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Abstract 

Background:  Finding drugs that can interact with a specific target to induce a desired 
therapeutic outcome is key deliverable in drug discovery for targeted treatment. There-
fore, both identifying new drug–target links, as well as delineating the type of drug 
interaction, are important in drug repurposing studies.

Results:  A computational drug repurposing approach was proposed to predict novel 
drug–target interactions (DTIs), as well as to predict the type of interaction induced. 
The methodology is based on mining a heterogeneous graph that integrates drug–
drug and protein–protein similarity networks, together with verified drug-disease and 
protein-disease associations. In order to extract appropriate features, the three-layer 
heterogeneous graph was mapped to low dimensional vectors using node embed-
ding principles. The DTI prediction problem was formulated as a multi-label, multi-class 
classification task, aiming to determine drug modes of action. DTIs were defined by 
concatenating pairs of drug and target vectors extracted from graph embedding, 
which were used as input to classification via gradient boosted trees, where a model 
is trained to predict the type of interaction. After validating the prediction ability of 
DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the 
degree and type of interaction. Finally, the model was applied to propose potential 
approved drugs to target cancer-specific biomarkers.

Conclusion:  DT2Vec+ showed promising results in predicting type of DTI, which was 
achieved via integrating and mapping triplet drug–target–disease association graphs 
into low-dimensional dense vectors. To our knowledge, this is the first approach that 
addresses prediction between drugs and targets across six interaction types.

Keywords:  Drug-target interaction, Drug discovery, Drug repurposing, Network 
embedding, Machine learning

Introduction
Drug discovery remains a time-consuming and costly process, with low success rate [1, 
2]. Early studies on drug effects through trial-and-error procedures have been super-
seded by advances in chemical genomic research allowing complex analyses and insight 
in mechanisms of drug actions [3]. Due to the intrinsic complexity of molecular struc-
tures, the vast majority of drugs tend to interact with multiple targets either in a unique 
disease pathway or across multiple pathways [4], referred to as polypharmacology [5]. 
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This observation has changed the drug design philosophy of “one gene, one drug, one 
disease” paradigm and fuelled consecutive work in drug discovery [5]. Reaping the 
effects of polypharmacological approaches to discover unknown off-targets for approved 
drugs and allow existing drugs to be applied for the treatment of another indication, 
drug repurposing has emerged as a promising route to drug discovery [6].

Drug repurposing can offer a shorter path in drug discovery, bypassing several steps in 
drug development [2, 7], and can improve understanding of drug mechanisms of action 
and drug side effects [8]. Drug repurposing strategies have shown successful applications 
in the past [1], with potential advantages and approved examples outlined in relevant 
reviews (for example see papers by Pushpakom et al. [9] and Ashburn et al. [10]). The 
first main step is finding possible drug–target interactions (DTIs) outside the original 
scope of a drug [9], which it is a crucial task in drug discovery. In addition to predict-
ing the presence of DTIs, it is also important to determine the type of interaction, as 
different types of interactions can have varying therapeutic outcomes by increasing or 
decreasing expression and reaction [11]. Drug development relies heavily upon targeting 
“druggable” genes, which include more than 4500 genes in the human genome [12, 13]. 
However, only a small number of these genes are targeted by approved drugs and many 
interactions between genomic and chemical spaces remain unknown [14]. Although 
some DTIs have been identified via serendipitous or rational observations, they are not 
efficient in practice due to the vast search space that needs to be covered in lab experi-
mentation [15]. These limitations strengthen the case for computational investigation of 
DTIs, as means of narrowing the search space and proposing the most promising cases 
on which to focus drug development.

Moreover, in pathological processes of complex diseases, multiple genes and pathways 
may be implicated [16, 17]. Targeting druggable genes (known as targeted therapy) is a 
key strategy in treating complex diseases, including cancer [18]. Recently, research on 
drug repurposing has shown that disease-specific gene biomarkers, as well as associa-
tions between drugs and diseases, can be used to accurately predict drugs for new dis-
eases through identifying novel off-target interactions [11, 19–21]. However, most of the 
existing studies focused on either drug-disease or drug–target interactions as two iso-
lated tasks and did not take account of the relationships between these [18]. Therefore, 
systematic integration of relationships represented in gene, disease, and drug networks 
can lead to more reliable new DTI prediction [2, 22]. Additionally, these developments 
can significantly reduce and refine experimental laboratory costs and processes, as well 
as the risk of failure in drug development [11].

In terms of methodological avenues to predicting DTIs, traditionally molecular dock-
ing and ligand-based methods have been used [23]. However, docking-based methods 
rely on the availability of protein 3D structural information, which can be challeng-
ing for large-scale prediction [7, 22], while ligand-based methods are not accurate in 
cases where only a small number of known binding ligands are available [24]. Recently, 
machine learning-based (ML) methods have attracted much interest in drug repurpos-
ing, due to their ability to analyze large numbers of DTIs efficiently by extracting latent 
association patterns [19, 25]. A wide variety of ML methods in drug repurposing have 
been proposed and summarized previously [26–28].
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Similarity-based methods rely on the key underlying assumption that similar drugs 
developed for similar diseases tend to target similar proteins and constitute the most 
widely applied strategy to integrate biological networks [7, 29]. These methods can inte-
grate different large-scale associations of genes, diseases, and drugs into a heterogene-
ous graph [30, 31], and then formulate DTI prediction as a link prediction problem in 
graph analysis [14, 18]. The “2vec” (short for “to vector”) methods form an important 
category of embedding methods (e.g. “graph2vec”, “node2vec” etc.) and have shown 
promising potential in representing input features in ML tasks by mapping graph struc-
tural properties to low dimensional vectors [32]. Recently, different embedding methods 
have been proposed for predicting new DTIs [3, 18, 25, 32, 33]. Although these methods 
achieved promising results, they can only predict binary interactions between drugs and 
target proteins and cannot identify the type of interaction (i.e. action type such as activa-
tion, expression, reaction, etc.) or the effect of a drug on its target (i.e. degree type such 
as increase/decrease in expression, etc.), which would be essential in the process of tar-
geted treatment and in understanding drug action for drug repurposing [11, 21].

In targeted therapy for cancer [34], the current therapeutic debacle is discovering and 
targeting cancer biomarkers. Carcinogenesis is the result of mutations in oncogenes 
and/or tumour suppressor genes [35]. Molecular targeted therapies that inhibit onco-
genes and/or activate tumour suppressor gene products can limit or stop tumour pro-
gression [36]. Despite efforts in pharmaceutical research to develop new drugs to target 
these genes, the implementation of discovered drugs in clinical practice has lagged far 
behind expectations. Therefore, drug repurposing should be considered as a promising 
strategy to address the unmet need for efficacious cancer therapies. One of the main 
advantages of this approach is the availability of toxicity, pharmacodynamic, pharma-
cokinetic profiles for these drugs have already been established [37].

In this work, we propose an ML-based computational pipeline for drug repurpos-
ing, DT2Vec+, that integrates the triplet associations of drug–target–disease data to a 
heterogeneous graph by incorporating drug–drug and protein–protein similarity net-
works, together with verified drug-disease and protein-disease associations [19, 38]. To 
extract features from the network, the three-layer heterogeneous graph was mapped to 
low dimensional vectors using node2vec. The DTI prediction problem was formulated 
as a multi-label, multi-class classification to determine drug modes of action, defined as 
“increases^expression”,”decreases^expression”,”decreases^reaction”,”increases^reaction”,”i
ncreases^activity”,”decreases^activity”. In previous work, Wang and Zeng [11] proposed 
an ML-based model using Boltzmann machines to predict three types of DTIs (binding, 
activation and inhibition), so to our knowledge DTVec+ is the first method investigat-
ing six drug–target interaction degrees and types. DTIs were defined by concatenating 
pairs of drug and target vectors extracted from graph embedding, which were used as 
input to gradient boosted trees (XGBoost) to train a model for interaction type predic-
tion. Cross-validation was used to evaluate performance and a comprehensive analysis 
of unknown DTIs was conducted to evaluate results in terms of the degree and type of 
interaction. Our results have also been appraised in terms of case studies for potential 
drugs that target important oncogenes and their medical potential is discussed.
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Materials and methods
Figure  1 presents an overview of the computational framework in DT2Vec+, which 
includes network integration, feature extraction, implementation of the proposed meth-
odology and evaluation using cross-validation. Categorical labels for degree and type of 
interaction were converted to binary vectors through one-hot encoding, and one-vs-rest 
strategies were used to train the model against each label. The average performance of all 
models was measured on external test-sets.

Dataset and similarity networks

Drug–target interactions (MDTI, Fig.  1: a-4), disease-protein (MDisP), and disease-drug 
(MDisD) associations (Fig.  1: a-2) were extracted from the Comparative Toxicogenom-
ics Database (CTD) [38]. Since only drug MeSHid was provided in the Comparative 
Toxicogenomics Database (CTD), we used DrugBank [39] and ChEMBL [40] datasets to 
find drug SMILES and phase which shows molecule connectivity and chirality, and trials 
testing stage of drug respectively. Additional file 1: Fig. S1 shows steps performed to col-
lect the dataset. Only approved phase-4 drugs with therapeutic evidence were selected 
for further repurposing analysis. Table 1 shows details of the selected dataset.

The CTD dataset categorised DTIs into different degrees and types of interaction 
based on published references as positive interactions. Selecting experimentally vali-
dated negative DTIs is an important point in developing an accurate model for DTI 

Fig. 1  DT2Vec+ pipeline. (a-1,2,3) integrating drug–drug (DDS) and protein–protein (PPS) similarity graphs 
with drug-disease (DDis) and disease-protein (DisP) association graph as input of embedding method to 
low dimensional vectors. (a-4) Drug–target interaction graph with different edge types. b Graph-embedding 
developed by node2vec to map nodes to vectors (in this figure, nodes are shown mapped to 2D-vector, 
x and y). c Known drug–target interactions (six types of interactions) were divided into 10% independent 
dataset (external testset) and 90% internal test and train (tenfold cross-validation). d Drug and protein vectors 
were concatenated and labelled using one-hot encoding and an XGBoost model was trained on each label 
using cross-validation. The best model over the tenfold cross-validation on the internal testset was selected 
and applied on the external testset. The XGBoost model in c, d was repeated 5 times and the average 
performance of internal and external testsets was reported
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prediction. Therefore, the ChEMBL dataset was used to select 348 validated nega-
tive DTIs labelled as ‘inactive’ [41]. The known DTIs named ‘development dataset’ 
which is used for developing the ML model, comprise 4086 interactions between 3502 
drug–target pairs assigned to six categories as labels, namely “increases^expression” 
(1392),”decreases^expression” (708),”decreases^reaction” (158),”increases^reaction” 
(1017),”increases^activity” (396), and”decreases^activity” (415). DTIs have one (​​2922), 
two (576), or three (4) types of interactions. Importantly, cases with more than one inter-
action type were ‘multi-label’ and among these DTIs that have two interaction degrees 
with the same action type (e.g. increases^expression and decreases^expression) were 
considered as ambiguous, and removed from further analysis. All possible drug–target 
pairs without known interactions were defined as an ‘experimental dataset’ and used for 
drug repurposing analysis.

To calculate protein–protein similarity (PPS), MPPS (Fig. 1: a-3) by sequence alignment 
[42], the sequences of target proteins were extracted from UniProt [43]. The parallelised 
version of protein similarity calculation was implemented using the “protr” package in 
R 3.3 [44]. Drug similarity measures were defined based on 166 structural fingerprints 
from canonical SMILES using MACCS [45]. Then, the drug–drug similarity (DDS) net-
work, MDDS (Fig. 1: a-1) was calculated based on the Tanimoto coefficient in the range 
of 0 to 1 [46] which was implemented using Open Babel [47] in Python 3.7.3 [48]. A 
triplet drug–target–disease association graph was generated by integrating four net-
works of MDisP, MDisD, MPPS, and MDDS by matching similar proteins and drugs on MPPS 
and MDisP and MDisP and MDDS respectively (Fig. 1a). The new graph consists of 692,177 
edges between 2011 nodes (1141 proteins, 280 approved drugs and 589 diseases).

Network‑based feature extraction using node2vec

Changing the format or shape of raw data to extract informative and discriminative 
features, known as feature extraction, is an important step for an effective ML model. 
Graph embedding methods can create powerful representation structural information 
by converting the topological properties of a heterogeneous network to a set of features 
in low-dimensional space [25, 49] that can be used as input to a predictive model. In this 
work, we used node2vec [50], a neural network-based node embedding method to auto-
matically map nodes in the drug–target–disease association graph into a 100-dimen-
sional vector which was reported as the best threshold to accurately preserve graph 
information [25, 49–51]. Recent machine learning research has shown that node2vec is a 

Table 1  Dataset details

Dataset Frequency

Protein 1141

Drug 280

Disease 589

Disease-protein interaction 1305

Disease-drug interaction 301

Drug–target (protein) interaction 4086

Drug–target pairs 3502
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superior method for node embedding compared to other existing state-of-the-art meth-
ods [51, 52]. In a recent study, node2vec demonstrated encouraging outcomes in predict-
ing drug–target interactions (DTIs) by converting drug, protein, disease, lncRNA and 
miRNA association networks into vectors [49, 50]. Figure 1b illustrates the embedding 
process, where drug (Vdrug), protein (Vprotein) and diseases (Vdisease) nodes are mapped to 
two-dimensional vectors, as an example. Node2vec was implemented in python 2 using 
publicly available GitHub source code (https://​github.​com/​aditya-​grover/​node2​vec) [50].

Data‑splitting, cross‑validation, and performance evaluation metrics

Various validation methods may be used for drug–target interaction prediction models 
[53]. Among these, cross-Validation (CV) methods are preferred due to their robustness 
in estimating how a model generalizes. Validation was conducted on internal and exter-
nal testing as follows. All known DTIs (MDTI) in the ‘development dataset’ were split 
into 80% training and 10% validation set to train and select the best model. The exter-
nal testset (i.e. the remaining 10% of the data) was used to evaluate the performance of 
the model and was blind to the process of developing the model. We applied a tenfold 
CV (Fig. 1c) which involved randomly splitting the data into 10 partitions and iteratively 
selecting each partition as the testing data and training the model on the remaining par-
titions and this procedure was repeated five times.

Choosing the right metrics for evaluating the performance of the model is important, 
but can be challenging depending on the underlying assumptions. The aim of the DTI 
prediction model is to report positive interactions among all unknown drug–target 
pairs, so that highly positive interactions can be validated experimentally, therefore a low 
false-positive rate is desirable. In this case, the Precision metric (true positive/(true posi-
tive + false positive)) can better reflect performance. However, in general a DTI predic-
tion model should have high precision without sacrificing other metrics. Therefore, to 
evaluate the performance of the model, average Precision, f1-score, and accuracy across 
all cross-validation sets on external test sets were calculated.

Multi‑label, multi‑class ML‑based link classification

DTIs were represented as a 200-dimensional vector based on a strategy of concat-
enating the drug and target embedding features [32] and labelled based on six types 
of interaction, in terms of affecting expression, reaction rate or binding affinity 
(increases^expression, decreases^expression, decreases^reaction, increases^reaction, 
increases^activity, and decreases^activity). The DTI prediction problem was formulated 
as a multi-label, multi-class link classification built on XGBoost [54]. XGBoost is a sto-
chastic gradient boosting algorithm which combines weak ensemble decision trees and 
was selected due to its high speed, accuracy, and ability to handle imbalanced datasets 
[12]. Moreover, by taking advantage of XGBoost in returning the prediction probability 
score, we were able to rank DTIs based on the confidence of the model. We used one-
hot encoding to create six binary vector labels and different models were trained based 
on one-vs-rest strategies for each label type (Fig.  1d). Training data was balanced by 
over-sampling via Synthetic Minority Over-sampling Technique (SMOTE) [55]. Over-
sampling is a technique used to balance sample numbers in imbalanced datasets by gen-
erating synthetic data for the minority class, and the number of samples increased in 

https://github.com/aditya-grover/node2vec
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each class depends on the specific implementation and the degree of imbalance [55]. 
Grid-search was performed on training-set samples within each cross-validation fold to 
find the best set of hyperparameters. The model was implemented in Python 3.7.3, using 
XGBoost 0.90 with hyperparameters of maximum tree depth = r, subsample ratio = 1, 
gamma = 1, minimum child weight = 2, early stopping = 20 and learning-gamma 
rate = 0.01.

Novel DTIs extraction and drug repurposing

After validating the performance of the proposed method using cross-validation, in 
order to detect novel DTIs a two-step prediction was applied to unknown interactions 
(named as ‘experimental dataset’). First, experimentally validated negative interactions 
and DT2Vec [56] were used to predict highly positive interactions with a probability 
score >  = 0.95%. DT2Vec is a machine learning pipeline that formulates the problem of 
deriving new drug–target interactions as binary (positive or negative) link prediction 
[56]. Then DT2Vec+ was applied on positive interactions to identify the six types of 
DTIs based on the triple association graph. A small number of the novel DTIs was ana-
lysed for target treatment. In this work, we also focus on several cancer gene biomark-
ers and establish a connection between our repurposing prediction results and potential 
role of the predicted DTI in cancer drug development.

Results
DT2Vec+ was developed based on concatenating drug–target pair vectors extracted 
from a heterogeneous association graph consisting of three node types of drug, protein 
and diseases, connected through four edge types (DDS, PPS, DDis, and DisP associa-
tions) as shown in Fig. 1a,b. Figure 2a shows Principal Component Analysis of mapped 
vectors associated with the three node types. DTIs were defined by concatenating each 
drug–target pair vector and labelling based on the type of interaction. Six models were 
trained for each type of DTI based on one-vs-rest strategy. Performance was assessed via 
tenfold cross-validation repeated five times as described previously, and average results 
for each label are shown in Table  2. When applied to external test sets, the proposed 

Fig. 2  Drugs, diseases, proteins and DTI visualisation. a PCA of drugs, diseases, and proteins vectors extracted 
from heterogeneous association graph. b PCA of DTIs mapped vectors by concatenating drug–target vectors
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method achieved average Accuracy, f1-score, and Precision of 77.09% (0.02), 74.39% 
(0.02), and 84.58% (0.01), respectively.

After validating the performance of DT2Vec+, in order to extract new interaction 
types in unknown DTIs (‘experimental dataset’), we performed a two-step prediction of 
binary (activation or inactive) and multi-class, multi-label (interaction type) classifica-
tion. Figure 2b shows the PCA of positive and negative DTIs defined based on embed-
ded vectors. In the first step, a model was trained to stratify positive and negative DTIs. 
The performance of the model on the external-test set is summarised in Table 2. This 
achieved higher than 90% on all metrics. Then, the model was applied to unknown DTIs 
to find positive interactions. Interactions with positive probability score of 95% or higher 
were selected as highly positive interactions which then were used as input of DTI2Vec+ 
to identify the type of interaction.

Figure  3 summarises labels of all drug–target pairs which take the form of either 
known (coloured red for positive and purple for negative) or predicted (coloured blue 
for positive and lilac for negative) interactions. DTIs with multiple labels were marked 
darker compared with the interactions with one label type. We predicted 18,736 and 
787 DTIs with two and three label types, respectively. The top 20 new predicted DTIs 
for each interaction type are shown in Fig.  4. However, there were some highly posi-
tive interactions that did not belong to any of our six labels or which had more than 
three labels (ambiguous/other interactions), which we excluded from further analysis. 
For example, Amikacin, Desogestrel, and Astemizole may interact with multiple pro-
teins and decrease the activity, expression, and reaction respectively while Carfilzomib, 
Hydralazine hydrochloride, and Butamben may increase the activity, expression, and 
reaction of multiple proteins. The novel high-scoring DTIs proposed by this method can 
narrow down the search space in a wet-laboratory experiment towards finding drugs 
able to target a specific protein.

Discussion
Drug repurposing holds promising potential in reducing failure risks and costs of devel-
oping new drugs. Finding appropriate drugs that can interact with a specific target is 
a pivotal step in drug repurposing strategies. However, due to the massive number of 
potential interactions, it is almost impossible to base drug discovery solely on wet-lab 
experiments without the help of computational methods and virtual screening which are 

Table 2  DT2Vec+ performance metrics (variance shown in parentheses)

Mean accuracy Mean f1_score Mean precision

increases^expression 73.35% (0.01) 73.34% (0.02) 73.27% (0.01)

decreases^expression 74.68% (0.01) 72.08% (0.02) 80.23% (0.01)

increases^reaction 77.2% (0.03) 71.84% (0.03) 91.78% (0.02)

decreases^reaction 77.8% (0.02) 76.68% (0.02) 80.79% (0.02)

increases^activity 75.63% (0.01) 70.26% (0.03) 89.95% (0.01)

decreases^activity 83.88% (0.02) 82.17% (0.03) 91.46% (0.01)

Total 77.09% (0.02) 74.39% (0.02) 84.58% (0.01)

Binary (active/inactive) 95.81% (0.02) 96% (0.02) 92.54% (0.03)
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able to reduce the number of potential interactions for downstream experimental valida-
tion. In this work, we report an ML model, DT2Vec+, to predict the type of drug–target 
interaction based on features extracted from a heterogeneous drug-disease-target graph 
using an embedding approach. The problem of drug–target link prediction was formu-
lated as multi-label, multi-class classification and the method was able to stratify DTIs 
into six different interaction types, with performance higher than 75% on average in test 
sets across validation metrics. Our pipeline was used as a tool for the identification of 
targeted treatments by selecting potentially targetable oncogenes and predicting some 
drug candidates that affect the activity of proteins associated with breast and other can-
cers, as discussed next.

BIRC5 (Survivin) has been reported to be an important biomarker for breast cancer 
[17, 57], with high expression of BIRC5 correlated with worse survival, and is a promis-
ing target for drug discovery and breast cancer therapeutics. BIRC5 encoding survivin 
is involved in carcinogenesis by influencing cell division and proliferation and inhibiting 
apoptosis [58]. Therefore, downregulation of BIRC5 can act as an inhibitor of tumour 
cell migration and invasion through the PI3K/Akt signaling pathway. In the CTD data-
set, there are seven known DTIs where the drugs can decrease expression of BIRC5, 

Fig. 3  Interaction type of all drug–target pairs. The heatmap shows the mapping of known DTI interactions 
(red and purple) and predicted interactions (blue and lilac). Each interaction can have multiple types of 
interactions, which were coloured darker
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Fig. 4  Top novel drug–target interactions. Top 20 DTIs predicted using DT2Vec++ for each type of 
interaction coloured based on the type of interaction
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namely Digitoxin (CHEMBL254219), Phenylbutanoic acid (CHEMBL1469), Bexarotene 
(CHEMBL1023), Ciclopirox (CHEMBL1413), Danthron (CHEMBL53418), Etodolac 
(CHEMBL622), Ethacrynic acid (CHEMBL456). Based on DT2Vec+ prediction 
results, Aminolevulinic acid (CHEMBL601), Cladribine (CHEMBL1619), Fumaric acid 
(CHEMBL503160), and Bosentan (CHEMBL957) were among the top drugs predicted 
to decrease the expression of BIRC5. Aminolevulinic acid and Cladribine have been 
investigated for cancer treatment in several clinical trials. Recently, a study investigating 
the relationship between survivin expression and melanoma after using Aminolevulinic 
acid treatment showed inhibition of melanoma growth in mice by downregulating sur-
vivin expression, which prolonged the survival of melanoma-bearing mice [59]. Ami-
nolevulinic acid photodynamic therapy also induced apoptosis in cervical cancer cells 
in vitro and in vivo by decreasing survivin expression [60]. Cladribine also inhibited cell 
proliferation and induced apoptosis in multiple myeloma cells in vitro [61]. Cladribine 
also inhibited cell proliferation and induces apoptosis in multiple myeloma cells in vitro 
[62, 63]. Cladribine has been shown to increase progression-free survival and median 
time to second treatment in chronic lymphocytic leukaemia patients [61]. Finally, Bosen-
tan has been reported to inhibit breast carcinoma metastasis to bone tissue in a skinfold 
chamber model [64].

BCL-2 is a key protein regulator of apoptosis and is overexpressed in many cancer 
types [65]. BCL-2 has been reported to be frequently expressed in breast cancer [66] 
and can reduce the effectiveness of chemotherapy [67]. There is an inverse correlation 
between the expression of BCL-2 and mutated p53, an important tumour suppressor 
gene, which in turn leads to increased cell proliferation rates and poor outcomes [66]. 
Targeted therapy against BCL-2 may improve the effects of chemotherapy in breast 
cancer patients [66]. Clioquinol (CHEMBL497), Adenosine (CHEMBL477), Diacerein 
(CHEMBL41286), Azelaic Acid (CHEMBL1238), Dequalinium (CHEMBL333826), 
Azelastine (CHEMBL639) and Bazedoxifene (CHEMBL46740) are DT2Vec+ predicted 
drugs that might be able to decrease the expression of BCL-2. Research showed that 
Clioquinol reduced the viability of eight different human cancer cell lines by inducing 
cell death through apoptotic pathways [68]. It also induced autophagy in leukaemia and 
multiple myeloma cell lines. Downregulated expression of BCL-2 can inhibit the interac-
tion between Beclin 1 and BCL-2 and stimulate autophagy [69]. Adenosine induces cell 
cycle arrest and apoptosis in ovarian cancer cell lines by down-regulating BCL-2 [70]. 
Adenosine also induced apoptosis in different cancer types such as breast [71], leukae-
mia [72], gastric [73], colon [74], melanoma [75], and head and neck cancer cell lines, 
and suppressed BCL-2 expression [75].

Diacerein is another approved drug that has been reported to exert anti-proliferative 
effects on breast cancer cell lines, induced apoptosis and decreased the expression of 
BCL-2 [76]. Azelaic acid has cytotoxic action on many tumour cells and antileukemic 
activity in different types of acute myeloid leukaemia cells. It increases Notch expres-
sion which leads to the loss of BCL-2 expression [77]. Recently, Dequalinium showed 
promising results in vitro and in vivo, inhibiting the growth and proliferation of human 
glioma cells by decreasing BCL-2 expression [78]. Dequalinium injection into tumour-
bearing mice inhibited the growth of human colon cancer cells [79]. The drug was able 
to prolong the survival of mice with bladder carcinoma cells [80], and inhibit the growth, 



Page 12 of 17Amiri Souri et al. BMC Bioinformatics          (2023) 24:202 

migration and invasion of melanoma cells in vitro [81]. Dequalinium also reduced acute 
myeloid leukaemia cell activity, proliferation, induced apoptosis and increased survival 
of rats with ovarian cancer [82]. In vitro and in vivo analyses showed that Azelastine 
could decrease levels of BCL-2 and inhibit colorectal cancer cell proliferation [83]. Baze-
doxifene has been used in clinical trials for treating pancreatic and breast cancer. Baze-
doxifene is now being repositioned as a new strategy for treating multiple cancer types 
(such as breast cancer, pancreatic cancer, colon cancer, etc.) by downregulating anti-
apoptotic proteins such as BCL-2 [84].

MYC is involved broadly in many cancer types and its expression was estimated to 
be deregulated in up to 70% of human cancers [85]. High levels of MYC were linked to 
aggressive prostate cancer and triple-negative breast cancer. Two FDA approved drugs, 
Dihydroergotamine (CHEMBL1732) and Indinavir Sulfate (CHEMBL1735), which are 
predicted by the DT2Vec+, might be able to target MYC and decrease its expression. 
In a mouse xenograph model, Dihydroergotamine could suppress the growth of MYC-
dependent human acute myeloid leukaemia, and in this study, MYC was the most statis-
tically repressed gene by Dihydroergotamine [86]. Indinavir blocked tumour formation 
in an angiogenic tumour model, and this inhibition was associated with inhibition of 
cell invasion but not cell proliferation or cell survival. Indinavir sulfate was also effective 
at inhibiting the growth of various human tumour xenografts, including lung, breast, 
hepatocarcinoma and colon adenocarcinoma, and human tumours of haematopoietic 
cell origin. The drug effectively blocked the invasion of a basement membrane by lung, 
breast, colon adenocarcinoma [87].

Finally, STAT3 is constitutively activated in more than 40% of breast cancers and is 
thought to promote breast tumour progression [88]. Therefore, drugs that can reduce 
the activity of STAT3 have been attracting more attention. Using the DT2Vec+ meth-
odology, four drugs were proposed to target STAT3, namely, Amsacrine (CHEMBL43), 
Phenylbutanoic Acid (CHEMBL1469), Doxazosin (CHEMBL707) and Capecitabine 
(CHEMBL1773). Amsacrine is an anti-cancer drug that showed significant activity 
against human acute leukaemia and it is currently approved for treatment [7]. Phenylbu-
tanoic Acid has been reported to be able to inhibit cell proliferation by inducing apop-
tosis, cell cycle arrest, and senescence in colon, gastric and breast cancers. However, 
clinical trials with Phenylbutanoic acid in solid tumours showed no obvious benefit [89]. 
Doxazosin suppressed the growth of ovarian carcinoma cells and additively enhanced 
apoptotic cell death by IFN treatment and its effects were potentiated by reducing 
phosphorylation of STAT3 [90]. Doxazosin also could significantly inhibit prostate and 
bladder cancer cell growth in vitro [91, 92]. Capecitabine is a currently approved chemo-
therapy drug, and a meta-analysis of clinical trials of patients with triple-negative breast 
cancer treated with capecitabine in combination with neoadjuvant or adjuvant chemo-
therapy demonstrated improved survival [93]. Studies in triple-negative breast cancer 
patient-derived xenograft (PDX) models also have shown Capecitabine as an efficient 
chemotherapy agent [94].
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Conclusion
In silico prediction of DTIs is an efficient approach for drug repurposing. Various 
methods have been proposed to predict the interactions between drugs and tar-
gets in a binary format (active or inactive), but determining drug mode of action 
has remained elusive. Importantly, deciphering the type of interaction in targeted 
treatment is an important step in developing an effective method. In this work, we 
reported DT2Vec+, which—to our knowledge—is the first ML-based framework to 
predict six types of DTIs, by integrating associations between drugs, diseases, and 
proteins into a heterogeneous graph consisting of DDS, PPS, DDis, and DisP edges. 
The triple association graph was mapped to low dimensional vectors using graph 
embedding, and DTIs were defined based on concatenating drug–target vectors. 
We show that this pipeline achieved high performance on external test sets and was 
applied to unknown DTIs to predict the type of interaction. DT2Vec+ can offer a 
means to improve and support precision targeted treatments by selecting the drug 
candidates that can bind to specific targets in desired action modes. Predicting poten-
tial drugs provides an alternative approach to narrow down the search space that can 
be investigated in follow-up laboratory experiments. This approach can significantly 
reduce wet-laboratory work and experimental cost, but most importantly it can refine 
downstream experimental validation.

We note that the benefits conferred by our methodology stem from its capability to 
incorporate heterogeneous chemical and genomic data into a unified space, in addi-
tion to the fact that machine learning algorithms can handle numerical input features 
well. Predictions generated by our method can be used for virtual screening of novel 
DTIs at large scale. Although we have obtained promising results in predicting differ-
ent types of DTIs using the drug–target–disease association network, this first report 
provides the foundations for the model reported here to be expanded by integrating 
more biological information into the association network.
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