Systems Biology Ontology (SBO) in 
Ontology Search (OLS)

SBO K type

Mass action kinetic law ZERO, UNDR, BIDR

Modular kinetic law UNMO, BIMO, MM, MMCAT, HILL

Enzymatic kinetic law MM, MMCAT, HILL, FR

Hill-type kinetic law HILL, FR
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(b)	 whether the kinetic law was a single product of terms;
(c)	 whether the kinetic law was the difference between two products of terms;
(d)	 whether the first (and the second) product of terms contained species as all the 

reactants (and products);
(e)	 whether the kinetic law was in the format of Michaelis–Menten expressions with a 

single reactant in the numerator;
(f )	 whether the kinetic law was in the format of Michaelis–Menten expressions with 

the product of a single reactant and another species in the numerator;
(g)	 whether the kinetic law was in the format of Hill equation;
(h)	 whether the kinetic law was in the fraction format with at least one species in the 

denominator.

The logic for determining the K type based on K properties was described in Table 3. 
For example, if the number of species in the kinetic law was zero according to K prop-
erty a, then the K type was ZERO. If both K properties b and d held, then the K type 
was UNDR. The analysis proceeded column by column in Table 3. Note that the clas-
sifications were mutually exclusive since all pairs of columns differed in at least one non-
empty row. For example, UNDR and UNMO differed in the K property d. To illustrate 
the above analysis, consider the kinetic law cell·CP· k9 of the reaction CP → C2 in the 

1. Expand the kinetic law formula if applicable

2. Analysis of the kinetic laws and reactions

kinetic_law.py

3. Statistical analysis for different kinetics

kinetics_classification.py

4. Application programming interface (API) for users

kinetics_output.py

Fig. 1  Code structure and workflow steps of SBMLKinetics
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second row of Table 1. The K property b (it was a single product of terms) and d (all 
reactants were in the kinetic law) both held. Therefore, I saw that its K type was UNDR 
based on Table 3.

To classify the R types, I considered the number of distinct reactants and products. 
R type was quantitatively represented by the number of reactants (R = 0, 1, 2, > 2) and 
products (P = 0, 1, 2, > 2).

Statistical analysis for different kinetics

After analyzing the kinetic laws with the strategies in steps 1 and 2, I did a statistical 
analysis to obtain the following information.

•	 Detailed Information for each reaction including BioModel identifier number, reac-
tion id, reaction, kinetic law, and K type.

•	 Detailed information for each BioModel including BioModel identifier number, the 
number of reactions, and the distributions of ten K types per model.

Application programming interface (API) for users

Finally, users could access the results via APIs in the following perspectives.

•	 Query distributions of K type and R type.
•	 Query elements of (top) K type and R type.
•	 Plots for the distributions of K type and R type.

All the API details were documented and available at GitHub (https://​sunny​xu.​github.​io/​
SBMLK​ineti​cs/).

Uniqueness

The cross-platform Python-based tool, SBMLKinetics, constructed reaction classifica-
tions by inputting a collection of SBML models and outputting the probability of each 
2DK class (combinations of K type and R type). The kinetic analysis was based on 
python-libSBML [28], which supports SBML in levels 1–3 [29–31]. Therefore, SBMLKi-
netics could rely on any SBML database in levels 1–3.

Table 3  The determination of kinetics types (K types) by kinetics properties (K properties)

K properties ZERO UNDR UNMO BIDR BIMO MM MMCAT​ HILL FR

a. = 0 > 0 > 0 > 0 > 0 1 2 1 > 0

b. Yes Yes

c. Yes Yes

d. Yes No Yes No

e. Yes No

f. Yes No

g. Yes No

h. Yes Yes Yes Yes

https://sunnyxu.github.io/SBMLKinetics/
https://sunnyxu.github.io/SBMLKinetics/
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To compare with SBMLsqueezer 2 [21] which is the only tool for large-scale biochemi-
cal kinetic models, I summarized its major differences from SBMLKinetics in Table  4. 
SBMLsqueezer 2 uses a classification scheme, called de novo creation method, that “consid-
ers the annotation of all participating reactants, products, and regulators” [24]. It contains 
a connection to the kinetics database to recommend kinetic laws. In detail, its extraction 
of kinetic laws from the SABIO-RK [26] database is based on the similarity of annotations 
which cannot always yield results [21]. Briefly, SBMLsqueezer uses a creative method to 
classify kinetics that relies heavily on the information from annotations. However, annota-
tions are not always available in SBML files in model repositories such as BioModels.

The tool of SBMLKinetics made use of an annotation-independent classification scheme 
to deal with the kinetics analysis based on the SBML database, which could include all the 
current and future information from the SBML model database and experimental results. 
The categories in the de novo creation of SBMLsqueezer 2 are not exclusive to each other 
as the 2DK of SBMLKinetics. In comparison with the de novo creation, 2DK had covered 
all the categories of the de novo creation except the perspectives of reversible or irreversible 
reactions. Table 5 provided more details.

Results and validation
I considered a classification scheme to be useful if: (a) the classification categories pro-
vided useful insights, and (b) the scheme could classify a large fraction of items. The dis-
cussion in the “Methods” section supported (a) that 2DK classifications aligned well with 

Table 4  Comparison between SBMLKinetics and SBMLsqueezer 2

Major differences SBMLKinetics SBMLsqueezer 2

Interface Command line Various frameworks

Annotations Independent Dependent

Classification scheme 2DK De novo creation

Recommending kinetic laws Fully data-driven Mainly theory-driven

Reliability of database Any SBML database in levels 1–3 [29–31] SABIO-RK [26]

Table 5  Comparison between de novo creation in SBMLsqueezer 2 and 2DK in SBMLKinetics

De novo creation 2DK Specific descriptions if applicable

Non-enzyme reactions K type ZERO, UNDR, UNMO, BIDR, BIMO

Uni–uni enzyme reactions K type MM, MMCAT, HILL

Bi–uni enzyme reactions K type FR

Bi–bi enzyme reactions K type FR

Arbitrary enzyme reactions K type FR

Modulated reactions K type UNMO, BIMO, MM, MMCAT, HILL

Gene-regulatory processes R type or K type R = 0 or Hill/FR

Integer stoichiometry reactions R type

Zeroth reactant order reactions R type R = 0

Zeroth product order reactions R type P = 0

Irreversible reactions –

Reversible reactions –
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easily identifiable properties of reactions. Here, I addressed (b). In particular, I calculated 
the coverage of 2DK, namely the fraction of the kinetic laws of reactions in curated Bio-
Models that could be classified using 2DK, which turned out to be approximately 95%. 
In the following subsections, I presented more detailed information about K type and R 
type distributions.

Kinetics type distribution

There was possible kinetics like zeroth order, mass action, Michaelis–Menten, Hill kinet-
ics, and others. See the “Methods” section for details. Figure 2 characterized the kinet-
ics used in the BioModels Database. The classification of the ten types was exclusive. 
Therefore, the sum of all the probabilities was one. Figure 2 showed the distribution of 
K types from 931 curated BioModels with 30,592 reactions. The top K type was UNDR, 
and 4.37% reactions were not classified. The relatively small number of unclassified reac-
tions did suggest that the selected classification schemes were reasonable. The running 
time was 9.2 h. All computations reported were done using an Intel i7 9700 processor 
running at 3.00 GHz with 32 GB RAM on Windows 10.

Reaction type distribution

To classify the reaction types (R types), I considered the number of distinct reactants 
and products. R type was quantitatively represented by the number of distinct reactants 
(R = 0, 1, 2, > 2) and products (P = 0, 1, 2, > 2). The classification of all the reaction types 
was exclusive. The sum of all the probabilities was one, which meant that I covered all 
the curated BioModels from the perspective of R type. Figure 3 showed the distribution 
of R types from 931 curated BioModels with 30,592 reactions. The top R type was with a 
single reactant and a single product.
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Fig. 2  Kinetics type distribution. The blue bars investigated the kinetics type distribution of the average of all 
the reactions from all the models. The orange bars indicated the distribution of the average of reactions for 
each model. The trend for the two color bars was qualitatively similar. The error bars on the top of the orange 
bars represented the uncertainty among different models
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There are several models in the Database, and there are several reactions in each 
model. In Fig. 2, the blue bars investigated the K type distribution of the average of all 
the reactions from all the models. In detail, I counted the number of reactions in all the 
models as Rall-models . Then, I counted the percentage of reactions for each K type among 
all the reactions ( Rall-models ). The orange bars indicated the distribution of the average of 
reactions for each model. The error bars on the top of the orange bars represented the 

Fig. 3  Reaction type distribution. A investigated the reaction type distribution of the average of all the 
reactions from all the models. B indicated the distribution of the average of reactions for each model. The 
trend for the two subplots was qualitatively similar
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uncertainty among different models, which was relatively small. In detail, I first counted 
the number of reactions in each model as Rper-model . Then, I counted the percentage 
of reactions for each K type among the reactions in the certain model ( Rper-model ). The 
value of the distribution was the average of the percentage among all the models. The 
error bar was the standard error among all the models. For each K type distribution in 
Fig. 2, the trend for the two color bars was qualitatively similar with relatively small error 
bars. Therefore, the statistics were meaningful for the K type distributions. In Fig. 3, the 
trend for the two subplots was qualitatively similar which did not depend on a certain 
model. Therefore, the R type distribution was meaningful too.

Applications and discussion
2DK could provide a data-driven approach to recommending kinetic laws and providing 
an alert of unusual kinetic laws. I applied the 2DK method and the tool SBMLKinetics 
to the BioModels Database as an example of analyzing kinetics from different reaction 
networks, although the tool could be applied to any repository of SBML kinetics models. 
The examples could illustrate the potential applications of the method and how to use 
the tool. In the following subsections, I indicated how the variety of K type distribu-
tions depended on different R types. In addition, I compared two subsets of BioModels 
including signaling networks and metabolic networks.

Kinetics type distributions for different reaction types

I investigated the distribution of kinetics based on reaction types and found substan-
tial differences among them (Fig. 4). Focusing on the four types in the center with the 
most reactions involved (R = 1, P = 1; R = 2, P = 1; R = 1, P = 2; R = 2, P = 2), these 
four subplots were quite different from each other. The top K type with one reactant was 
UNDR significantly, while the distributions became more evenly with two reactants.

Figure 4 investigates the significant differences in K type distributions among R types. 
The blue text in the top left corner represented the percentage of reactions involved in 
the certain R type, which was more clearly illustrated in Fig. 3A. The orange text in the 
top right corner represented the percentage of reactions per model, which was more 
clearly indicated in Fig. 3B. Following the observation of the blue and orange texts, the 
most frequent six R types were (R = 1, P = 0; R = 0, P = 1; R = 1, P = 1; R = 2, P = 
1; R = 1, P = 2; R = 2, P = 2). In Fig. 4, the K type distributions were non-symmetric 
depending on different R types, which meant the effects from the number of distinct 
reactants and products were not equal. Based on Fig. 4, researchers could tell which R 
type had the highest or lowest K type. For example, the R type with R = 2, P = 1 had the 
highest BIDR among all the R types. While there was the highest NA from the R type 
with R > 2, P = 1. It was also interesting to compare per column (with the same number 
of reactants) or row (with the same number of products). For instance, the third row 
indicated that the FR became more frequent as the number of reactants increased with a 
constant number of the product (P = 2).

Comparison between different subsets of BioModels

This characterization considered the biology being studied as well as the nature of the 
reactions themselves. For instance, I compared the K type distributions for signaling 
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and metabolic networks in the BioModels Database as an example. For the details of 
selecting the two subsets, see the Availability of data and materials under the Decla-
rations section. I found substantial differences between the two types of networks in 
Fig. 5. Figure 5A showed the distribution of K types from 288 signaling networks with 
13,572 reactions. The top K type was UNDR, and 1.84% reactions were not classified. 
The running time was 6.9 h. Figure 5B showed the distribution of K types from 168 
metabolic networks with 6,904 reactions. The top K type was FR, and 9.85% reactions 
were not classified. The running time was 8.1 h. The K type distribution of signaling 
networks was similar to the whole curated BioModels in Fig. 2. However, the meta-
bolic networks were quite different with high frequencies of ZERO and FR.

The significant difference between signaling networks and metabolic networks 
could come from regulatory interactions. The high frequency of ZERO and FR 
from metabolic networks was the kinetics which could be very simple without any 
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Fig. 4  Kinetics type distribution for different reaction types. For each reaction type, represented by the 
number of distinct reactants and products (marked as the black text in each subplot), a kinetics type 
distribution was given. The blue text in the top left corner represented the percentage of reactions involved 
in a certain reaction type. The orange text in the top right corner represented the percentage of reactions 
per model. The blue bars investigated the kinetics type distribution of the average of all the reactions from all 
the models. The orange bars indicated the distribution of the average of reactions for each model. The trend 
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species inside the kinetic law or a very complicated kinetic law that had a fractional 
representation.

The different K type distributions among different data sets, if applied to synthetic ran-
dom reaction networks, could provide more representative kinetic laws for these stud-
ies. As an example to indicate how this method could contribute to generating synthetic 
reaction networks, I made use of the results from the BioModels Database as an exam-
ple. However, users could generate a distribution based on their database for further 
research. Based on the result of Fig. 2 from curated BioModels, users could select UNDR 
with the highest probability as the general mass action kinetics to model synthetic reac-
tion networks. Users could also follow its distribution to assign the probability for each 
type of kinetics while generating random synthetic reaction networks. In detail, users 
could generate reaction networks by assigning the probability of certain kinetics, i.e., 
ZERO, UNDR, UNMO, etc. Researchers commonly use simplified mass action kinet-
ics as a first trial while modeling synthetic reaction networks [1], therefore, users could 
choose a certain distribution referring to Fig.  4 if they had already known the R type 
information. For example, if there were one reactant and one product in the reaction, 
UNDR was the most common kinetics to choose. While BIDR was more likely to get 
chosen for the case with two reactants and one product. If users wanted to model syn-
thetic signaling networks instead of metabolic networks, they could refer to the distribu-
tions of Fig. 5A instead of Fig. 5B.

Conclusions
SBMLKinetics could analyze any data sets with SBML files as input and generate the 
analysis of kinetics. Here, I used the BioModels Database as an SBML database example 
to show the validation and potential applications of 2DK. However, users could use their 
experimental data or another model database to look for natural biological properties. 
See the Availability of data and materials under the Declarations section.
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Therefore, 2DK could provide a data-driven approach to recommending kinetic laws 
and providing an alert of unusual kinetic laws. This work had the potential application 
to computational studies based on random reaction networks so that more representa-
tive kinetic laws were used in these studies. As I had discussed the relationship between 
K type and R type, this tool could suggest the probabilities of K type for each R type. I 
could also observe how the K type distributions vary according to different R types. The 
methods could make suggestions to choose K type distributions depending on different 
models, for instance, signaling versus metabolic networks. Statistically, the probability 
distributions of K types could be a prior for kinetic law generations, as Bayesian infer-
ence has been discussed about kinetics before [32, 33].

What if the kinetic laws inside a model were significantly different from the distribu-
tions of the K type or R type calculated by the reference models? It could mean that the 
model had errors in its kinetics. At a minimum, the presence of such differences should 
be explored by the modeler. But such differences might also reflect substantially different 
biology or chemistry that was under study.

SBMLKinetics could be useful to pursue biological insights from updating models 
or experimental databases. For example, it is essential to compare the kinetics among 
different data sets, i.e., different organisms. The future potential work could be further 
applications of 2DK. Applications could include a complete recommending system for 
specific kinetic laws, detecting errors in kinetic laws, and seeking the biology insights of 
models based on such classifications.
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