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Abstract 

Background: Gene expression profiling is a widely adopted method in areas like drug 
development or functional gene analysis. Microarray data of gene expression experi-
ments is still commonly used and widely available for retrospective analyses. However, 
due to to changes of the underlying technologies data sets from different technologies 
are often difficult to compare and thus a multitude of already available data becomes 
difficult to use. We present a web application that abstracts away mathematical and 
programmatical details in order to enable a convenient and customizable analysis of 
microarray data for large-scale reproducibility studies. In addition, the web application 
provides a feature that allows easy access to large microarray repositories.

Results: Our web application consists of three basic steps which are necessary for a 
differential gene expression analysis as well as Gene Ontology (GO) enrichment analy-
sis and the comparison of multiple analysis results. Genealyzer can handle Affymetrix 
data as well as one-channel and two-channel Agilent data. All steps are visualized 
with meaningful plots. The application offers flexible analysis while being intuitively 
operable.

Conclusions: Our web application provides a unified platform for analysing microar-
ray data, while allowing users to compare the results of different technologies and 
organisms. Beyond reproducibility, this also offers many possibilities for gaining further 
insights from existing study data, especially since data from different technologies or 
organisms can also be compared. The web application can be accessed via this URL: 
https:// genea lyzer. item. fraun hofer. de/. Login credentials can be found at the end.
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Introduction
Gene expression analysis is used to investigate biological processes in a wide variety of 
circumstances, such as the identification of molecules in metabolism, in tumor research, 
or the search for target genes in drug development. The rise of different technologies 
such RNA-seq and popular platforms like Agilent and Affymetrix gave scientist a variety 
of different methods to study differential gene expressions. [1–3]. However, analyzing 
the increasing data volumes has become challenging in recent years. Studies as shown by 
Vescovo et al. demonstrate that different platforms and techniques can yield differences 
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in results [4]. In addition, the cost reduction of sequencing was reduced over the years 
which in turn increased the amount of data produced. Analyzing the high abundance of 
data often requires expert knowledge and programming skills, which in return generates 
the need for bioinformatics analysis tools that can alleviate some of the challenges pre-
sented [5]. The scientific community implemented guidelines to orient their analysis on 
e.g. the MaEndToEnd workflow [6]. Although these guidelines help to address best prac-
tices, they do not fully alleviate the programming challenges since adaptation of the pub-
lished code to the individual data is still required. Since available data is generated with 
different technologies and processed by different software (e.g. limma [7]), the compari-
son in order to integrate the results of several Differential Gene Expression (DGE) analy-
ses is hence not straightforward [8].

Besides the differences in technologies, different platforms also use their own identi-
fiers for genes and thus increasing the difficulty to compare results. By using old results 
and comparing them to newer ones re-doing an experiment can be avoided. Further-
more, some studies use surrogate models to investigate an organism that has not be suf-
ficiently annotated. Comparing results of closely related organisms, can help to generate 
new insights. In addition, using surrogate models and already published data could also 
be used for comparing DEGs between e.g. human and mice to investigate the usefulness 
of a possible animal experiment beforehand.

This paper presents a web application that provides a user-oriented web service for 
the basic steps of DGE analyses, comparison of multiple DGE analyses, and GO based 
enrichment analyses.

Background
The popular use of DGE analysis sparked the creation of many different tools. However, 
many of the tools present additional hurdles for scientist that are missing programming 
backgrounds.

Tools like NetworkAnalyst and miRNet 2.0 [9] provide a web application for micro-
RNA network analysis that gives users access to their platform without the need for 
installing and maintaining the software. However, in order to use miRNet 2.0 users are 
required to upload their data in a specific file format with a defined structure that is dif-
ferent from data provided by gene expression data platforms like the Gene Expression 
Omnibus (GEO) [10, 11]. This forces users to convert their data programmatically.

Other tools are commonly not provided as a web application which in return has to 
be installed by the user. Installing bioinformatics tools often require either a specific 
platform e.g. servers or a specific operation system (Linux). Examples are: Chipster [12] 
provides over 500 analysis tools for different types of gene expression data but requires 
complex installation on servers, if no user account is purchased. ArrayTrack [13] offers 
a toolbox and has the additional feature to host and manage gene expression data, but 
requires a Windows operating system with a Java environment. GEPAT [14] also pro-
vides gene expression analysis with the added benefits of biological interpretation. 
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However, it is recommended by GEPAT to carry out the installation of the necessary 
libraries and the tools by a system administrator.1

Lastly, tools like Gecko [15], MMIA [16] and GEPAS [17] have interesting approaches, 
like sharing results with users (Gecko), combining analysis of miRNA and mRNA 
(MMIA) or clustering approaches (GEPAS). However, these tools were not updated for 
a considerable time or are not available anymore and could thus lead to problems of 
reproducibility and robustness.

For some users it might be more intuitive to use to official tools provided by the plat-
forms that either generate their data or host them. The Transcriptome Analysis Console 
(TAC) software [18] is provided by Affymetrix Inc., the manufacturing company of the 
Affymetrix microarray chips. A variety of analyses are possible with this, but the instal-
lation on the client is mandatory. Another disadvantage is that the analysis of Agilent 
data is not possible at all. GEO2R [10] offers an option for gene expression analysis avail-
able on the website of the GEO database. Local files cannot be uploaded and only one 
biological group per sample can be specified, which limits the possible analyses. In addi-
tion, the analysis of two-channel Agilent data is not possible.

The tools presented thus far, mostly focus on analyzing data of a single gene expression 
experiment. The comparison of multiple analyses is only possible to a limited extent. 
However, the tools that are most comparable to the goals of our approach are TAC, 
GEO2R and NetworkAnalyst. In the chapter chapter:Requirements, we compare the fea-
tures between our and these three applications again in more detail.

This article aims to address these limitations by presenting a web application that pro-
vides an end-user oriented web interface for the basic steps of DGE analyses, consisting 
of data upload, preprocessing which includes quality control and the specification and 
execution of actual DGE analyses. Additionally, the comparison of multiple DGE analy-
ses and GO based enrichment analyses can be realized in the application.

Our main contributions in this paper are the following:

• We present the technical features of our DGE analysis oriented to the MaEndToEnd 
workflow as a web application

• We provide an in-depth discussion of two use cases (Inflammatory Bowel Disease 
and Rhino Virus)

• We provide a comparison of our tool to existing tools for gene expression analysis

Methods
In this section we discuss the main technical components of our Genealyzer Web appli-
cation. We present a range of available features including the following: (1) Uploading 
data is enabled from the local storage and directly from the GEO repository [10, 11]; (2) 
Depending on the microarray chip used, a preprocessing algorithm can be selected; (3) 
A Sample and Data Relationship Format (SDRF) file [19] for defining the experimen-
tal factors can either be uploaded or generated inside the application; (4) The applica-
tion allows a variety of customized visualizations for quality control and analysis results; 

1 https:// gepat. sourc eforge. net/ insta llati on. htm

https://gepat.sourceforge.net/installation.htm
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(5) Furthermore, after quality control the filtering of outlier samples is possible. Further 
details on the implementation from a software engineering perspective are reported in 
[20].

User interface and architecture

The application was implemented using the programming language R (version 4.1.2). R 
provides an environment for the analysis and graphical visualization of data. R was cho-
sen for the implementation because the open-source software project Bioconductor [21] 
provides many R packages for the analysis of gene expression data. Although these could 
be used in other programming languages, the application’s complexity can be reduced by 
limiting it to one programming language. In order to implement the web application, the 
R package shiny (version 1.7.1) [22] was used, which provides a framework for building 
interactive web apps.

User interaction without programming skills is enabled by an appropriate interface 
design. To increase usability and learnability, one tab was created for each main step of 
the pipeline visualized in Fig. 1. The tabs have a consistent structure: A sidebar allows 
defining the main input parameters of the respective step, such as selecting a preprocess-
ing algorithm or the definition of analyses. In the main panel, results, plots, and options 
for detailed analyses are displayed. For steps involving choices, default values, which are 
often found in literature, are specified. An example of this is the selection of the RMA 
algorithm for the preprocessing of Affymetrix data.

Another non-functional requirement was the reproducibility of the analysis steps. 
For fulfilling this, a logging file can be downloaded. This file tracks the essential analysis 
steps, especially the parameters defined by the user.

The main steps of the application pipeline are visualized in Fig. 1. Many steps of the 
pipeline are derived from the MaEndToEnd Workflow presented by Klaus and Rei-
senauer [6]. First, the user can upload the raw data and an SDRF file for each source. 

Fig. 1 Pipeline of the web application
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Alternatively, the latter file can also be defined via the user interface (UI) within the 
application. In the preprocessing step, the user can choose an all-in-one preprocessing 
algorithm for Affymetrix data or a background correction and a normalization algo-
rithm for Agilent data. Moreover, the quality control of the raw and the preprocessed 
data can be performed. Detected outlier samples, as well as lowly expressed genes, can 
be filtered. Next, the user can define an individual number of flexible DGE analyses and 
set the significance thresholds. The performed DGE analyses of data produced with the 
same microarray chip can be compared via different visualizations and by calculating the 
Jaccard index on the sets of expressed genes. In addition, GO-based enrichment anal-
yses can be performed. For all steps, the generated plots and the result tables can be 
downloaded.

Data upload

Our web application allows the upload of the raw files both, from the local storage and 
directly from the GEO platform using the GEOquery package (version 2.62.2) [23]. To 
use the files from the GEO repository, the GEO series accession number (GSE) must be 
entered, which identifies the series. It is possible to filter the samples from the defined 
series since not all samples may be of interest. The user can define as many sources 
as desired. After uploading, the contents of the SDRF files and the metadata of the 
sources can be verified and modified if necessary. Furthermore, the SDRF file can be 
downloaded.

Our tool supports the analysis of Affymetrix as well as one- and two-channel Agilent 
microarray data.

Preprocessing

Depending on the microarray technology, the data must be loaded differently. First, we 
consider Affymetrix data. The raw data is in CEL file format, of which three different ver-
sions exist. These differ in the structure of the contents and the data format. The format 
depends on the type of microarray chip used in the experiment [24]. The data of each 
different microarray chip is stored in a subclass of the ExpressionSet class defined in the 
Biobase package (version 2.54.0) [25]. For reading in the data, the affy package (version 
1.72.0) [26] is preferred over the oligo package (version 1.58.0) [27]. Yet, because new 
versions of CEL files, like Gene ST arrays, cannot be processed with the affy package, the 
oligo package is used for reading the data of those chips.

Next, we present the data upload of Agilent data, which is in TXT file format. Here, 
single-channel experiment designs and two-color experiments have to be distinguished. 
The data is read in using the limma package (version 3.50.1) [28] in both cases. If the 
considered experiment is in single-channel design, the data is stored as an object of the 
EListRaw class. Otherwise, it is stored as RGList.

After the data upload, the user can select between different preprocessing algorithms, 
plots for the quality control and filter options. First, the uploaded raw data can be fil-
tered by the microarray chip. One source may contain files of different chips, but not 
necessarily all chips should be analyzed.

We will again first discuss the procedure for Affymetrix data. Depending on the pack-
age used for reading the data as an ExpressionSet object, different all-in-one algorithms 
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for the steps background correction, normalization, and summarization are available. If 
the affy package was used, the options are the RMA algorithm [29], the GC-RMA algo-
rithm [30], and the PLIER algorithm [31]. Otherwise, only the RMA algorithm can be 
selected since the other ones are not provided by the oligo package.

There are no all-in-one algorithms for preprocessing Agilent data. Hence, the user 
can select one algorithm for background correction and one for normalization. For the 
background correction, either no algorithm or the algorithms half, minimum, edwards 
and normal/exponential distribution can be selected for both kind of experiments. 
One-channel experiment designs can be normalized using the scale, quantile or cyclic 
loess algorithm. The algorithms median, loess, print-tip loess and robust spline can be 
selected for normalize two-color experiments. More information about the different 
preprocessing algorithms can be found in the limma user guide [32].

The user can visualize the data in various ways for quality control. For each chip type, 
boxplots and density plots can be generated for the raw data and for the preprocessed 
data. Moreover, the user can generate clustered heatmaps of the preprocessed data. For 
this, the user can select which experimental factors should be included in the annota-
tion of the columns. This allows the detection of differences in signal intensity between 
experimental groups. Furthermore, the user has the possibility to create Principal Com-
ponent Analysis (PCA) plots of the preprocessed data. The user can choose up to two 
factors whose groups of samples are visualized in the plot. Of the selected factors, the 
factor values for which the corresponding samples are shown can also be filtered. This 
allows the visualization of batch effects.

Based on the quality control plots presented, outlier samples can be removed for fur-
ther analysis. Additionally, lowly expressed genes can be filtered. For this purpose, a 
threshold can be set for each chip individually using a histogram of the median intensi-
ties. Genes with a lower intensity are filtered out.

We used the ggiraph package (version 0.8.3) [33] for implementing the boxplots and 
the PCA plots. This package allows the creation of interactive ggplot2 (version 3.3.6) [34] 
plots. The plotly package (version 4.10.0) [35] provides a similar functionality and was 
used for the density plots. We implemented the heatmaps using the heatmaply package 
(version 1.4.0) [36], which allows for interactive heatmaps.

DGE analysis

The web application allows for the definition of any number of DGE analyses. For this 
purpose, the user can first define the name of the analysis to simplify the analysis’ recog-
nition. A contrast of an experimental factor between which the DEGs should be identi-
fied is defined. If an interaction analysis should be performed, the user selects a second 
factor and defines the contrast for this as well. In addition, the user can optionally select 
the value of a third factor, according to which the samples will be grouped. Moreover, 
blocking factors may be selected. Blocking factors are variables that are expected to have 
an impact on the result but are not of interest. Thus, differences in expression between 
the corresponding factor values will be intercepted [6].

A histogram of the distribution of the p-values is plotted for each analysis, with fre-
quencies expected to be very high, near zero and low toward one. The user can verify 
this step. If the histogram does not meet the expectations, the workflow ends at this 
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point. Possible faults could be incorrect data, incorrect preprocessing, or improperly 
defined analyses.

If the histogram meets the expectations, the next step is to set the significance thresh-
olds. These define ranges of statistical values calculated during the analysis that identify 
a gene as differentially expressed. The user can choose whether the thresholds should 
be defined for all analyses or individually for each analysis. Either the p-value or the 
false discovery rate [37] can be selected as the indicator for the strength of the evidence 
against the null hypothesis. The null hypothesis in a DGE analysis is that there is no dif-
ferential expression. Also, the user can define a cutoff value for the absolute log2 fold 
change, which is applied for both positive and negative fold changes.

Based on the specified values, a volcano plot is generated where user-defined input 
data of up- and down-regulated genes are colored. The user verifies the results and can 
adjust the threshold values again if necessary. A table of DEGs with various statistical 
values is also shown, which can be downloaded if required.

For the implementation of the linear models and the DGE analyses, the limma package 
(version 3.50.1) provided by Bioconductor was used.

GO enrichment analysis

Next, the web application allows GO-based enrichment analyses. One DGE analysis 
can be assessed according to the three GO top ontologies (biological processes, cellular 
components, and molecular functions [38–40]), or by different algorithms (e.g. classis, 
elim, weight01, see [41]). The fisher test statistic is used as test statistic for the analysis.

Once all GO analyses are defined, the density of the median intensities of the DEG 
(foreground genes), all genes and calculated background genes are plotted. The latter 
is calculated automatically and should show a similar expression behavior as the fore-
ground genes. The user can choose from a multidensity plot, whether a calculated set of 
genes with a similar behaviour to the DEGs or whether all genes available through the 
chip should be used as background for the analysis. A table containing the significant 
GO categories can be downloaded if required. Additionally, the significant categories 
can optionally be visualized in the context of the GO hierarchy. This graph is created as a 
PDF file and downloaded automatically.

We used the R package geneplotter (version 1.72.0) [42] for generating the multiden-
sity plot and the topGO package (version 2.46.0) [43] for performing the actual GO 
analysis.

DEG/GO comparison

The last main step of the pipeline is the comparison of the resulting DEG’s and GO 
Terms. This step can also be done independently of the previous steps. The user can per-
form as many comparisons as necessary. DGE analyses can only be compared with each 
other, the same applies to GO analyses. When defining a new comparison, a name can 
be specified first. Then the user determines whether DGE or GO analyses are to be com-
pared. Analyses carried out during the current session and analysis results uploaded as 
CSV files can be compared with each other. Theoretically, an unlimited number of analy-
ses can be compared, but it should be noted that the plots become confusing if there is 
too much content. In the next step, the user checks whether the correct columns for ID, 
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name, p-value and fold change are selected for all analyses. For GO analyses, the fold 
change column is not required.

After all desired comparisons have been defined, the user can select individually for 
each comparison which plots or ratios are to be calculated:

• For DGE analyses

– Heatmap and scatterplot of log 2 fold change for genes with smallest adjusted 
p-value

– Venn diagram of up-regulated, down-regulated and all DEG (up- and down-reg-
ulated)

– Table of up-regulated, down-regulated and all DEG in the intersection
– Jaccard-Index

• For GO analyses

– Scatterplot of p-value for categories with smallest adjusted p-value
– Venn diagram of categories
– Table of categories in intersection
– Jaccard index

In Venn diagrams, a maximum of five analyses can be visualised. If more than five analy-
ses are specified, the user can select up to five analyses and update the diagram as often 
as desired. The Jaccard index can only be calculated for two analyses at a time. We used 
the packages VennDiagram (version 1.7.3) [44], ggplot2 (version 3.3.6) [34], ggiraph 
(version 0.8.3) [33] and pheatmap (version 1.0.12) [45] for the implementation of the 
graphics.

Results
This chapter presents two case studies that demonstrate the potential of our web appli-
cation to facilitate comparative analysis of gene expression datasets. The first case study 
compares the differences in genome-wide expression between two common forms of 
inflammatory bowel disease–Ulcerative colitis (UC) and Crohn’s disease (CD). The sec-
ond case study compares human and mouse gene expression data of samples challenged 
with the rhinovirus.

Case study I—inflammatory bowel disease

As a case study we present here a genome-wide pathway analysis using gene expression 
data of colonic mucosa in patients with inflammatory bowel disease. The data of this 
study is also used in the presentation of the MaEndToEnd Workflow [6], which offers 
a guideline for a step-by-step DGE analysis using Bioconductor R packages. The study 
aims to explore the differences in genome-wide expression between UC and CD.

We downloaded the data and the SDRF file from the ArrayExpress platform and then 
uploaded it in the web application from our local storage. Then, we preprocessed the 
data using the all-in-one algorithm RMA and we verify the quality of the raw and the 
prepocessed data using the plots described in chapter Preprocessing. As an example, the 
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boxplot and PCA plot of the preprocessed data is shown in Fig.  2a and 2b. Based on 
these, no outlier samples are detected. For filtering lowly expressed genes we set a mini-
mum threshold of a median intensity of 4, similar to [6].

We define two DGE analyses, where the expression between inflamed and non-inflamed 
tissues is to be compared. Because we aim to investigate the differences between UC and 
CD, we group the samples according to these diseases. As blocking factor, we set the factor 
‘individual’, meaning that differences in the expression that are based on different human 
donors should be excluded. Klaus and Reisenauer chose a p-value cutoff of 0.001 for both 
analyses, so we define the same threshold to keep comparability. We find 977 DEG for UC 
and 620 DEG for CD. The volcano plot visualizing the DEG of the CD analysis is shown in 

Fig. 2 Results of case study I. a Boxplot of the preprocessed data for quality control shows that the log 
intensities are overall evenly distributed. b PCA plot helps to identify outlier samples and visualizes different 
biological groups based on the factor values via color and symbol codes. c Volcano plot shows the result of 
the UC DGE analysis, where up- and down-regulated genes are highlighted. d Venn diagram of all DEG shows 
the intersection between the DGE analyses to compare
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Fig. 2c. Hence, we identified slightly more DEG than presented by Klaus and Reisenauer, 
who found 944 DEG for UC and 577 DEG for CD. The differences may be based on differ-
ences on rounding. Comparing both analyses, we find 68 up-regulated, 103 down-regulated 
and accordingly 171 DEG in total in the intersection of both. Figure 2d shows the Venn 
diagramm of all DEG for visualization of the comparisons. This leads to a Jaccard-Index of 
0.0882 for the set of up-regulated, 0.1573 for the set of down-regulated and 0.1199 for all 
DEGs.

Next, we conduct GO enrichment analyses for both DGE analyses. We chose ‘Biological 
process’ as top ontology and the ‘elim’ algorithm. In both analyses we choose the calculated 
set of genes as background. When comparing both GO analyses in the next step, we find 19 
GO categories in both results, meaning that these categories are in the top 100 significant 
categories for both DGE analyses.

Case study II—rhinovirus

In our second case study, we want to illustrate the advantages of the comparison feature. 
We compare human data (GSE13 7905) from the Affymetrix chip HG-U13_Plus_2 with 
mouse data (GSE12 6832) produced with the Affymetrix chip MTA-1_0. After quality con-
trol, we first performed the DGE analyses, comparing samples challenged with rhinovirus 
for 24 h with control samples for the human data set. For the mouse data, we compared 
infection and control samples with media control samples. Thus, for both organisms, we 
analyzed the DEG between healthy Precision Cut Lung Slices (PCLS) and PCLS infected 
with rhinovirus. With these results, we performed GO analyses for the biological function 
and compared the results in the comparison tab. One interesting finding is the the apper-
ance of NF-kappaB (nuclear factor k-light-chain-enhancer of activated B cells) and the 
tumor necrosis factor as up regulated genes. Both were shown by Laza-Stanca et. al [46] to 
be linked with the rhinovirus.

Figure 3 visualizises the comparison results. First, the Venn diagram shows that around 
25% of the significant categories are significant for both analyses. The scatterplot shows the 
10 most significant GO categories of both, the human and mouse data. Missing dots mean, 
that the respective category is not in the most 100 significant categories of the analysis, so 
for example the category GO:0045953 (negative regulation of natural killer cell mediated 
cytotoxicity) is only significant for human, but not for mouse. The colors indicates how sig-
nificant the categories are based on the p-value, but regarding to the color scale all shown 
categories are very significant, since the p-value is 0.003 or lower. In general, the scatterplot 
shows that the majority of the top ten significant categories is significant for both analyses.

Table  1 includes the GO categories which are identified as significantly regulated for 
human and mouse. Having a close look on these categories, there are some interesting 
results which enable assessments about for example the usage of animal experiments with 
mice for the development of drugs against the rhino virus. Also a deeper understanding of 
the biological processes after an infection can be achieved.

Discussion
The increasing amount of sequencing data that is available today poses a problem for 
scientist that do not have a programming background. One popular way to handle 
the increasing amount of gene expression data is the employment of UIs which help 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137905
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126832
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scientists to alleviate the programming challenges for statistical and exploratory analy-
sis. Even though an UI can reduce the programming complexity, it is worth mentioning 
that the reduction of complexity comes at the price of flexibility. By using an UI all the 
necessary steps have to be included were as by programming pipelines by hand, changes 
can be done more easily.

Requirement analysis

Based on user interviews, we obtained several requirements for our tool. We briefly 
describe these requirements in more detail. The application should enable to analyze 
Affymetrix as well as one-channel and two-channel Agilent data. The upload of files in 
the original format (CEL or in original TXT format) and the upload of SDRF files from 
the local storage should be possible. For Affymetrix data, it should be possible to apply 
an all-in-one preprocessing algorithm on the raw data. For quality control, the genera-
tion of boxplots of the raw and preprocessed data, as well as PCA plots and clustered 
heatmaps of the preprocessed data should be offered by the application. Based on this, 
outlier samples should be filterable. The user should be able to define a dynamic number 
of flexible DGE analyses as described before. It should be possible to define individual 

Table 1 Intersection of significant regulated GO categories in Human as well as in Mouse PCLS after 
Rhinovirus infection (case study II)

GO.ID Term

GO:0001916 Positive regulation of T cell mediated cytotoxicity

GO:0001961 Positive regulation of cytokine-mediated signaling pathway

GO:0002230 Positive regulation of defense response to virus by host

GO:0002250 Adaptive immune response

GO:0002474 Antigen processing and presentation of peptide antigen via MHC class I

GO:0030593 Neutrophil chemotaxis

GO:0032728 Positive regulation of interferon-beta production

GO:0032729 Positive regulation of type II interferon production

GO:0032731 Positive regulation of interleukin-1 beta production

GO:0032760 Positive regulation of tumor necrosis factor production

GO:0034341 Response to interferon-gamma

GO:0035458 Cellular response to interferon-beta

GO:0043123 Positive regulation of I-kappaB kinase/NF-kappaB signaling

GO:0043330 Response to exogenous dsRNA

GO:0045071 Negative regulation of viral genome replication

GO:0045087 Innate immune response

GO:0045089 Positive regulation of innate immune response

GO:0045824 Negative regulation of innate immune response

GO:0050729 Positive regulation of inflammatory response

GO:0050830 Defense response to Gram-positive bacterium

GO:0051092 Positive regulation of NF-kappaB transcription factor activity

GO:0051607 Defense response to virus

GO:0060333 Type II interferon-mediated signaling pathway

GO:0060339 Negative regulation of type I interferon-mediated signaling pathway

GO:0071222 Cellular response to lipopolysaccharide

GO:0071346 Cellular response to interferon-gamma

GO:0071347 Cellular response to interleukin-1
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significance thresholds for each defined analysis. The DGE analysis result should contain 
at least a volcano plot and a table of the defined DEG including the p-value, adjusted 
p-value and the log or linear fold change. It should be possible to compare DGE analy-
ses. In particular, the ID on which the analyses are to be compared should be selectable. 

Fig. 3 Results of case study II. a Scatterplot of the most significant GO categories based on the p-values 
shows the differences between the individual studies. b Venn diagramm shows the intersection of the 
significant GO categories
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Therefore, the result table of the DGE analysis of our application already includes the 
Ensembl stable ID, which enables the comparison of analyses between different micro-
arrays, even of different organisms. Moreover, the application should offer GO based 
enrichment analyses and the comparison of these. Non-functional requirements are the 
implementation as a web application to prevent the installation of the software and the 
reproducibility of the defined analysis by storing the defined parameters.

As mentioned in the section allowing early conclusions abourefsec:background, there 
is a number of open-source tools for analyzing microarray data available. Although most 
tools have their own benefits and weaknesses, we identified three tools to be most in line 
with our requirements of usability and the basic DGE analysis functionalities described 
by our user interviews. In Table 2 we show the comparison of functionalities between 
the TAC software [18], GEO2R [10], NetworkAnalyst [47] and our tool. A check ( � ) 
means, that the requirement is either completely fulfilled or that the functionality may 
be added by some additional approach. A cross ( × ) means, that the requirement is only 
partly or not at all fulfilled. The comparison of multiple DGE analyses and thus the com-
parison [48, 49] of gene expression between, for example, different diseases or organisms 
is not sufficiently enabled with existing tools. Moreover, to the best of our knowledge, 
enrichment analyses, such as the classification of DEGs according to the Gene ontology 
(GO), are often not included in most tools, or only in a complicated way.

Benefits and extensions

Our web application provides a platform for all steps of gene expression analysis 
from different microarray technologies. Additionally, GO enrichment analyses and 

Table 2 Evaluation of meeting the requirements graded ûhighö in comparison to existing tools for 
gene expression analysis

Requirement TAC GEO2R NetworkAnalyst Our tool

Analyze affymetrix data � � � �

Analyze one-channel agilent data × � � �

Analyze two-channel agilent data × × � �

Upload files in original format � � × �

Upload SDRF files � � � �

Upload from local storage � × � �

All-in-one preprocessing (Affymetrix) � � × �

Boxplots � � � �

PCA plots � × � �

Clustered heatmaps � × � �

Filter outlier samples � × × �

Flexible DGE analysis � × � �

Dynamic number of analyses � × × �

Individual significance thresholds × × × �

DGE analysis result � � � �

Compare DGE analyses × × × �

GO based enrichment analyses × × × �

Compare GO anlayses × × × �

Web application × � � �

Reproducibility × � � �
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comparison of analyses are enabled. All steps are implemented in a user-friendly way 
and visualize the results using different plots. Furthermore, by providing a web applica-
tion, our tool does not require any installations and maintenance from the users and 
works platform independent.

Our framework enables novel analyses that scientists without in-depth programming 
skills can perform themselves. For example, data produced with different technologies 
can be easily compared — hence, avoiding the need to rerun experiments with differ-
ent tools. In addition, gene expression data can also be compared between organisms, 
as demonstrated in chapter:case-study-ii, allowing early conclusions about the validity 
of animal experiments. Because of these advantages, we initially focused on the older 
microarray technology. Based on various studies, the results are of similar quality as 
from the newer next generation sequencing (NGS) methods. Moreover, microarray 
technologies are still necessary to use for some applications [8, 50–52]. Therefore, these 
data should be usable further and comparable with new data generated by novel tech-
nologies, such as NGS (e.g. RNA-seq).

Comparing microarray and NGS data can be helpful for methodological reasons, such 
as evaluating the accuracy and reproducibility of the different technologies. By compar-
ing the results obtained with both methods, researchers can identify any inconsistencies 
or errors and work to improve their experimental protocols. However, only data gen-
erated with Affymetrix and Agilent microarrays can be analyzed with our application. 
Nevertheless, the importance of NGS as an essential tool to study genetic variation, gene 
expression and epigenetic changes should not be underestimated. Therefore, we plan to 
extend our application to enable the analysis of these data as well. The modular design 
of the program code allows for easy extension to this end or to add further enrichment 
analyses.

Conclusion
Scientists are often challenged to analyse gene expression data from their experiments 
and compare the results with other studies. Among other things, the comparison of gene 
expression between different organisms is of particular interest, for example due to the 
transferability of animal experiments to humans. We have presented a web application 
that allows the user to analyse microarray gene expression data autonomously, without 
the need for programming skills. While our application offers a wide range of analysis 
options, for example through different preprocessing methods, it also offers default val-
ues or more information for the user as far as possible. The workflow of the web applica-
tion is divided into five main steps, to which the UI is adapted. By comparing DGE and 
GO analyses, different preprocessing approaches can be compared. Its main feature is 
that it allows for a cross-platform and cross-species comparison of various studies, even 
from different organisms or technologies.

In contrast to existing software, our application offers several advantages. First, it is 
web-based, so there are no system requirements or installation difficulties. It allows 
the analysis of Affymetrix as well as one-channel and two-channel Agilent data, with 
the analysis steps being almost identical in each case – hence offering flexible analysis 
options. The possibility of GO enrichment analyses and the comparison of DGE and GO 
analyses is also an extension to most existing applications.
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Currently, we are developing an extension for the analysis of RNA-seq data in the 
application as well. Thus, our web application would provide an all-in-one platform for 
gene expression analysis. In addition, enabling further enrichment analyses, for example 
pathway analyses, would be of interest for future work. In future work we also aim to 
look into applications of machine learning on genomic data as for example surveyed in 
[53].

Availability and requirements

Project name Genealyzer

Project home page https:// genea lyzer. item. fraun hofer. de/

Operating system(s) Platform independent

Programming language R v4.1.2

Other requirements Up-to-date web browser

Test credentials are

username: demo

password: Gen?eITEMaly-zer

License limited non-commercial research license

commercial extended research use: requires license

Any restrictions to use by non-academics licence needed

Abbreviations
CD  Crohn’s disease
CEL  File extension of files generated with Affymetrix microarrays
DEG  Differentially expressed genes
DGE  Differential gene expression
GEO  Gene expression omnibus
GO  Gene ontology
GSE  GEO series accession number
NGS  Next generation sequencing
PCA  Principal component analysis
PCLS  Precision cut lung slices
SDRF  Sample and data relationship format
TAC   Transcriptome analysis console
UC  Ulcerative colitis
UI  User interface

Acknowledgements
We thank Lena Heinisch for her contributions towards installing the web application.

Author contributions
L.W. conceptualized the methodical comparison. K.L performed the implementation and data analysis. L.W, B.S, K.L 
drafted the manuscript. All authors contributed to the interpretation of the results and read and approved the final 
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the Fraunhofer Internal 
Programs under Grant No. Attract 042-601000.

Availibility of data and materials
The data used in case study I is available on ArrayExpress with accession code E-MTAB-2967. The data used in case study 
II is available on the GEO platform with the series numbers GSM3614926 and GSM4093523.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

https://genealyzer.item.fraunhofer.de/


Page 16 of 17Lietz et al. BMC Bioinformatics          (2023) 24:150 

Competing interests
The authors declare that they have no competing interests.

Received: 19 December 2022   Accepted: 31 March 2023

References
 1. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of affymetrix genechip probe level data. 

Nucleic Acids Res. 2003;31(4):e15.
 2. Painter HJ, Altenhofen LM, Kafsack BF, Llinás M. Whole-genome analysis of plasmodium spp. utilizing a new agilent 

technologies dna microarray platform. Malaria: Methods and Protocols, 2013; 213–219.
 3. Hong M, Tao S, Zhang L, Diao L-T, Huang X, Huang S, Xie S-J, Xiao Z-D, Zhang H. Rna sequencing: new technologies 

and applications in cancer research. J Hematol Oncol. 2020;13(1):1–16.
 4. Del Vescovo V, Meier T, Inga A, Denti MA, Borlak J. A cross-platform comparison of affymetrix and agilent microarrays 

reveals discordant mirna expression in lung tumors of c-raf transgenic mice. PLoS ONE. 2013;8(11):78870.
 5. Kumar S, Dudley J. Bioinformatics software for biologists in the genomics era. Bioinformatics. 2007;23(14):1713–7.
 6. Klaus B, Reisenauer S. An end to end workflow for differential gene expression using affymetrix microarrays. 

F1000Research 2018:5 1384.
 7. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Research 2015;43(7):e47. https:// doi. org/ 10. 1093/ nar/ gkv007. 
https:// acade mic. oup. com/ nar/ artic le- pdf/ 43/7/ e47/ 72072 89/ gkv007. pdf

 8. Toro-Domínguez D, Villatoro-García JA, Martorell-Marugán J, Román-Montoya Y, Alarcón-Riquelme ME, Carmona-
Sáez P. A survey of gene expression meta-analysis: methods and applications. Brief Bioinform. 2021;22(2):1694–705.

 9. Chang L, Zhou G, Soufan O, Xia J. mirnet 2.0: network-based visual analytics for mirna functional analysis and sys-
tems biology. Nucleic Acids Res 2020;48(W1):244–251

 10. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: Ncbi gene expression and hybridization array data 
repository. Nucleic Acids Res. 2002;30(1):207–10.

 11. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko 
M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. Ncbi geo: archive for functional genom-
ics data sets áupdate. Nucleic Acids Res. 2013;41(D1):991–5.

 12. Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin I, Koski M, Käki J, Korpelainen EI. Chipster: user-
friendly analysis software for microarray and other high-throughput data. BMC Genom. 2011;12(1):1–14.

 13. Fang H, Harris SC, Su Z, Chen M, Qian F, Shi L, Perkins R, Tong W. Arraytrack: an fda and public genomic tool. In: 
Protein Networks and Pathway Analysis, pp. 379–398. Springer, Heidelberg 2009.

 14. Weniger M, Engelmann JC, Schultz J. Genome expression pathway analysis tool-analysis and visualization of micro-
array gene expression data under genomic, proteomic and metabolic context. BMC Bioinf. 2007;8(1):1–12.

 15. Theilhaber J, Ulyanov A, Malanthara A, Cole J, Xu D, Nahf R, Heuer M, Brockel C, Bushnell S. Gecko: a complete large-
scale gene expression analysis platform. BMC Bioinf. 2004;5(1):1–14.

 16. Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. Microrna and mrna integrated analysis (mmia): a web tool for exam-
ining biological functions of microrna expression. Nucleic Acids Res. 2009;37(suppl 2):356–62.

 17. Tárraga J, Medina I, Carbonell J, Huerta-Cepas J, Minguez P, Alloza E, Al-Shahrour F, Vegas-Azcarate S, Goetz S, 
Escobar P. Gepas, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res. 2008;36(suppl 
2):308–14.

 18. Thermofisher Scientific Inc.: Transcriptome Analysis Console (TAC) 4.0.2 USER GUIDE (2019). https:// assets. therm 
ofish er. com/ TFS- Assets/ LSG/ manua ls/ tac_ user_ manual. pdf Accessed 27 Nov 2020.

 19. Rayner TF, Rocca-Serra P, Spellman PT, Causton HC, Farne A, Holloway E, Irizarry RA, Liu J, Maier DS, Miller M, Petersen 
K, Quackenbush J, Sherlock G, Jr Stoeckert CJ, White J, Whetzel PL, Wymore F, Parkinson H, Sarkans U, Ball CA, Brazma 
A. simple spreadsheet-based, miame-supportive format for microarray data: Mage-tab. BMC Bioinf 7(489) (2006).

 20. Wiese L, Wiese I, Lietz K.Software quality assessment of a web application for biomedical data analysis. In: 25th 
International Database Engineering & Applications Symposium, pp. 84–93 (2021).

 21. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo 
R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Ole’s AK, Pag‘es H, Reyes A, 
Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with 
Bioconductor. Nature Methods 12(2), 115–121 (2015).

 22. Chang W, Cheng J, Allaire J, Xie Y, McPherson J. Shiny: Web Application Framework for R. (2020). R package version 
1.5.0. https:// CRAN.R- proje ct. org/ packa ge= shiny.

 23. Davis S, Meltzer P. Geoquery: a bridge between the gene expression omnibus (geo) and bioconductor. Bioinformat-
ics. 2007;14:1846–7.

 24. Affymetrix: Affymetrix CEL Data File Format. (2009). https:// www. affym etrix. com/ suppo rt/ devel oper/ power tools/ 
chang elog/ gcos- agcc/ cel. html Accessed 11 Dec 2022.

 25. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, 
Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain VKAH, Reyes, A, Shannon P, Smyth 
GK, Tenenbaum D, Waldron, L., Morgan, M.: Orchestrating high-throughput genomic analysis with bioconductor. 
Nature Methods 12(2), 115–121 (2015)

 26. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy–analysis of affymetrix genechip data at the probe level. Bioinformatics. 
2004;20(3):307–15. https:// doi. org/ 10. 1093/ bioin forma tics/ btg405.

 27. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 
2010;26(19):2363–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btq431.

https://doi.org/10.1093/nar/gkv007
https://academic.oup.com/nar/article-pdf/43/7/e47/7207289/gkv007.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/tac_user_manual.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/tac_user_manual.pdf
https://CRAN.R-project.org/package=shiny
https://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cel.html
https://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cel.html
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btq431


Page 17 of 17Lietz et al. BMC Bioinformatics          (2023) 24:150  

 28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):47. https:// doi. org/ 10. 1093/ nar/ gkv007.

 29. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of affymetrix genechip probe level data. 
Nucleic Acids Res. 2003;31(4):15.

 30. Wu Z, Irizarry RA, Gentleman R, Spencer FM-MF. A model-based background adjustment for oligonucleotide expres-
sion arrays. J Am Stat Assoc. 2004;99(468):909–17. https:// doi. org/ 10. 1198/ 01621 45040 00000 683.

 31. Affymetrix: Guide to probe logarithmic intensity error (PLIER) estimation. (2005). http:// tools. therm ofish er. com/ 
conte nt/ sfs/ broch ures/ plier_ techn ote. pdf Accessed 26 Jan 2021.

 32. Smyth GK, Ritchie M, Thorne N, Wettenhall J, Shi W, Hu YL.Linear Models for Microarray and RNA-Seq Data User’s 
Guide. The Walter and Eliza Hall Institute of Medical Research, (2021). The Walter and Eliza Hall Institute of Medical 
Research. https:// www. bioco nduct or. org/ packa ges/ devel/ bioc/ vigne ttes/ limma/ inst/ doc/ users guide. pdf Accessed 
28 Dec 2021

 33. Gohel D, Skintzos P. Ggiraph: Make ’ggplot2’ Graphics Interactive. (2020). R package version 0.7.8. https:// CRAN.R- 
proje ct. org/ packa ge= ggira ph.

 34. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). https:// ggplo t2. tidyv erse. org.
 35. Sievert C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Chapman and Hall/CRC, London (2020). 

https:// plotly- r. com.
 36. Galili T, O’allaghan A, Sidi J, Sievert C. Heatmaply: an r package for creating interactive cluster heatmaps for online 

publishing. Bioinformatics. 2017. https:// doi. org/ 10. 1093/ bioin forma tics/ btx657.
 37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. 

J Royal Stat Soc B (Methodol). 1995;57(1):289–300.
 38. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, 

Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontol-
ogy: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https:// doi. org/ 10. 1038/ 75556.

 39. Consortium TGO. The gene ontology resource: enriching a gold mine. Nucleic Acids Res. 2020;49(D1):325–34. 
https:// doi. org/ 10. 1093/ nar/ gkaa1 113.

 40. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. Panther version 14: more genomes, a new panther go-slim and 
improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):419–26. https:// doi. org/ 10. 1093/ nar/ 
gky10 38.

 41. Alexa A, Rahnenfuehrer J. Gene Set Enrichment Analysis with topGO. (2021). https:// bioco nduct or. org/ packa ges/ 
relea se/ bioc/ vigne ttes/ topGO/ inst/ doc/ topGO. pdf Accessed 3 Jan 2022.

 42. Gentleman R. Biocore: geneplotter: graphics related functions for bioconductor. (2020). R package version 1.68.0
 43. Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. (2020). R package version 2.42.0.
 44. Chen H. VennDiagram: generate high-resolution venn and euler plots. (2018). R package version 1.6.20. https:// 

CRAN.R- proje ct. org/ packa ge= VennD iagram.
 45. Kolde R. Pheatmap: Pretty Heatmaps. (2019). R package version 1.0.12. https:// CRAN.R- proje ct. org/ packa ge= pheat 

map.
 46. Laza-Stanca V, Stanciu LA, Message SD, Edwards MR, Gern JE, Johnston SL. Rhinovirus replication in human mac-

rophages induces nf-κb-dependent tumor necrosis factor alpha production. J Virol. 2006;80(16):8248–58.
 47. Zhou G, Soufan O, Ewald J, Hancock R, Basu N, Xia J. Networkanalyst 3.0: a visual analytics platform for comprehen-

sive gene expression profiling and meta-analysis. Nucleic Acids Res 2019;47(W1), 234–241.
 48. Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EA, Liguori MJ. Comparison of rna-seq and 

microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. 
Front Genet. 2019;9:636.

 49. Zhang W, Yu Y, Hertwig F, Thierry-Mieg J, Zhang W, Thierry-Mieg D, Wang J, Furlanello C, Devanarayan V, Cheng J. 
Comparison of rna-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 2015;16(1):1–12.

 50. Manchia M, Piras IS, Huentelman MJ, Pinna F, Zai CC, Kennedy JL, Carpiniello B. Pattern of gene expression in differ-
ent stages of schizophrenia: down-regulation of nptx2 gene revealed by a meta-analysis of microarray datasets. Eur 
Neuropsychopharmacol. 2017;27(10):1054–63.

 51. Sweeney TE, Haynes WA, Vallania F, Ioannidis JP, Khatri P. Methods to increase reproducibility in differential gene 
expression via meta-analysis. Nucleic Acids Res. 2017;45(1):e1.

 52. Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief 
Funct Genom Proteomic. 2009;8(3):174–83.

 53. Katsaouni N, Tashkandi A, Wiese L, Schulz MH. Machine learning based disease prediction from genotype data. Biol 
Chem. 2021;402(8):871–85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1198/016214504000000683
http://tools.thermofisher.com/content/sfs/brochures/plier_technote.pdf
http://tools.thermofisher.com/content/sfs/brochures/plier_technote.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf
https://CRAN.R-project.org/package=ggiraph
https://CRAN.R-project.org/package=ggiraph
https://ggplot2.tidyverse.org
https://plotly-r.com
https://doi.org/10.1093/bioinformatics/btx657
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gky1038
https://doi.org/10.1093/nar/gky1038
https://bioconductor.org/packages/release/bioc/vignettes/topGO/inst/doc/topGO.pdf
https://bioconductor.org/packages/release/bioc/vignettes/topGO/inst/doc/topGO.pdf
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap

	Genealyzer: web application for the analysis and comparison of gene expression data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Background
	Methods
	User interface and architecture
	Data upload
	Preprocessing
	DGE analysis
	GO enrichment analysis
	DEGGO comparison

	Results
	Case study I—inflammatory bowel disease
	Case study II—rhinovirus

	Discussion
	Requirement analysis
	Benefits and extensions

	Conclusion
	Availability and requirements
	Acknowledgements
	References


